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Abstract—With the development of deep learning, deep generative models have generated
hyper-realistic facial images that are virtually indistinguishable from authentic images. Recently, the
misuse of deepfake technology in electronic consumption is becoming increasingly prevalent. This
poses a significant threat to consumer privacy and property security. In reaction to this issue, an array
of methods for deepfake detection has been proposed to evaluate the authenticity of images.
Sequential deepfake detection is an extension of the deepfake detection approach. It aims to detect
various facial manipulation operations and accurately identify the sequence of facial manipulations.
To enhance the accuracy of sequential deepfake detection and protect consumer privacy, we propose
a deep learning-based detection method for sequential deepfake detection. It is designed to extract
fine-grained features for detecting facial manipulation sequences. Compared to the state-of-the-art
methods, the proposed method improves the Fixed-Acc and Adaptive- Acc metrics by 1.43% and
3.89%, respectively.

THE RAPID ADVANCEMENT of cognitive and se-
mantic computing has engendered a wave of novel
intelligent applications in the digital era. Specifically,
the application of certain semantic-enabled consumer
electronics in digital media has brought significant
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convenience to consumers. However, the rampant mis-
use of deepfakes in the electronic consumption land-
scape poses a significant threat to individual privacy
and financial security [1], [2]. For example, some indi-
viduals acquire consumers’ facial images by using se-
mantic consumer electronics. The semantic consumer
electronic refers to consumer electronic devices that
are capable of understanding and processing human
language and context through the use of semantic
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technologies. Then, they employ a deepfake model to
create fake images. Subsequently, these forged images
are employed in scams during electronic transactions.

Deepfake is a technique for synthesizing images. It
generates deceptive and misleading media content by
utilizing deep learning and artificial intelligence algo-
rithms. Deepfake generation methods are commonly
used to create convincingly false images. The rapid
development of these methods has raised concerns
about the misuse of false information and privacy
infringement. It has become imperative to explore
effective technological solutions to mitigate the risks
posed by deepfake methods in electronic consumption
and to protect consumer privacy and financial security.
Therefore, many researchers are dedicated to studying
and proposing solutions to address this issue [3], [4],
[5]. Deepfake detection is a crucial area of research for
addressing these challenges. Deepfake detection is a
method that employs algorithms and technical tools to
discern and identify deepfake media. Common meth-
ods for deepfake detection encompass deep learning-
based technologies along with conventional digital
forensics and digital signal processing methodologies.

Facial images may undergo a series of forged op-
erations (e.g., changing the hair color, nose shape, and
eye size), each with its specific sequence. For example,
in Figure 1 (b), the original image is manipulated
sequentially to obtain a fake image. The operation
sequence of the fake image is “Eyebrow-Nose”. Nev-
ertheless, traditional deepfake detection only identifies
the authenticity of images. They lack the ability to
detect manipulation sequences.

To address this problem, a Seq-DeepFake Trans-
former (SeqFakeFormer) [6] was proposed to detect
sequences of facial manipulations. This network ef-
fectively mitigates the risks associated with deepfake
technology in electronic consumption. The SeqFake-
Former employs an improved autoregressive model
to identify manipulated regions. However, The ef-
fective detection of facial manipulations necessitates
the meticulous extraction of features from regions
of varying sizes. To solve this issue, we propose
a multifaceted attention and spatial-frequency atten-
tion network for sequential deepfake detection. The
multifaceted attention enables the proposed method
to capture global and local features. The spatial-
frequency attention enhances the capability of the pro-
posed method to capture finely subtle features within
deepfake images. The main contribution is as follows:

• To improve the detection accuracy of the sequential
deepfake model, an MASFA-Net is proposed by
incorporating a multifaceted attention module and
a spatial-frequency attention module.

• A multifaceted attention is employed to capture
global and local features. Meanwhile, a spatial-
frequency attention module is proposed to capture
finely subtle features within fake images.

• Experiments verify that the proposed model outper-
forms the state-of-the-art methods in accuracy.

The rest of this article is organized as follows. The
“Related Work” Section presents related work on deep-
fake detection, sequential deepfake detection, and at-
tention mechanisms. The “Proposed Sequential Deep-
fake Detection Method” Section illustrates the pro-
posed method in detail. The “Experimental Results and
Analysis” Section analyses the experimental results.
Finally, the main conclusions of this work are given in
the “Conclusion” Section.

RELATED WORK
Deepfake detection refers to the process of using

technological methods to identify forged videos or
images generated by deep learning algorithms. Sequen-
tial deepfake detection is a recently emerging research
area that identifies deepfakes created through various
manipulations. Both deepfake detection and sequen-
tial deepfake detection share the common objective
of differentiating between authentic and manipulated
images. However, sequential deepfake detection aims
to identify and localize manipulated facial regions.
Meanwhile, it detects the sequence of these manip-
ulations. The distinction between deepfake detection
and sequential deepfake detection is illustrated in Fig-
ure 1. Recently, a Seq-DeepFake Transformer (Seq-
FakeFormer) [6] was proposed to detect sequences of
facial manipulations. The SeqFakeFormer employs an
improved autoregressive model to identify manipulated
regions. However, the effective detection of facial
manipulations necessitates the meticulous extraction
of features from regions of varying sizes. Current
sequential deepfake detection methods fall short in this
capacity. In this work, we propose the MASFA-Net to
capture finely subtle features within fake images and
improve the accuracy of sequential deepfake detection.

The attention mechanism is designed to enhance
the network to focus on different parts of the input. It
has been applied across the computer vision domain.
Many attention models have been proposed, e.g., Mul-
tifaceted Attention [7], Triplet Attention [8], etc. The
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Figure 1. Comparison between (a) deepfake detection and (b) sequential deepfake detection.
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Figure 2. Overall framework of the proposed model.

attention mechanism enables the deepfake detection
model to focus on key regions while processing facial
images. In this work, we introduce the multifaceted
and spatial-frequency attention modules to enhance
model accuracy in sequential deepfake detection.

PROPOSED METHOD
In this work, a Multifaceted Attention and Spatial-

Frequency Attention Network (MASFA-Net) is em-
ployed to improve the accuracy of sequential deepfake
detection. The framework of the MASFA-Net is shown
in Figure 2. Specifically, an input image is fed into
the ResNet50 [9] to extract the feature fi. Then, a
spatial-frequency attention module analyzes the feature
fi to focus on important areas of the face. The spatial-
frequency attention module can concentrate on spatial
and frequency information concurrently. Consequently,
it considers the spatial position of pixels and features
at different frequencies during image data processing.
Subsequently, a transformer encoder is employed to
extract spatial relationships among operational region
features. The output of the transformer encoder is de-
fined as feot. In contrast to the traditional transformer
encoder, a multifaceted attention module is introduced
to substitute the original self-attention mechanism in
MASFA-Net. Then, different forgery operations are
translated into distinct tokens. Start of Sequence (SOS)
and End of Sequence (EOS) tokens are inserted at
the beginning and end of the sequence composed
of these forgery operations. Next, a tokenized se-
quence of operations is obtained. Finally, the feature

feot and a tokenized sequence of operations are fed
to the transformer decoder. Sequential manipulation
traces are captured by modeling sequential relations
based on spatial features. This is achieved through
cross-attention modules in the decoder with an au-
toregressive mechanism. To improve the network’s
performance with limited labelled manipulation se-
quences, we follow the SeqFakeFormer method and
use a spatially enhanced cross-attention module. This
module generates different spatial weight maps for cor-
responding manipulations to improve cross-attention.
The proposed method is trained using a cross-entropy
loss.

Spatial and frequency information are important in
computer vision. Spatial information excels in process-
ing an image’s overall structure and semantic informa-
tion. Frequency information excels in handling an im-
age’s local details and texture information. Therefore,
spatial-frequency attention is employed to capture fine-
grained facial features. The structure of the spatial-
frequency attention is shown in Figure 3.

The spatial-frequency attention module comprises
three branches, each incorporating spatial and fre-
quency information extraction modules. The mod-
ules for spatial and frequency information extraction
are in a parallel state. Given an input tensor with
shape (C × H × W ), each branch aggregates cross-
dimensional interaction features between the spatial
dimensions H or W and the channel dimension C .
This is achieved by straightforwardly rearranging the
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Figure 3. Schematic diagram of the Spatial-
frequency Attention module.

input tensors in each branch. Then, a Z-pool layer is
applied to pass the tensors, and a convolutional layer
with a kernel size of k × k is applied. The Z-pool
layer reduces the zeroth dimension of the tensor to
two by concatenating the average-pooled and max-
pooled features across their dimension. Subsequently,
attention weights are generated through a sigmoid
activation layer and applied to the permuted input
tensor. Finally, the tensor is transformed back to its
original input shape.

Each branch has identical spectral layers for the
frequency information extraction part. The spectral
layer assesses image frequencies using a spectral
gating network comprising a Fast Fourier Trans-
form (FFT) layer, weighted gating with a trainable
parameter Wg , and an Inverse FFT layer (IFFT).
The spectral layer converts the physical space into
spectral space by employing FFT. The trainable weight
parameter Wg facilitates precise weight assignment
to each frequency component. The Wg ensures the
accurate capture of lines and edges within an image.
The acquisition of this parameter is accomplished
through the implementation of back-propagation tech-
niques. Subsequently, the IFFT is applied to revert the
spectral space to the physical space. The Multi-Layer
Perceptron (MLP) is used for channel mixing. Finally,
the spatial features and frequency features are fused.
The output of this module is obtained by averaging the
outputs of the three branches.

The self-attention module is pivotal in many deep
learning models, especially transformers. However,
self-attention still falls short of adequately capturing
local information. Therefore, we employ multifaceted
attention [7] to extract features of forged traces at
different scales. Forged traces refer to subtle anomalies

or features in artificially generated media that reveal
the content has been tampered with or synthesized.
The multifaceted attention comprises global attention
and local attention. Global attention is a standard self-
attention mechanism employed for extracting global
information. It is computed by:

Attg(Q,K, V ) = S(QKT

√
d

)V, (1)

where Q, K , and V refer to Query, Key, and Value.
S is the sigmoid function. For local attention, the goal
is to seek a mechanism to learn the most suitable
local region for each forged operation. Based on prior
knowledge, a rectangular region can be identified by
two vertices. We obtain a two-dimensional learnable
attention map using these two points. First, given query
vectors Q ∈ RWH×d and key vectors K ∈ RWH×d,
two predicted coverage probability maps M1,M2 can
be computed by trough learnable parameter matrices
W1,W2. The M1 and M2 can be obtained as:

M1 = S((QWQ
1 )(KWK

1 )T ),

M2 = S((QWQ
2 )(KWK

2 )T ).
(2)

To obtain a two-dimensional learnable attention
map, resize M1 and M2 into a 2D matrix of size
W × H . For each position i along the first axis of
M1 and M2, there are two corresponding probability
maps, M1i and M2i. Subsequently, the learnable re-
gion map R is redesigned by applying the cumulative
distribution function (CDF) to M1i and M2i. Finally,
the learnable region map R is employed for local
attention. The local attention can be expressed as:

Attl(Q,K, V ) = S(QKT ◦R√
d

)V, (3)

where ◦ is defined as the Hadamard product [10].
Finally, multifaceted attention is composed by inte-
grating global and local attention mechanisms. The
multifaceted attention enables the transformer encoder
to adeptly capture intricate spatial relationships within
the feature of operational regions.

EXPERIMENTAL ANALYSIS
The Facial Components Dataset is utilized to train

the proposed MASFA-Net. This dataset was collected
and produced by Shao et al. [6]. The dataset en-
compasses 35,166 manipulated facial images, each
meticulously labelled with 28 manipulation sequences
of varying lengths. Annotations detailing the sequential
operations conducted on facial components accompany
each image. The distribution of manipulation sequence
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Figure 4. The visualized results of the proposed model. The texts in red and blue signify the ground truth (GT)
and the prediction (Pred), respectively.

lengths, spanning from 1 to 5, is delineated as follows:
20.48%, 20.06%, 18.62%, 20.88%, and 19.96%.

To evaluate the performance of the proposed
method, we employ two metrics: Fixed Accu-
racy (Fixed-Acc) and Adaptive Accuracy (Adaptive-
Acc). The Fixed-Acc denotes the accuracy when de-
tecting facial manipulation sequences of fixed lengths.
Similarly, Adaptive-Acc denotes the accuracy in de-
tecting facial manipulation sequences with adaptive
lengths. Higher scores in Adaptive-Acc and Fixed-Acc
indicate better network performance.

This work employs a ResNet50 backbone network
to perform coarse-grained feature extraction from im-
ages. The batch size is set to 64, and the epoch is set
to 150. The initial learning rates are set as 1e-3 for the
transformer part and 1e-4 for the ResNet50 part. The
trainable weight parameter Wg is defined as a matrix
with all initial values 1. The framework is implemented
in PyTorch [11] with 2 NVIDIA 3090Ti GPUs.

The comparison results between the proposed
method and SOAT methods are shown in Table 1.
In Table 1, the proposed method performs best on
the facial components dataset. Specifically, the pro-
posed method achieves scores of 72.61 and 55.57 in
terms of Fixed-Acc and Adaptive-Acc, respectively.
Compared to the SeqFakeFormer [6], the proposed
method improves the Fixed-Acc and Adaptive-Acc
metrics by 1.43% and 3.89%, respectively. However,

according to Table 1, the performance of the proposed
method is not satisfactory when there is no limit on
the number of forgery operations. Figure 4 illustrates
the visual outcomes of detecting consecutive deepfake
manipulations. The subjective assessments reveal the
adept discernment by the proposed neural network
of deepfake manipulation sequences characterized by
diverse lengths.

Table 1. Comparison with the SOTA methods. The best

results are highlighted in bold.

Methods facial components
Fixed-Acc Adaptive-Acc

DRN [12] 66.06 45.79
Multi-Cls [6] 69.65 50.57
DETR [13] 69.75 49.84
MA [14] 71.31 52.94

SeqFakeFormer 1 [6] 71.58 53.62
MASFA-Net (ours) 72.61 55.71

CONCLUSION
In this work, to mitigate the potential risk caused

by deepfake in electronic consumption, we proposed
multifaceted and spatial-frequency attention networks
for sequential deepfake detection. This framework
introduces the multifaceted and spatial-frequency at-
tention modules to extract fine-grained features. Com-
pared to existing methods for sequential deepfake

1Performance evaluation was conducted with the officially re-
leased code and performed on the same platform as ours.
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manipulation detection, the proposed method excels in
extracting the spatial features of facial manipulation
regions at a finer granularity to enhance the detec-
tion accuracy of the network. The experiment results
demonstrate that the proposed method can enhance
the accuracy of sequential deepfake detection and it
can safeguard consumer privacy and security. However,
when the length of the detected forgery sequence is
unfixed, the detection performance of the proposed
method is poor. Therefore, our future work will con-
tinue to enhance the model’s accuracy in detecting
sequences of adaptive lengths.
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