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Detecting Sequential Deepfake Manipulation via
Spectral Transformer with Pyramid Attention in

Consumer IoT
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Abstract—Recently, the Consumer Internet of Things (CIoT)
has brought great convenience to people. In CIoT, face image
information is indispensable for payment and checking the
identity of the user in the transaction. However, the misuse of
deepfake face information in CIoT transactions is a growing
problem. It has seriously violated the property and privacy of
individuals. Moreover, with the proliferation of easily accessible
facial editing applications, individuals can effortlessly manipulate
facial components through sequential multi-step manipulations.
To solve this issue, we propose a Spectral Transformer with a
Pyramid Attention (STPA) model to detect sequence permuta-
tions in manipulated facial images. Specifically, we introduce
a pyramid attention module that integrates both spatial and
channel attention mechanisms to prioritize the face region over
the background region. Additionally, a spectral Transformer is
employed concurrently to extract global and local features to
facilitate the fine-grained extraction of the face forgery region.
Comprehensive experiments prove that the proposed method
can enhance the detection accuracy of the sequential deepfake
manipulation task through the fine-grained extraction of features
in the face forgery region.

Keywords—Consumer Security, Privacy Preservation, Sequential
Deepfake Detection, Spectral Transformer, Pyramid Attention

I. INTRODUCTION

THe evolution of the intelligent Consumer Internet of
Things (CIoT) has greatly facilitated people’s lives. Nev-

ertheless, it also introduces various avenues for distinct se-
curity threats and compromises the privacy of users [1].
For example, in CIoT, criminals engage in the theft of user
facial information and use deepfake technologies to fabricate
false identities. Subsequently, they use this forged face in-
formation to commit fraud in transactions. Moreover, with
the advancement of deep learning techniques, particularly
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the emergence of sophisticated methods such as Generative
Adversarial Networks (GANs) [2], hyper-realistic face images
can be effortlessly generated. Such misuses of deepfake tech-
nology in CIoT [3], [4] raises potential societal concerns, e.g.,
misinformation and privacy infringements. For example, some
face images of celebrities have been maliciously manipulated
for explicit content, and bring them substantial harassment and
privacy concerns.

To mitigate the adverse effects resulting from the abuse of
deepfake technology, numerous detection methods [5]–[7] have
been proposed and extensively investigated. Zhao et al. [8]
introduced a multi-attentional deepfake detection network de-
signed to uncover subtler distinctions between authentic and
manipulated images. Guarnera et al. [9] introduced a multi-
level deepfake detection approach to recognize fake images
generated by various GANs and diffusion models. Jeong et
al. [10] introduced a method termed Frequency Perturbation
GAN (FrePGAN), which incorporates a frequency-level per-
turbation during training. These traditional studies can attain
a high level of accuracy in discerning the authenticity of
images. In real-life scenarios, a facial image may undergo
multiple deepfake manipulations, each following a specific
sequence. As illustrated in Fig. 1 (b), an artificial facial image
is generated by manipulating the original image through two
successive deepfake steps, namely “Lip” and “Eyebrow” ma-
nipulation. Consequently, the manipulation sequence for this
synthesized image is designated as “Lip-Eyebrow”. However,
conventional deepfake detection methods struggle to identify
the sequence of this facial manipulation.

To address this issue, the Sequential Manipulation Detection
method was built to detect the sequence of deepfake manipula-
tion. The distinctions between the sequential manipulation de-
tection method and the traditional deepfake detection method
are shown in Fig. 1. The conventional deepfake detection
method is limited to discerning the authenticity of an image,
whereas the sequential manipulation detection method can
detect the manipulation sequence of an image. Recently, a Seq-
DeepFake Transformer (SeqFakeFormer) [11] was proposed to
detect sequences of facial manipulations with diverse lengths.
The framework consists of two key parts: spatial relation
extraction and sequential relationship modeling with spatially
enhanced Cross-attention. These parts work synergistically,
each complementing the other’s functionality. The detection of
sequential manipulations can be conceptualized as a special-
ized image-to-sequence task, which can be forecasted utilizing
the autoregressive algorithm embedded within the SeqFake-
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Fig. 1. Comparison between (a) the traditional deepfake detection method and (b) the sequential manipulation detection method.

Former. Given the diverse sizes of facial manipulation regions,
the detection method requires meticulous feature extraction
from these regions. However, the SeqFakeFormer framework
falls short of achieving satisfactory performance for fine-
grained feature extraction.

In this work, to address this issue, we introduce a Spectral
Transformer with Pyramid Attention (STPA) framework for
refined extraction of facial manipulation. Specifically, the
proposed model captures a face image. Meanwhile, the image
is fed to a backbone network to extract coarse-grained visual
features. Subsequently, the extracted features are channeled
into the pyramid attention module. The primary objective
of employing the pyramid attention module is to emphasize
the facial region in the image while minimizing attention to
irrelevant background areas. Then, by utilizing the Spectral
transformer encoder, the proposed method adeptly captures
spatial relationships within the features of manipulated regions.
Finally, a decoder incorporating spatially enhanced cross-
attention is employed to derive the final features related to
sequential manipulation. These features are input into a Fast
Forward Network (FFN) to unveil the sequence of deepfake
manipulations. In sum, the contributions of the work are three-
fold:

• We design a Spectral Transformer with Pyramid At-
tention (STPA) to improve the accuracy of sequential
deepfake manipulation detection.

• We introduce a pyramid attention to emphasize the facial
region while disregarding the background. This module
initially acquires multi-scale features through grouped
convolution, followed by deriving attention weights us-
ing spatial and channel attention mechanisms.

• We propose a spectral transformer encoder for extracting
features from fine-grained face manipulation regions.
This transformer encoder employs a spectral model to
address the deficiency of attention modules in capturing
localized features.

The rest paper is structured as follows: Section II presents the
related work. Section III illustrates the proposed method in
detail. Section IV analyses the experimental results. The paper
is concluded in Section V.

II. RELATED WORK

A. Consumer Internet of Things
The concept of Consumer Internet of Things (CIoT) is to

apply IoT architecture and technologies to consumer electronic

devices and products. It has a wide range of applications,
such as smart home systems, wearable technology, connected
household appliances, and intelligent health devices [12], [13].
Although its principle is to improve user experience and
overall quality of life, the CIoT-connected devices concurrently
pose significant privacy and security challenges due to the
extensive collection of user information [14]. For example,
criminals engage in the theft of user facial information and
employ deepfake technologies to fabricate false identities.
Subsequently, they utilize this forged facial information to
perpetrate fraud in transactions.

To address such issues, numerous works have been con-
ducted to protect consumer privacy within CIoT. For example,
Xu et al. [15] introduced an evaluation model to assess
privacy risks in federated learning within the CIoT. This
model integrates model inversion and white-box membership
inference attacks for efficient and high-quality privacy data
reconstruction. Rabieinejad et al. [16] proposed a two-level
privacy-preserving framework combining federated learning
with partially homomorphic encryption. This framework aims
to address security vulnerabilities and enhance privacy protec-
tion in CIoT. In this work, we introduce a spectral transformer
with a pyramid attention model for the detection of deepfakes.

B. Deepfake detection

In the contemporary digital landscape, the pervasive use
of deepfake technologies has introduced a new set of chal-
lenges in verifying the authenticity of digital content. As
these techniques advance, the boundary between genuine
and manipulated material becomes progressively indistinct.
Consequently, distinguishing between reality and fabrication
becomes a challenging endeavor. To mitigate the adverse ef-
fects of deepfakes, researchers are actively developing various
methods for their detection. Recently, FST-Matching [17] was
proposed to address the challenge of suboptimal performance
exhibited by detection modules when applied to compressed
images. This model enhances the detection performance of the
network by acquiring representations through image matching.
Reiss et al. [18] introduced a practical recipe for deepfake
fact checking (FACTOR) to detect fake images generated by
unknown forgery methods. In contrast to other methods, the
FACTOR is a non-training-based approach that exhibits a
certain degree of generalization. Shuai et al. [19] addressed
the lack of universality and overfitting to image content of
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current deep forgery detection methods through a dual-stream
network. They employed a semi-supervised strategy for plaque
similarity learning to estimate annotations at the plaque level
for forged locations. Unlike the aforementioned methods that
concentrate solely on a single stage of facial manipulation,
Shao et al. [11] proposed the SeqFakeFormer model to detect
the sequential deepfake manipulations. The SeqFakeFormer
breaks the deep forgery research paradigm of binary classifica-
tion of true and false labels. Nevertheless, it lacks of extracting
fine-grained features.

In this work, we introduce a Spectral Transformer with a
Pyramid Attention (STPA) model to detect sequential deep-
fake manipulations. The proposed framework incorporates a
pyramid attention model and a spectral transformer to extract
fine-grained features from facial forgery regions.

C. Attention mechanism
The incorporation of the attention mechanism in deepfake

detection plays a pivotal role in elevating the sensitivity of the
network to signs of forgery [20]. The attention mechanism
enhances the accuracy and robustness of forgery detection
by concentrating on crucial feature areas. Many attention
mechanisms are proposed in the literature [21]. Among them,
the most representative attention mechanisms are spatial atten-
tion and channel attention. The channel attention is primarily
derived from the originally obtained feature maps by channel
as the weights of each channel. The spatial attention enables
the network to focus on specific regions of the input data.

The most representative channel attention is Squeeze-and-
Excitation (SE) [22]. The SE module enhances attention
toward pivotal channels while diminishing dependence on
less crucial channels. Wang et al. [23] proposed an Efficient
Channel Attention (ECA) module by fast one-dimensional
convolution, and it is lightweight channel attention. Wang et
al. [24] introduced a spatial attention mechanism termed non-
local attention. The non-local attention captures more complex
structural information by considering any two positions in
an image. The Spatial-reduction attention (SRA) [25] was
introduced to reduce the computational cost by shrinking the
spatial scale of key and numerical inputs. Moreover, recent
studies have shown that spatial attention and channel attention
can synergize to improve the performance of networks. For
example, Woo et al. [26] proposed the Convolutional Block
Attention Module (CBAM) to focus on channel and spatial
attention, simultaneously. The channel attention module em-
phasizes key channels, whereas the spatial attention module
enhances the discernment of distinct spatial locations. The
Triplet Attention [27] was built to capture cross-dimensional
interactions between channels and spatial dimensions through
a three-branch structure.

The aforementioned work aims to combine channel and
spatial attention, but they both struggle to capture multi-
scale spatial information effectively. To address this issue, the
Pyramid Split Attention (PSA) [28] was introduced. Utilizing
operations such as spatial pyramid convolution (SPC) and
complex SE weighting modules, the PSA excels at fusing
contextual information at multiple scales. In this work, we

introduce the pyramidal attention module to emphasize facial
regions while disregarding background areas unrelated to the
face.

D. Spectral transformer
The Spectral Transformer is a deep learning model based on

the Transformer architecture, meticulously designed to analyze
time-series signals and spectrogram data. By integrating a
frequency-domain attention mechanism, it adeptly captures
the inherent frequency-domain information in signals, thereby
enhancing the capability to extract local features from images.

Recently, the spectral transformer holds paramount signifi-
cance in analyzing information within the frequency domain
of images [29]. Rao et al. [30] put forward a Global Filter
Network (GFNet) to improve the computational efficiency and
robustness of the network by replacing the attention module
with a 2D inverse Fourier transform. Lee et al. [31] pro-
posed a Transformer-like model termed Mixing Tokens with
Fourier Transforms (FNet). In FNet, a self-attention sublayer
is replaced by an unparameterized Fourier Transform. There-
fore, the FNet enhances training speed while concurrently
reducing the number of parameters. A wavelet vision trans-
former (Wave-ViT) [32] was reported by Yao et al.. In Wave-
ViT, the Discrete Wavelet Transform (DWT) is employed
for lossless downsampling of self-attentive keys and values.
Additionally, the inverse discrete wavelet transform (IDWT)
is employed to enhance self-attention outputs by aggregating
local contexts with an expanded receptive field. Patro et al. [29]
introduced a SpectFormer, which incorporates a combination
of spectral attention and later multi-headed attention. The
spectral layer is employed to capture the different frequency
components of the image to capture localized frequencies. This
enhancement contributes to the capability of the transformer
to capture specific localized features.

In this work, we incorporate a spectral module into a
transformer encoder to conduct fine-grained extraction of facial
images. This structure addresses the limitations associated
with the challenge of the transformer in accurately capturing
localized features.

III. PROPOSED METHOD

A. Overview
In contrast to traditional deepfake detection methods, this

work aims to develop a framework proficient in addressing
the intricate array of falsification techniques applied to a
single facial image. Moreover, it seeks to predict the sequence
of these deepfake manipulations accurately. Detecting forged
manipulation sequences necessitates the extraction of spatial
relationship features from these sequences, which constitutes a
challenging task. Consequently, to precisely forecast sequences
of manipulated manipulations, a critical challenge involves
capturing nuanced spatial manipulation regions and conducting
meticulous extraction of spatial features.

To capture nuanced spatial manipulation regions and con-
duct detailed spatial feature extraction, we propose a frame-
work termed Spectral Transformer with Pyramid Atten-
tion (STPA). This framework aims to augment precision in
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the detection of sequential deepfake manipulation. The overall
structure of the STPA framework is illustrated in Fig. 2.
Given an input image I captured by an imaging device in
CIoT network, the proposed framework takes it as input and
processes it with a pre-trained ResNet50 [33] for coarse-
grained visual feature extraction. The coarse-grained visual
feature fin is represented as:

fin = fresnet(I), (1)

where the fresnet(·) is the ResNet50. fin ∈ RC×H×W , the
variables H and W denote the height and width of the feature
fin respectively, C represents the number of channels in the
feature fin. Subsequently, the feature fin is fed into the pyra-
mid attention module to guide the proposed framework toward
emphasizing the facial region in the image while minimizing
attention to irrelevant background areas. The proposed method
employs a spectral transformer encoder, which integrates a
spectral model with self-attention modules, to effectively cap-
ture spatial relationships in features of manipulated regions.
Subsequently, a decoder featuring spatially-enhanced cross-
attention acquires the final sequential relation features. These
features are then processed through a Fast Forward Network
(FFN), enabling the framework to deduce the sequence of
deepfake manipulation. The architecture of this framework
is intricately designed to accurately discern the subtleties of
sequential manipulation.

B. Pyramid attention module
To enhance the detection of deepfake manipulation se-

quences, it is imperative to accurately identify features in
subtly manipulated areas, typically found within the portrait
region. The pre-trained ResNet50 model is utilized for initial
feature extraction from input images. However, given its unfa-
miliarity with the specific dataset, ResNet50 may inadvertently
focus on areas not associated with facial features. To address
this, the proposed method incorporates a pyramid attention
module, designed to steer the network’s focus more precisely
towards facial regions. This targeted approach aids in the
more effective discernment of manipulations relevant to facial
characteristics.

This pyramid attention module comprises three compo-
nents, namely Pyramid Grouped Block (PGB), Spatial At-
tention (SA), and Channel Attention (CA). The PGB is a

group convolution module capable of extracting features across
various scales through the utilization of diverse convolutional
kernels. The SA is a spatial attention module, and it enables
the model to capture information within the facial region.
As a channel attention model, the CA allows the system
to adjust the weights of various channels dynamically, and
it emphasizes the image features crucial for the sequence
of deepfake manipulation. The architecture of the pyramid
attention module is shown in Fig. 3.
Pyramid grouped block To capture features across various
scales, the input feature fin is evenly partitioned into four
segments along the channel dimension. The channel m

′
of

each segmented part can be denoted as:

m
′
=

m

4
, (2)

where m is the number of channels in the feature fin. To en-
hance the capacity of the proposed method in capturing diverse
features across distinct spatial locations, multi-scale grouped
convolution is employed to extract multi-scale features. The
size of the group g can be denoted as:

gi = 2
ki−1

2 , (3)

where k is convolution kernel size and ki = 2i + 3, i =
0, 1, 2, 3. We employ convolution kernels of varying sizes to
extract multi-scale features in the four segmented portions. The
multi-scale features fi are formulated as:

fi = Conv(ki × ki, gi)(fin), i = 0, 1, 2, 3, (4)

where fin represents the coarse-grained visual feature output
from the ResNet. Subsequently, the multi-scale features fed
into the spatial attention module for further process.
Spatial attention The spatial attention module aims to high-
light the importance of specific locations within the image,
focusing on areas of interest while diminishing background
distractions. By applying the Spatial Attention (SA) module
across each of the four branches, the network’s attention is
redirected away from the background, intensifying the focus
on facial region features. The configuration of SA is illustrated
in Fig. 3, and it is detailed as follows.

First, the average pooling and maximum pooling operations
are operated along the channel axis. This process yields a
combination of global and local features. Then, the features
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obtained from both maximum pooling and average pooling are
concatenated along the channel dimensions. This concatenation
results in a comprehensive feature map that encapsulates con-
textual information across various scales, effectively enriching
the feature representation for subsequent analysis. This feature
map undergoes processing through a convolutional layer to
generate spatial attention weight Wsi. The spatial attention
weight Wsi is defined as:

Wsi = Cat(AvgPool(fi),MaxPool(fi)), i = 0, 1, 2, 3, (5)

where Cat represents the concatenation operation. Then, the
sigmoid activation function is employed to confine the spatial
attention weights within the range of 0 to 1. These processed
attention weights are then applied to the input features to derive
the output features fsi. It is obtained as:

fsi = fi ⊙ Sigmoid(Conv(Wsi))), i = 0, 1, 2, 3, (6)

where ⊙ denotes the channel-wise multiplication [26].
Channel attention Different from spatial attention, the ob-
jective of the channel attention module is to enhance the
feature representation of each channel. Similar to the spatial
attention module, both maximum pooling and average pooling
are utilized to compute the maximum eigenvalue and average
eigenvalue for each channel. The resultant feature vectors from
the maximum pooling and average pooling operations undergo
processing through two fully connected layers. These layers
serve the purpose of extracting attention weights specific to
each channel. The combination of maximum and average fea-
tures is accomplished through a summation operation, yielding
the attention weight vector. This process enhances the model’s
ability to discern significant channel-wise information within
the given context. The attention weight Wci is computed as:

Wci = Sigmoid(FC(AvgPool(fsi)),FC(MaxPool(fsi))),
(7)

where FC is the fully connected layer, i = 0, 1, 2, 3. The
channel feature map is derived by multiplying the attention
weights with each channel of the input feature map. The

channel feature map is obtained as:

fci = fsi ⊙Wci, i = 0, 1, 2, 3. (8)

Finally, the feature maps obtained after each branch has
undergone the SA and CA modules yield the final feature of the
Pyramid Attention module. The final feature fatt is obtained
as:

fatt = Cat(fc0, fc1, fc2, fc3). (9)

C. Transformer encoder

In the proposed framework, a spectral transformer encoder
is employed to capture the spatial relationships within fine-
grained manipulation regions. Compared with the traditional
transformers, the spectral transformer incorporates a spectral
model on top of the original attention module. The attention
module can capture global features but falls short of accurately
capturing local features. Conversely, the spectral model excels
in capturing local features. The proposed spectral transformer
can combine the strengths of the attention layer and spectral
model to capture both global attributes and local features
accurately. The structure of the spectral transformer encoder
is illustrated in Fig. 4.
Spectral block The spectral layer analyzes image frequencies
using a spectral gating network, which includes a Fast Fourier
Transform (FFT) layer, weighted gating with a trainable pa-
rameter, and an inverse FFT layer. The spectral layer converts
physical space into spectral space using FFT. By employing
a trainable weight parameter Wg , the assignment of weights
to each frequency component ensures the precise capture of
lines and edges within an image. This parameter is acquired
through the implementation of back-propagation techniques.
The IFFT is employed to convert the spectral space back to
the physical space. Meanwhile, to acquire the localized feature
fl, the spectral block employs a residual connection to add
the feature generated by IFFT to the input feature fpos. The
localized feature fl is denoted as:

fl = IFFT(Wg × FFT(fpos)) + fpos, (10)
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where Wg is a trainable weight parameter, the feature fpos
is the result of complementing the feature fatt with a fixed
positional encoding. Subsequently, a layer normalization block
is introduced to facilitate stable training and improve conver-
gence. Following the layer normalization block, the Multi-
Layer Perceptron (MLP) is used for channel mixing. The
output fsl of the spectral block is obtained as:

fsl = MLP(LayerNorm(fl)) + fl. (11)

Attention block The attention block is a multi-head self-
attention model. The objective of employing multiple atten-
tion mechanisms is to empower the model to capture long-
range dependencies within the input features more effectively.
Specifically, feeding the feature fsl into the attention blocks,
the input feature fsl is segmented into multiple groups along
the channel dimension. The query (Q), key (K), and value (V )
are generated by the multi-head self-attention. Subsequently,
the attention model employs the Q, K, and V to extract
relations among all spatial positions. The multi-head self-
attention can be defined as:

f i
spe = (

(
KT

i Qi√
d

)
Vi),

fspe = Cat(f1
spe, f

2
spe, ..., f

N
spe),

(12)

where N represents the number of groups into which the
feature fsl is partitioned, and N = 4. We subsequently
concatenate all the groups to compose the spatial relation
features fspe as the output of the encoder.

D. Transformer decoder

To detect sequences of manipulations, it is essential to model
the sequential relationships between features. Therefore, given
the extracted features fspe, the proposed framework employs
an autoregressive multi-head cross-attention architecture to
process these features and their corresponding manipulation se-
quences. The proposed method employs a spatially augmented
cross-attention module to model sequence relationships with
limited annotations of operational sequences.

Specifically, the STPA framework converts every manipu-
lation in the sequence into a single token. It includes Start
of Sentence (SOS) and End of Sentence (EOS) tokens at the
commencement and conclusion of the sequence. By this, the
tokenized sequence of manipulations Stok is obtained. It is
argued that each manipulation within Stok corresponds to a
distinct facial attribute or component, distinguished by a robust
spatial region precedent. Therefore, the STPA model employs
this knowledge to steer the detection of operational sequences.
To this end, a Gaussian spatial weight map can be dynamically
generated for each manipulation component or attribute by
predicting the spatial center and scale. The Gaussian-shape
spatial weight map M(h,w) is obtained as:

(mh,mw) = Sigmoid (MLP (Stok)) , dh, dw = FC (Stok) ,

M(h,w) = exp

(
− (h−mh)

2

αd2h
− (w −mw)

2

αd2w

)
,

(13)
where the coordinates (mh,mw) denote the two-dimensional
spatial center points of the specific manipulation. dh and
dw are two-dimensional parameters defining the scale of the
specific manipulation. The coordinates (h,w) represent the
two-dimensional parameters of the map M , and α is a hyper-
parameter. In a spatial weight map, areas in proximity to
the centroid receive high weights, while areas more distant
from the centroid are assigned low weights. Furthermore, the
spatial weight map possesses the capability to dynamically
adjust its height-to-width ratio to accommodate variations in
manipulation areas. This advantage facilitates the generation
of spatial weight maps that are more adaptive. Finally, the
produced spatial weight map M can be employed to enhance
the multi-head cross-attention model. The Stok serves as
queries (Q), whereas the feature fspe supplies both keys (K)
and values (V). Subsequently, they are input into the cross-
attention layer for semantic interaction. The multi-head cross-
attention can be obtained as:

Q = FC (Stok) ,K, V = FC (fspe) ,

fseqi = Softmax
(
KT

i Qi/
√
d+ logM

)
Vi,

fseq = Cat
(∑D

i=1 fseqi

)
,

(14)

where D is the number of heads of multi-head cross-attention.
Subsequently, an autoregressive mechanism is integrated

into the multi-head cross-attention module to tackle the pre-
dictive aspects of sequential manipulation. The autoregres-
sive mechanism decodes the facial manipulation sequence
by predicting the next manipulation element based on the
preceding elements. The process concludes when the end
marker is predicted. This approach enables the prediction of
facial manipulation sequences with variable lengths as needed.
Then, the final feature fseq is fed into the FFN, and the
sequence of facial manipulation will be generated as output.
Finally, the proposed network is trained by minimizing the
cross-entropy loss between each class score in the sequence
and the corresponding operational annotation.
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Implementation details
In this work, we employed a ResNet50 backbone network

to perform coarse-grained feature extraction from images. The
batch size was set to 64, and the epoch was set to 150. We
implemented a learning rate warm-up phase, and the epoch
was set to 20. The initial learning rates were set as 1e − 3
for the transformer part and 1e−4 for the ResNet50 part. The
parameter N in Eq. (12) was set to 4. The hyperparameter α in
Eq. (13) was experimentally set as α = 4. The cross-attention
heads D in Eq. (14) was set as D = 4. The trainable weight
parameter Wg was defined as a matrix with all initial values 1.
The framework was implemented in PyTorch [34] framework
with 2 NVIDIA 3090 GPUs.

B. Dataset
The Sequential Deepfake (Seq-Deepfake) dataset was col-

lected and produced by Shao et al. [11]. The Seq-Deepfake
dataset has been meticulously curated to facilitate the detection
of sequences of facial manipulations. It is divided into two
distinct subsets, namely the facial components dataset and
the facial attributes dataset. The two sub-datasets vary in the
forgery techniques employed to create synthetic facial images.
One involves facial components manipulation [35], while the
other utilizes facial attributes manipulation [36]. The details of
the two sub-datasets are as follows.
Facial components dataset The objective of the facial compo-
nents manipulation technique is to relocate specific facial com-
ponents from one individual face to another face. The original
images are sourced from the CelebA-HQ [37] dataset. The fake
images are produced by applying facial component masks and
StyleMapGAN [35] within CelebAMask-HQ [38] to execute
forgery operations on the original images. Ultimately, this
sub-dataset comprises 35,166 manipulated face images labeled
with 28 manipulation sequences with various lengths. Each
image has the corresponding annotations for the sequential
face component operations. The distribution of manipulation
sequence lengths, ranging from 1 to 5, is as follows: 20.48%,
20.06%, 18.62%, 20.88%, and 19.96%.
Facial attributes dataset The method of facial attributes
manipulation endeavors to alter the style of the original human
face, such as changing hair color, wearing glasses, and adjust-
ing age. The fake images are produced by inputting images
from the FFHQ dataset [39] into StyleMapGAN. The facial
attributes dataset includes 49,920 face images. There are 26
types of operation sequences, each with a length ranging from
1 to 5.

C. Evaluation metrics
To assess the effectiveness of the STPA model, we con-

ducted a comprehensive analysis objectively and subjectively.
For objective evaluation, Fixed Accuracy (Fixed-Acc) and
Adaptive Accuracy (Adaptive-Acc) are introduced to evaluate
the proposed framework.
Fixed-Acc In assessing the proposed network, we standardized
the length of the predicted facial manipulation sequences to 5.

In the course of training, if the predicted sequence falls short of
5, the “no manipulation” (NM) category is integrated into the
annotated manipulation sequences. Then, the model compares
each manipulation class in the predicted sequences with the
real sequence to calculate the evaluation accuracy.
Adaptive-Acc In the proposed method, the prediction is au-
tomatically stopped when the EOS token is detected. Con-
sequently, the proposed approach enables the discernment of
sequences of facial operations with adaptable lengths. This
evaluation metric is introduced to assess the performance of
models in scenarios involving adaptive sequence lengths.

D. Comparison with state-of-the-art methods

To evaluate the efficacy of the proposed framework, we
performed a comparative analysis against four state-of-the-
art (SOTA) methods. The DRN [40], Multi-Cls [11], and
DETR [41] approach sequential deepfake detection by consid-
ering each manipulation sequence as a distinct class. These can
be regarded as a multi-categorization task. Nevertheless, these
methods overlook the pivotal analysis of manipulated sequen-
tial data. In contrast, the SeqFakeFormer [11] and the proposed
method STPA are designed for the concurrent processing of
both spatial and sequential forged information. Compared with
the SeqFakeFormer, the proposed method introduces pyramid
attention to accentuate the facial region while neglecting the
background. Additionally, to augment the capability of the
transformer encoder in extracting global and local features,
the proposed model employs a spectral transformer encoder to
extract features from fine-grained face manipulation regions.
The comparison results between the proposed method and
SOAT methods are shown in Table I.

In Table I, the DRN, Multi-Cls, and DETR methods exhibit
a lower level of detection performance in comparison to Seq-
FakeFormer and STPA methods. The proposed method STPA
surpasses other SOAT methods in the detection of sequential
deepfake manipulation. Specifically, in the facial components
dataset, the STPA achieves scores of 72.34 and 54.20 on the
Fixed-Acc and Adaptive-Acc metrics, respectively. In contrast
to the SeqFakeFormer, the STPA enhances the Fixed-Acc and
Adaptive-Acc metrics by 1.06% and 1.08%, respectively. In
the facial attributes dataset, the proposed STPA exhibits strong
performance. Compared to the SeqFakeFormer, the STPA
improves the Fixed-Acc and Adaptive-Acc metrics by 0.87%
and 2.02%, respectively. Nevertheless, Table I shows that the
Fixed-Accuracy metric of the proposed method consistently
surpasses the Adaptive-Accuracy metric. This indicates that
the proposed method faces challenges in detecting sequences
with adaptive length. In future work, we will study feature ex-
traction algorithms for detecting facial manipulation sequences
with adaptive length to improve detection performance.

The visualized results of detecting sequential deepfake ma-
nipulations are depicted in Fig. 5 and Fig. 6. The subjective
results indicate that the proposed network proficiently discerns
the sequence of deepfake manipulations with varying lengths.
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TABLE I. COMPARISON WITH THE SOTA METHODS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Methods facial components facial attributes
Fixed-Acc Adaptive-Acc Fixed-Acc Adaptive-Acc

DRN [40] 66.06 45.79 64.42 43.20
Multi-Cls [11] 69.65 50.57 66.66 46.00
DETR [41] 69.75 49.84 67.62 47.99
SeqFakeFormer 1 [11] 71.58 53.62 68.12 48.58
STPA (our) 72.34 54.20 68.71 49.56

TABLE II. ABLATION STUDY ON THE KEY COMPONENTS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method facial components facial attributes
Fixed-Acc Adaptive-Acc Fixed-Acc Adaptive-Acc

Baesline 71.58 53.62 68.12 48.58
Baesline+STM 71.83 54.09 68.65 48.72
Baesline+STM+CA 72.11 54.01 67.92 48.11
Baesline+STM+SA 71.27 53.13 68.15 48.62
Baesline+STM+SA || CA 71.68 53.49 68.15 48.62
Baesline+STM+CA+SA 71.45 53.50 67.93 48.36
Baesline+STM+SA+CA 72.34 54.20 68.71 49.56

GT: hair-nose-eye-eyebrow-lip
Pred: hair-nose-eye-eyebrow-lip

GT: nose-eye
Pred: nose-eye

GT: eye
Pred: eye

GT: eye-nose
Pred:eye-nose

GT: eye-hair-lip
Pred: eye-hair-lip

GT: eyebrow-hair-lip
Pred: eyebrow-hair-lip

O
riginal Im

ages
Fake Im

ages

GT: eyebrow-nose
Pred: eyebrow-nose

Fig. 5. The qualitative results sampled from the facial components dataset. The texts in red and blue signify the ground truth (GT) and the prediction (Pred).

E. Ablation study
The proposed model introduces a spectral transformer mod-

ule and a pyramid attention module. Moreover, the channel
attention module and the spatial attention module can be
combined either in parallel or sequentially. To assess the effec-
tiveness of the essential elements, the ablation experiments are
conducted in the Seq-Deepfake dataset, as shown in Table II.

In the ablation studies, the Baseline is the SeqFake-
Former [11]. The STM denotes the spectral transformer mod-
ule, which mixes spectral modeling and multi-attention mod-
ules. The CA denotes the channel attention module, and the
SA is an attention module. The “SA || CA” represents the
parallel arrangement of the spatial attention and the channel
attention modules. Table II proves that the proposed framework
achieves optimal performance when the SA is connected
before the CA module in a serial configuration. It shows that
the proposed method outperforms the baseline in detecting
sequential deepfake manipulations. The visualization of the
proposed pyramid attention is depicted in Fig. 7. It depicts

1Performance evaluation was conducted with the officially released code
and performed on the same platform as ours.

that the pyramid attention can focus on the facial region while
ignoring the background region. This facilitates the subsequent
extraction of spatial relationships within the manipulated facial
region.

V. CONCLUSION

In this paper, we designed a Spectral Transformer with
Pyramid Attention (STPA) network to detect the sequential
deepfake manipulations in the CIoT. Compared to existing
methods for sequential deepfake manipulation detection, the
proposed STPA method excels in extracting the spatial features
of facial manipulation regions at a finer granularity to enhance
the detection accuracy of the network. The pyramid attention
module is employed to prioritize attention on the facial region
over the background area. Furthermore, a spectral block is
incorporated into the Transformer to address its deficiency in
extracting localized features. The experimental results demon-
strate that STPA outperforms SOTA methods in detecting
sequential deepfake manipulations.
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GT: beard-eyeglasses
Pred: beard-eyeglasses

GT: bangs
Pred: bangs

GT: eyeglasses-smiling-young
Pred: eyeglasses-smiling-young

GT: bangs-beard-smiling
Pred: bangs-beard-smiling

GT: lip-nose-eye
Pred: lip-nose-eye

GT: young-beard
Pred: young-beard

O
riginal Im

ages
Fake Im

ages

GT: eyeglasses
Pred: eyeglasses

Fig. 6. The qualitative results sampled from the facial attributes dataset.

Fig. 7. Visualization of the pyramid attention map.
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