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Disrupting Deepfakes via Union-Saliency
Adversarial Attack
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Abstract—With the rapid development of electronic payment
technologies, facial recognition-based payment systems have
become increasingly popular and indispensable. However, the
majority of facial recognition payment systems are vulnerable
to being manipulated by facial deepfake technology, and it
would be a serious threat to personal property and privacy.
In order to effectively defend deepfake models on the premise
of minimizing alterations to the original image, we propose a
union-saliency attack model which is a well-trained deepfake
model while maintaining plausible detail of the original face
images. To this aim, we derive a union mask mechanism to
accurately determine facial region as a prior in guiding the
subsequent perturbations, with the objective of minimizing the
information loss on input images. Additionally, we propose a
novel structural similarity loss and a noise generator to minimize
detail degradation. Experiments prove that the proposed method
can interfere with deepfake models effectively and minimize the
distortion of the original image simultaneously.

Keywords—Deepfake, Generative Adversarial Network, Facial
Recognition Payment, Model Attack

I. INTRODUCTION

FAcial recognition system is a critical component of dig-
ital payment. Although this technology brings a lot of

conveniences, it can be maliciously abused with the deepfake
model, which is capable of generating real-time fake face
images to fool face payment systems with unauthorized trans-
actions [1]. To solve this issue, various countermeasures have
been developed to combat deepfakes. These methods can be
categorized into two modes, namely deepfake detection and
deepfake disruption. Deepfake detection is to detect whether
the image is real or fake. In contrast, deepfake disruption aims
to prevent the creation of convincing synthetic images. The
schematic diagrams of the two modes are shown in Fig. 1.

Some attempts were made to explore deepfake detection
methods [2]–[4]. Hsu et al. [2] proposed a two-streamed net-
work that facilitates the extraction of discriminative synthetic
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features at intermediate and advanced levels by consolidating
cross-layer representations. Zhao et al. [3] designed a pair-wise
self-consistency learning to detect fake images based on source
feature inconsistency. Yang et al. [4] proposed a Masked
Relation Learning model, which decreases the redundancy
to learn informative relational features. Specifically, a spatio-
temporal attention module is exploited to learn the attention
features of multiple facial regions. Li et al. [5] introduced
an Artifacts-Disentangled Adversarial Learning framework,
which aims to achieve accurate deepfake detection through
the disentanglement of artifacts from irrelevant information. To
address an issue of discrepancies in quality between test faces
and training faces, Wang et al. [6] employed an innovative
technique termed the Localization Invariance Siamese Network
(LiSiam) for the purpose of deepfake detection. The primary
focus of LiSiam is to ensure localization invariance and
enhance the ability of the model to cope with diverse image
degradation. These deepfake detection methods have made
significant progress in detecting fake images. However, these
methods work as an ex-post approach [7] and cannot prevent
the generation of fake images ahead of time. More critically,
a common issue with current deepfake detection algorithms is
their insufficient generalization capacity [8]–[10].

In contrast, deepfake disruption, aimed at preventing the
generation of fake images proactively. The process of dis-
rupting deepfakes typically involves the introduction of im-
perceptible noise into the images [11]–[13]. Although it can
disrupt the deepfake models, it unavoidably results in the loss
of image details. Besides, existing methods often introduce
noise across the entire image without considering whether
those regions correspond to facial areas. Although there exist
some methods [14] that perturb only the face region, they are
mostly driven by a pre-trained facial region detector, which is
prone to be inaccurate caused by the variations between the
training and testing distribution.

In this work, we propose a union-saliency attack model,
which provides an effective and practical solution to counter
deepfake models while keeping image modifications to a mini-
mum. It effectively addresses the issue of fraudulent utilization
of face images generated by deepfake technology in the context
of electronic payments. Specifically, given a face image, we
first generate a preliminary salient mask to distinguish and
extract the face region. As a complementary, a manipulation
mask is introduced to guide addition perturbation. It provides
details of the facial area where the deepfake model modifies.
Therefore, a union mask is capable of inducing the noise to be
added to the facial region. Furthermore, we introduce a noise
generator with a structural similarity loss function to further
minimize detail degradation. In sum, the contributions of the
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Fig. 1. Diagrams of deepfake detection and deepfake disruption. (a) Deepfake detection. Using a detector determines whether an image was synthesized by a
deepfake model. (b) Deepfake disruption. Adding perturbations to input images disrupts deepfake models from producing realistic images. The images generated
by deepfake models have obvious artifacts and can be easily distinguished visually.

work are three-fold:
• We propose a union-saliency attack framework to fo-

cus on the face region. The proposed framework can
minimize the distortion of perturbed images and disrupt
deepfake systems.

• We employ a union mask, which consists of a salient
mask and a manipulation mask, to provide a more
precious face region. Furthermore, we adopt a noise
generator to optimize a small initial perturbation, and
to reduce the loss of details of the original image with
disturbing the deepfake model.

• We introduce a structural similarity loss to focus on the
difference between the original image and the disrupted
image. This is beneficial to reduce the detail loss of the
disrupted image.

The rest paper is structured as follows: Section II presents
the related work. Section III illustrates the proposed method in
detail. Section IV analyses the experimental results. The paper
is concluded in Section V.

II. RELATED WORK

A. Generative Adversarial Network

The original GAN model was put forward by Goodfellow
et al. [15]. It has excited a sensation in the domain of deep
learning and expanded the application areas of deep learning.
There has been a significant increase in the development and
proposal of efficient GAN architectures that are capable of
learning the various variations of individual faces, including
differences in hair color, age, expression, and gender. Zhu
et al. [16] proposed an image-to-image translation model
named CycleGAN. Compared to traditional paired image-
to-image translation methods, the CycleGAN model does
not require training on paired images. However, for training
across multiple domains and datasets, CycleGAN has shown
unsatisfactory results. Choi et al. [17] further addressed this
problem by introducing the StarGAN model in 2018. Pumarola
et al. [18] employed GANimation for continuous domain
facial expression synthesis. The GANimation employs atten-
tion mechanisms to enhance the robustness of the network
in background and lighting variations. Another representative
work termed StyleGAN3 was proposed by Karras et al. [19].
In comparison with StyleGAN [20] and StyleGAN2 [21],
StyleGAN3 enhances the capture of perceptual information

utilizing reversible multi-layer perceptron and microstructure
discriminator.

In this work, we utilize a StarGAN model that has been
trained to create face images with alterations to diverse at-
tributes. Furthermore, to seek a kind of adversarial perturbation
that could disrupt the fully trained StarGAN model, we pro-
pose an anti-forgery approach termed union-saliency attacker.

B. Deepfake Creation
Although GAN offers numerous benefits, they have also

been used to create inappropriate adult content and spread
misinformation, which pose a threat to personal privacy and
have negative impacts on politics. Deepfake creation is to
utilize deep learning models to synthesize facial images. It
is employed to replace one individual facial features with
another individual facial features or change face attributes.
Some generated fake faces with different facial attributes, e.g.,
changing hair, color changing gender, age, are depicted in
Fig. 2.

Recently, with the development of GAN, numerous GAN-
based deepfake models [22]–[25] have been designed to gener-
ate forgery facial images, that are difficult to be distinguished
visually. He et al. [26] implemented AttGAN with an attribute
classification constraint. The attribute classification constraint
is utilized to edit the generated images while preserving the
qualities of the original image. Liu et al. [27] proposed
STGAN to highlight specific facial features while maintaining
the other areas intact. Gao et al. [28] reported a high-fidelity
arbitrary face editing (HifaFace) that can make accurate face
editing while keeping rich details of undesired attribute areas.

C. Deepfake Disruption
The objective of deepfake disruption is to prevent the

creation of deepfakes proactively. In recent years, some
studies [29]–[31] have illustrated that adding imperceptible
noise to the original sample can deceive Deep Neural Net-
works (DNNs). Goodfellow et al. [32] proposed a Fast Gradi-
ent Sign Method (FGSM) to generate adversarial samples by
computing the gradient of the loss function with respect to the
input data. The follow-up work I-FGSM [33] performs multi-
ple gradient updates to generate stronger perturbations. These
studies proved that the existence of such adversarial examples
causes the vulnerability of the DNN. Hence, researchers at-
tempted to determine the potential vulnerability of deepfakes
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Fig. 2. Generated fake faces with different facial attributes.

by interrupting them with adversarial examples. Athalye et
al. [34] proposed the expectation-over-transformation (EoT)
method to generate adversarial examples that can withstand
preprocessing transformations. Yang et al. [35] designed a
defense technology to protect users from GAN-based deepfake
attacks. Ruiz et al. [12] reported spread-spectrum adversarial
attacks, that can bypass blurring defense mechanisms in a
gray-box scenario. The spread-spectrum adversarial attack
method exhibits high transferability across different types and
magnitudes of blur. Huang et al. [13] introduced an initiative
defense model to safeguard facial data against manipulation.
The presence of the embedded poison perturbations substan-
tially impairs the performance of face forgery models at the
inference and training stages.

In this work, we design a union-saliency attack framework
to generate adversarial examples. Unlike the aforementioned
methods that manipulate the entire image, the proposed model
can minimize adding disturbance to the background and pre-
serve more facial details.

D. Saliency Detection

The task of saliency detection involves the identification and
localization of the most visually conspicuous area, termed as
”salient region”. In order to enhance the accuracy of salient
object detection, numerous works [36]–[41] have improved
the saliency detection module. Wu et al. [42] introduced a
Sample Adaptive View Transformer module which includes
three different transformation branches. This configuration
facilitates the acquisition of diverse features corresponding
to distinct perspectives. Cong et al. [43] designed a weakly-
supervised model by employing hybrid labels. These models
enable the network to focus on the foreground region and
disregard the background, improving its ability to perform the
task of salient object detection.

In this work, we adopt a pre-trained TRACER [44] model
to generate a salient mask. This model can produce a weak
annotation for the facial region of interest and highlight the
most important and relevant main portrait area. As a comple-
mentary to the saliency map, an assistive manipulation mask
is simultaneously introduced to guide the perturbation. The
manipulation mask is regarded as a region that the deepfake

model altered to the original image. In this paper, the coupling
of the salient mask and the manipulation mask is termed a
union mask.

III. METHOD

A. Overview
The primary aim of the union-saliency attack proposed

in this work is to efficiently impair deepfake systems by
subtly perturbing the facial region in the original image. The
overall framework is shown in Fig. 3. The attack aims to
minimize the image information loss while achieving max-
imum effectiveness. This framework is designed in a four-
step process: (1) Creating union masks (Section III-B). (2)
Perturbing the facial image in a union-saliency method while
ensuring imperceptibility (Section III-C). (3) Adding the struc-
tural similarity loss function to the original loss function so
as to reduce the distortion of the input image caused by the
perturbation (Section III-D). (4) The face images were fed
forward into the deepfake model (Section III-E), with the
expectation that it would be readily distinguishable visually.

B. Union Mask
Deepfake models typically manipulate the face through

techniques such as face swapping or attribute manipulation.
In order to effectively thwart deepfake systems and minimize
image distortion resulting from the introduction of perturba-
tions, we adopt a pre-trained model to accurately isolate the
facial area from the background elements that are not relevant
to the face. However, due to the inability to accurately identify
portrait areas with only model-generated saliency masks, a
manipulation mask is introduced to guide addition perturbation
with a saliency mask. The union mask is created through the
combination of the saliency mask and the manipulation mask.

The saliency mask is generated by the well-trained
TRACER [44] model. The architecture of TRACER is shown
in Fig. 4. Specifically, the TRACER model consists of an
efficient backbone encoder and attention-guided salient object-
tracking modules. The TRACER model employs EfficientNet
as the backbone encoder to extract multi-scale features and
uses the masked edge attention module to improve memory ef-
ficiency. The union and object attention modules are integrated
within the decoder to effectively combine multi-level features.
The outputs of encoders are incorporated into these modules.
The Union Attention Module (UAM) effectively combines
multi-level features and captures significant contextual infor-
mation from both channel and spatial representations. The
UAM can enhance the detection performance. Furthermore,
the object attention module enhances object detection and
edge extraction by leveraging refined channels and spatial
representations. Therefore, it exhibits an increased level of
precision in generating saliency masks.

Denoting an original image as Iin, and a pre-trained
TRACER model is defined as fsd(·), the generated saliency
mask is defined as,

Msm = fsd(n(Iin, µ, σ), θs), (1)
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Fig. 3. Illustration of the union-saliency attack for defending deepfake. By perturbing the input images in the salient area, particularly the face region, the
deepfake system is effectively disrupted. As a result, the generated images become less realistic and display noticeable artifacts that can be easily detected
visually.

where n(·) refers to the process of normalization. µ and σ are
the mean and variance of the raw input image, respectively. θs
in the TRACER model is a fixed value that remains unchanged
during the inference process of the model.

The manipulation mask provides a precise facial region
to guide perturbation introduction. The manipulation mask is
formulated as,

Mma =

{
0, if ∥G(Iin)− Iin∥ < 0.5,

∥G(Iin)− Iin∥ , otherwise, (2)

where G(Iin) represents the image generated by the GAN
model from the original input image Iin. The G(·) represents
the GAN model. In contrast to utilizing post-processing tech-
niques for the conversion into a binary map, regions with
minimal changes in the image are assigned a value of zero,
and the regions are determined by ∥G(Iin)− Iin∥.

The union mask is a linear combination of the manipulation
mask and the saliency mask. It is defined as,

Mun = α ·Msm + β ·Mma, (3)

where α and β are the weights of the saliency mask and
manipulation mask, respectively. The saliency mask Msm and
the manipulation mask Mma are shown in Fig. 5. Compared
with the saliency mask, the union mask can better highlight
the foreground of the image. With the union mask Mun, the
foreground face region is obtained as,

Ifface = Iin(x, y)×Mun(x, y), (4)

The incorporation of the manipulation mask Mma with the
saliency mask Msm enables the preservation of fine facial
details. Applying the union mask to the foreground region
ensures that subsequent perturbations have no effect on the
background. Therefore, this model can reduce the loss of image
details.

C. Union-Saliency Image Perturbation
While contemporary deepfake models exhibit enhanced

performance relative to conventional methods, they remain

susceptible to adversarial attacks. To disrupt a pre-trained
deepfake model, a simple yet efficient solution is to adopt
the Sec.II-C assumption by disrupting the original image. The
perturbed images can be generated as,

Iptb = Iin + τ, (5)

where Iptb is the perturbed image. τ is an imperceptible
perturbation that can be uniform noise, Gaussian noises, or
salt-and-pepper noises. However, the imperceptible disruption
is randomly generated and may not be the smallest perturbation
that obstructs a deepfake model. To solve this issue, a noise
generator is employed to iterate the random perturbation. The
objective function can be formulated as,

minL(G(Iin + τi, c)), (6)

where i represents the number of iterations for the perturbation,
and c is the facial attribute label. The τi is obtained as,

τi = τi-1 − η · ∇τi-1L (G (Iin + τi-1, c)) , (7)

where η is the learning rate, and it is set to 1e-4. The final
disturbance generated by the noise generator is defined as
τ̃ . For a deepfake system, when the perturbed image Iptb is
input, it has the capability to output a generated image Optb
which will have noticeable artifacts. This proves that adding
perturbations can disturb the deepfake system.

The balance between disrupting the deepfake system and
preserving image details is crucial. To mitigate the loss of
original face image details and disturb the deepfake system, we
present a novel union-saliency approach. Given the union mask
Mun generated by Eq. (4), the perturbation is accomplished by
redefining Eq. (7) as,

τ̃ptb = Mun × τ̃ , Iadv = Iin + τ̃ptb, (8)

where the parameter Iadv represents the perturbation factor,
which is added to the original image to achieve the desired
level of disruption. Iadv is the perturbed image with a union
mask.
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Fig. 5. Results of the intermediate process. The images from left to
right are original images, saliency masks, foreground face region of images,
manipulation masks, deepfake-generated images from the original images and
final disrupted images by the proposed model.

D. Loss Function

Given a deepfake system G(·), the attack has two objectives,
each on a separate manifold.

• The disrupted image Iadv is envisioned to have minimal
distortion while effectively disrupting the deepfake sys-
tem, i.e., the introduced perturbation is supposed to be
invisible, which is expressed as,

min
τptb

L(Iin + τptb), s.t.∥τptb∥∞ ≤ ϵ. (9)

• The deepfake-generated images G(Iin) from the origi-
nal images and the deepfake-generated disrupted image
G(Iadv) is projected to be highly unnatural contrasting
with G(Iin), i.e., the introduced perturbation effectively
induces degradation in the generated image, which is
expressed as,

max
τptb

L(G(Iin), G(Iin + ϵptb)), s.t.∥τptb)∥∞ ≤ ϵ. (10)

To mitigate distortions arising from the introduction of
perturbations to images, we introduce a structural similarity
(SSIM) loss [45] based on the original loss function. The

original loss is formulated as,

L1(G(Iadv), G(Iin)) =

∑n
i=1(G(Iadv −G(Iin))

2

n
. (11)

The structural similarity loss is frequently utilized as an
image quality metric to calculate the likeness between two
images. It is commonly employed as a loss function for image
processing. The SSIM loss is formulated as

SSIM(Iin, Iadv) =
(2µIinµIadv

+ λ1)(2σIinIadv
+ λ2)

(µ2
Iin

+ µ2
Iadv

+ λ1)(σ2
Iin

+ σ2
Iadv

+ λ2)
,

Lssim(Iadv, Iin) = 1− SSIM(Iin, Iadv),
(12)

where µ and σ denote the mean and variance. The values
of λ1 and λ2 are set as 1e-4 and 9e-4, respectively. Unlike
the original loss, the SSIM loss focuses on the relationship
between Iin and Iadv in luminance, contrast, and structure.
The overall loss function is formulated as,

L = L1(G(Iadv), G(Iin)) + γ ∗ Lssim(Iadv, Iin), (13)

where the parameter γ is a weight of the SSIM loss.

E. Deepfake Attack Model
The aim of a deepfake attack model is to trick a deepfake

system G(·) that has been trained with parameters θg to
generate a visually authentic facial image g(Iin) using the
original image Iin. To this aim, the model should be fooled
by a disrupted image Iadv, which is known as an adversarial
attack. The Fast Gradient Signed Method (FGSM) [32] is a
well-established technique to attack neural networks. It can
modify the input through the addition of a small noise in the
direction of the loss gradient with respect to the input data. It
is formulated as,

Iadv = Iin +m sign(∇xL(θg, x, Iin)), (14)

where ∇xL is the loss function and m denotes the size
of the FGSM step. The I-FGSM [33] further improves the
FGSM algorithm by iteratively applying small perturbations
to the input in the direction of the gradient of the loss. It is
mathematically denoted as,

I0adv = Iin,

Itadv = It−1
adv + a sign(∇xL(θg, It−1

adv , y)),
(15)
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where a is the step size of the I-FGSM.
The perturbed image is inevitably distorted after adding

perturbations to the original image. To address this issue,
we propose a union-saliency attack. The core idea of this
method is to constrain the disturbance in the salient face area
through the union mask. Meanwhile, the SSIM loss function
is employed to constrain the differences between the original
image and its counterpart with added noise. This process is
formulated as,

I0adv = Iin + τ̃ptb,

It+1
adv = Itadv + a sign(∇xL(θg, Itadv, y))×Mun,

(16)

where the L(·) is formulated as Eq. (13), and “×” denotes the
matrix multiplication operation.

Following the recent work [12], a Gaussian smoothing filter
is employed to blur the input image at each iteration so as
to bootstrap the attacker. The pseudocode of the proposed
union-saliency adversarial attack model is summarized in
Algorithm 1.

Algorithm 1 Pseudocode of the Union-saliency Adversarial
Attack Model
Input: Deepfake generator G(·), Pre-trained saliency detection
model fsd(·), Input face image Iin, Disruption magnitude a.
Output: Disrupted face image Iadv, generated image from the
disrupted counterpart g(Iadv).

Using saliency detection to generate saliency mask Msm as
Eq. (1).

Generating the union mask Mun as Eq. (3).
Using noise generator and the union mask Mun to generate

perturbation τ̃ptb as Eq. (8).
Applying perturbation τ̃ptb on the face region to get the

residual component by I-FGSM algorithm by Eq. (16).
Feeding the union-saliency perturbed face image Iadv into

the deepfake generator to get the translated image g(Iadv).

IV. EXPERIMENTS AND ANALYSIS

A. Implementation Details
In the union-saliency attack framework, the TRACER [44]

is employed to generate the saliency mask. The kernel size is
set to 11 and σ is set to 1. A Gaussian blur filter is employed
as a pre-processing step for the image. The magnitude of
perturbation in Eq. (5) is set to 0.05. The step size a in Eq. (16)
is set to 0.01 [12], and the loss function for the union-saliency
framework in Eq. (13) is a combination of MSE loss and
SSIM loss. We empirically set the parameter α to 1.0, β to 0.1
and γ to 1.0. The framework is implemented in PyTorch [46]
framework with an NVIDIA GeForce GTX 3090Ti GPU.

B. Datasets
The experiments are performed on the CelebFaces Attributes

(CelebA) dataset [47]. It is an openly available dataset consist-
ing of 202,599 face images provided by 10,177 celebrities. We
conduct a comprehensive evaluation of the proposed methods

by sampling images at various scales, including a small scale
(500 images), a medium scale (1,000 images), an intermediate
scale (2,000 images), and a large scale (4,000 images).

C. Evaluation Metrics
To validate the effectiveness of the proposed union-saliency

attack framework, we conduct an evaluation objectively and
subjectively. For objective evaluation, four evaluation metrics,
i.e., L1 error, L2 error, peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM), are adopted to
measure the difference between the original face images and
the disrupted image. For subjective evaluation, we visually
depicted the generated images produced by the deepfake
system using both Iin and Iadv as inputs and visualize the
generated image by the deepfake framework from the pair of
these two inputs, respectively.

D. Comparison with State-of-the-art Methods
In order to validate the effectiveness of the proposed union-

saliency attack framework, we compared it with the state-of-
the-art (SOTA) competitors under the same configuration [12],
[14], [33], [34].

For objective evaluation, the results of L1 and L2 errors are
shown in Table I. Compared with the second-best Saliency-
Aware [14], the proposed method reduces L1 and L2 errors
by 6.2% and 14.7%, respectively. Moreover, to further evaluate
the similarity between the original and the disturbed images
comprehensively, the results of the PSNR and the SSIM
are shown in Table II. The results prove that the proposed
framework outperforms all other competitors in terms of both
the PSNR and the SSIM. Specifically, compared with the
second-best method, the proposed framework improves the
PSNR and SSIM by 2.1% and 0.9%, respectively. This signifies
that the proposed method merely requires less noise injection
into the original image to achieve effective disruption of the
deepfake mode. Table I and Table II prove that the proposed
attack framework outperforms other competitors, on the same
set of benchmark settings with four evaluation metrics. While
both the proposed method and the second-best Saliency-Aware
model [14] integrate saliency masks, the union-saliency attack
framework goes a step further by introducing the union masks.
This strategic enhancement leads to a more comprehensive rep-
resentation of facial features in the framework. Therefore, the
proposed attack method is able to further reduce the distortion
of the image. In consequence, the solid foundation provided
by these results is unquestionably essential for subsequent
deepfake attack methodologies.

The visualized results are depicted in Fig. 6. The original
images and disrupted images are processed by the widely
adopted StarGAN model [17] to perform operations on dif-
ferent attributes. The subjective results demonstrate that the
image generated by feeding the disrupted image into StarGAN
has noticeable artifacts, and these images can be easily dis-
tinguished visibly. Additionally, the concentration of artifacts
in the analyzed images is primarily localized in the facial
region, with a notably lower occurrence of artifacts in non-
facial images. This finding proves that the proposed framework
is capable of effectively disrupting the deepfake model.
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TABLE I. COMPARATIVE RESULTS IN L1 ERROR AND L2 ERROR. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Tiny (500) Small (1000) Middle (2000) Large (4000) Average
Attacker

L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓
I-FGSM [33] 0.019 0.087 0.019 0.087 0.019 0.087 0.019 0.087 0.019 0.087
EoT-Blur [34] 0.020 0.089 0.020 0.089 0.020 0.089 0.020 0.089 0.020 0.089
Spread-Spectrum [12] 0.017 0.071 0.017 0.071 0.017 0.071 0.017 0.071 0.017 0.071
Saliency-Aware [14] 0.016 0.068 0.016 0.068 0.016 0.068 0.016 0.068 0.016 0.068
Union-Saliency 0.015 0.058 0.015 0.058 0.015 0.058 0.015 0.058 0.015 0.058

TABLE II. COMPARATIVE RESULTS IN PSNR AND SSIM . THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Tiny (500) Small (1000) Middle (2000) Large (4000) Average
Attacker

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
I-FGSM [33] 33.614 0.942 33.616 0.943 33.616 0.943 33.616 0.943 33.616 0.943
EoT-Blur [34] 33.536 0.937 33.538 0.938 33.536 0.938 33.536 0.938 33.536 0.938
Spread-Spectrum [12] 34.521 0.954 34.520 0.955 34.520 0.954 34.520 0.954 34.520 0.954
Saliency-Aware [14] 34.706 0.954 34.709 0.955 34.709 0.955 34.709 0.955 34.708 0.955
Union-Saliency 35.427 0.964 35.430 0.964 38.446 0.964 35.446 0.964 35.437 0.964

Original Image Black Hair Blond Hair Brown Hair Gender Original Image Black Hair Blond Hair Brown Hair Gender OldOld

Fig. 6. Visualized results with different facial attributions.

TABLE III. ABLATION STUDIES ON THE KEY COMPONENTS AND THE PROPOSED LOSS FUNCTION. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Methods L1 ↓ L2 ↓ PSNR ↑ SSIM ↑
baseline 0.0169 0.0714 34.5212 0.9541
baseline+Saliency mask 0.0167 0.0697 34.6044 0.9544
baseline+Union mask 0.0167 0.0703 34.5748 0.9531
baseline+Union mask+Noise generator 0.0167 0.0702 34.5756 0.9532
baseline+Saliency mask+Noise generator+Lssim 0.0149 0.0584 35.3852 0.9635
baseline+Union mask+Noise generator+Lssim 0.0147 0.0580 35.4274 0.9636

E. Ablation Studies

To validate the efficacy of the key components and the
adopted loss function, the ablation experiments are conducted.
Comparative results are listed in Table III. The corresponding
counterparts are depicted as follows.

• “baseline” is Spread-Spectrum attack [12]. The scores
of L1 error, L2error, PSNR and SSIM are 0.0169,
0.0714, 34.5212 and 0.9541, respectively.

• “baseline+Saliency mask” denotes the baseline model
with a saliency mask which is generated by TRACER

module [44]. Compared to the baseline model, adding
the saliency mask can reduce L1 and L2 errors by 1.2
% and 2.4%, respectively.

• “baseline+Union mask” indicates the baseline model
with a union mask, which generated by adding a saliency
feature mask and a manipulation mask. It shows that
adopting the union mask yields better performance than
the baseline.

• “baseline+Union mask+Noise generator” represents the
baseline by adding a union mask and noise generator.
It shows that the performance outperforms the baseline
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Fig. 7. Ablation study on different components. “b”: “baseline”, “b+s”: “baseline+Saliency mask”, “b+u”: “baseline+Union mask”, “b+u+n”: “baseline+Union
mask+Noise generator”, “b+s+n+l”: “baseline+Saliency mask+Noise generator+Lssim”, “b+u+n+l”: “baseline+Union mask+Noise generator+Lssim”.

by adding a single union mask in L2 error, PSNR and
SSIM.

• “baseline+Saliency mask+Noise generator+Lssim” indi-
cates the baseline by adding a saliency mask, noise
generator, and the SSIM loss. The scores of L1 error,
L2 error, PSNR and SSIM are 0.0149, 0.0584, 35.3852,
and 0.9636, respectively.

• “baseline+Union mask+Noise generator+Lssim” denotes
the baseline by adding a union mask, noise generator,
and the SSIM loss, which is the proposed framework.
The scores of L1 error, L2 error, PSNR and SSIM are
0.0147, 0.0580, 35.4274, and 0.9636, respectively. The
results indicate that the performance of the proposed
framework surpasses that of other combination models
in terms of L1 error, L2 error, PSNR, and SSIM metrics.

Table III proves that the individual components within the
proposed framework interact synergistically. The synergistic
interplay among these modules contributes to a substantial
enhancement in network performance. The performance com-
parison of the ablation studies is shown in Fig. 7.

V. CONCLUSION

In this paper, we propose a union-saliency attack framework
to provide an effective and practical solution to counter deep-
fake models while keeping image modifications to a minimum.
It employs a union mask to enhance the focus on the facial
features of individuals while adding perturbations to these
specific details rather than the irrelevant background regions.
This strategy introduces minimal changes to the original im-
age, with making the attack remain effective. Experiments
were conducted to showcase the effectiveness of the proposed
method, revealing its superiority over SOTA competitors. We
consider the proposed model to have the potential to safeguard
the privacy of individuals and address ethical concerns by
mitigating the harm caused by deepfake technology.
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