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Abstract
With the widespread adoption of deep learning, there has been a notable increase in the prevalence of multimodal deepfake
content. These deepfakes pose a substantial risk to both individual privacy and the security of their assets. In response to
this pressing issue, researchers have undertaken substantial endeavors in utilizing generative AI and cognitive computation to
leverage multimodal data to detect deepfakes. However, the efforts thus far have fallen short of fully exploiting the extensive
reservoir of multimodal feature information, which leads to a deficiency in leveraging spatial information across multiple
dimensions. In this study,we introduce a framework calledVisual-Language PretrainingwithGate Fusion (VLP-GF), designed
to identify multimodal deceptive content and enhance the accurate localization of manipulated regions within both images and
textual annotations. Specifically, we introduce an adaptive fusion module tailored to integrate local and global information
simultaneously. This module captures global context and local details concurrently, thereby improving the performance of
image bounding-box grounding within the system. Additionally, to maximize the utilization of semantic information from
diverse modalities, we incorporate a gating mechanism to strengthen the interaction of multimodal information further.
Through a series of ablation experiments and comprehensive comparisons with state-of-the-art approaches on extensive
benchmark datasets, we empirically demonstrate the superior efficacy of VLP-GF.

Keywords Multimodal deepfake · Deepfake detection · Generative AI · Cognitive computation · Manipulation grounding

Introduction

As deep learning technologies continue to advance at an
extraordinary rate, deepfakes have attracted significant atten-
tion from both the academic and technological domains.
Deepfake systems utilize sophisticated Generative Adver-
sarial Networks (GANs) [1] to generate highly convincing
yet completely synthetic multimedia content, which often
involvesmanipulated text or images. The initial foray into the
realm of deepfakes was driven by benign intentions. Across
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a multitude of domains [2–6], this technology has substan-
tially augmented user convenience. This fusion of deepfake
detection and cognitive computation represents a cutting-
edge approach to safeguarding individual privacy and asset
security in the face of the deepfake challenge.

However, with the advancement of technology, there
arises a worrisome outlook. The negative ramifications of
deepfake technology encompass the dissemination of mis-
information, covert digital maneuvers, and the creation of
deceptive simulations [7]. The deceptive nature of these
manipulated media fragments can undermine confidence in
both visual and auditory evidence. The dissemination of
falsified information not only encroaches upon individual
privacy but also undermines societal stability. Consequently,
given the challenges presented by deepfakes, a multitude
of scholars in the field are actively developing detection
methods [8–13]. They apply these techniques to mitigate
the widespread threat of deepfakes. In real-world scenar-
ios, deepfakes extend beyond isolated instances involving
images or text. They often encompass deepfakes involving
twoormoremodalities.While acknowledging the commend-
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able efforts in unimodal deepfake detection, it is crucial to
recognize that the challenges posed by multimodal versions
are more formidable.

In contrast to solely employing fabricated images or text,
multimodal content deepfakes are more difficult to distin-
guish, increasing the potential risks in our daily routines.
In response to this urgent concern, numerous scholars have
extensively investigated the realm of multimodal deepfake
detection [14–19]. Some studies [16, 17, 19] concentrate
on scrutinizing human-generated multimodal fabrications,
whereas others [14, 15, 18] aim at identifying out-of-context
manipulation by amalgamating genuine images with mod-
ified text. The recent study, HAMMER [20], endeavors to
identify and interpret multimodal deepfakes. The model
undergoes training using extensive deepfake datasets that
simulate prevalent instances of real-world disinformation.
Beyondmere binary deepfake identification,HAMMERpro-
vides a nuanced interpretation of manipulative elements.
Although these frameworks occupy a crucial role in the realm
of multimodal deepfake detection, their proficiency in cross-
domain embeddings and the utilization of diverse feature
information is deficient.

In this work, the presented network, Vision-Language
Pre-training with Gate Fusion module (VLP-GF), endeavors
to enhance the accuracy of task detection by facilitat-
ing the interaction of information from diverse features.
Consequently, this enables the system to conduct accurate
multi-modal detection and verify fake information. Specifi-
cally, the VLP-GF integrates the corresponding embeddings
of images and text into a shared feature space. Similar fea-
ture embeddings tend to cluster closely in the feature space
during cross-modal interactions, whereas dissimilar feature
embeddings exhibit more significant spatial separation. Sim-
ilarly, this principle applies to intra-modal interactions as
well. Additionally, VLP-GF promotes an adaptive interac-
tion between global and local features, thereby enhancing the
contextual depth of local features in contrast to their origi-
nal representations. This augmentation provides significant
benefits in enhancing the task of grounding image-bounding
boxes. The proposed framework incorporates a gating mech-
anism for consolidating features extracted from diverse
modalities. Thismethod improves the viability of performing
binary and multi-class classification tasks by amalgamating
data from various modalities. In sum, the contributions of the
work are three-fold:

– We propose a comprehensive framework for the detec-
tion ofmultimodal deepfakes that utilizes a wide range of
features to enhance information sharing. Our framework
exhibits exceptional performance when compared to the
most recent state-of-the-art (SOTA)methods, which sug-
gests significant potential for real-world applications.

– We introduce a module for an adaptive fusion of local
and global features to simultaneously capture global con-
text and local details. This enhancement improves the
model’s capacity to understand and represent intricate
data, which enhances performance in localizing image-
bounding boxes.

– We employ a gating mechanism to combine image
and text features and facilitate a thorough integration
of visual-linguistic semantics. This approach aims to
improve the accuracy of binary and multiclass classifi-
cations.

The subsequent sections of this paper are structured as
follows: In “RelatedWork” section,weprovide a comprehen-
sive review of the pertinent literature. In “Method” section,
we elucidate the intricacies of the proposed VLP-GF model.
“Experiments” section encompasses comprehensive compar-
ative analyses and ablation studies aimed at evaluating the
proposed model. The conclusion is presented in “Conclu
sion” section.

RelatedWork

Deefake Detection

Deepfake detection constitutes a forefront research domain
dedicated to the identification and mitigation of deep-
fake content. Detecting deepfakes often leans towards a
binary classification approach.Within the deepfake detection
framework, various classifiers are employed to differentiate
between authentic and manipulated images. In the context of
deepfake detection, a clear dichotomy arises: unimodal tech-
niques concentrate on a single sensory modality, whereas
multimodal approaches incorporate multiple modalities.

Unimodal Deepfake Detection In the early stages, unimodal
deepfake detection methods [21–25] have shown promising
results. In pursuit of improving the detection of deepfake
content within resource-constrained environments, Chen et
al. [24] employed DefakeHop++, a lightweight yet powerful
framework that extends the principles established by the ear-
lier DefakeHop method. This approach has been specifically
tailored and fine-tuned for deployment on devices charac-
terized by limited computational resources, which include
smartphones and edge computing platforms. Patel et al.
[25] reported a deep-CNN (D-CNN) architecture aimed at
improving the detection of deepfake phenomena. Themethod
utilizes images from various sources, thereby enhancing its
overall applicability.

Multimodal Deepfake Detection The formulation of multi-
modal deepfakes necessitates the artful fusion of information
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originating from various modalities, such as images, text,
and sound. This amalgamation process is executed through
advanced deep-learning techniques. Multimodal deepfake
detection methods aim to meticulously examine the authen-
ticity of these manipulated elements. There are plenty of
works [14–17, 19, 20] that study the detection of multi-
modal deepfakes. Abdelnabi et al. [14] put forward the
Consistency-Checking Network (CCN), which emulates the
hierarchical cognitive processes employed by humans across
different modalities. The architecture can accurately detect
deepfakes by employing consistent cues extracted from
diverse online sources and the provided image-caption cor-
relation. Recently, a Hierarchical Multi-modal Manipulation
Reasoning Transformer (HAMMER) [20] was proposed to
examine the complex interactions among different modali-
ties. This approach employs a pair of uni-modal encoders
to conduct surface-level analysis through the application
of manipulation-aware contrastive learning. A multimodal
aggregator enhances these features even further. Therefore,
this model enables a more profound comprehension via
modality-aware cross-attention mechanisms.

In this work, we put forward a comprehensive defense
strategy against multimodal deepfake manipulations. The
framework enables the detection of modal image distortions,
such as facial alterations, as well as textual misinformation.
The comparisonbetween conventionalmulti-modal deepfake
detection and our proposed approach is illustrated in Fig. 1.
In contrast to conventional approaches, our proposed frame-
work can concurrently execute multiple tasks.

Gate Fusion

Initially influenced by the gating mechanisms inherent in
LSTMs and GRUs, gate fusion has developed into a versatile
methodology for selectively integrating features from vari-
ous modalities or network layers. Through strategic feature
amalgamation, gate fusion empowers the model to precisely
concentrate on the essential data elements pertinent to the
current task. This enhancement significantly contributes to
improved generalization and overall efficacy. There exists
a considerable body of research [26–30] focused on gated
fusion methodologies. Arevalo et al. [26] proposed a con-
cept called the Gated Multimodal Unit (GMU) with the aim
of adaptively learning how to integrate information from var-

ious input streams. The GMU dynamically allocates weights
to different input modalities to regulate its activation. To
incorporate visual information into both large-scale text-
only Neural Machine Translation (NMT) and multimodal
NMT, Zhang et al. [28] employed an attention layer equipped
with gated weighting. This mechanism functions to integrate
visual and textual information, which subsequently serves
as input for the decoder in the generation of target trans-
lations. Zhu et al. [27] introduced the Dynamic Memory
Generative Adversarial Network (DM-GAN). Within this
framework, amemory-writing gate is employed to emphasize
crucial textual information, while a response gate combines
images with memory attributes. Zhang et al. [30] put forward
a Multimodal-CoT model, a two-stage architecture meticu-
lously crafted to integrate textual and visual components. The
Multimodal-CoT employs an adaptive gated fusion mecha-
nism to achieve optimal fusion of text and image features.

In this work, drawing from the aforementioned methods,
we employ a gated fusionmechanism to enhance the synergy
between textual and visual elements. By doing so, we utilize
cross-modal information to improve feature discrimination
by aggregating features from various modalities.

Fusion of Global and Local Information

In the interdisciplinary domain of deep learning and com-
puter vision, the integration of global and local information
emerges as a fundamental subject of investigation across var-
ious research pursuits. The global features offer a holistic
perspective of the image, while local features concentrate on
intricacies within designated regions. The amalgamation of
these attributes consistently enhances the robustness and pre-
cision of models. Numerous studies [31–36] have seamlessly
integrated global and local features, which leads to improved
outcomes. Fang et al. [31] build a method for consolidating
distinctive facial features for face detection. The approach
involved the utilization of the Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) and Support Vector Machine (SVM)
to create personalized feature profiles for each subject and
integrate both global and local features. Zou et al. [33]
put forward a fusion paradigm termed multiscale completed
local binary patterns. By using BoVM [37] and spatial pyra-
mid matching (SPM) [38] with global ones via MS-CLBP,
the method effectively explores the symbiotic relationship
between local and global domains. Yang et al. [35] proposed

Fig. 1 Comparison between the
conventional method and our
method. a Traditional
multi-modal deepfake detection.
b The proposed multi-modal
deepfake detection
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a Deep Orthogonal Local and Global (DOLG) paradigm as
a method for achieving seamless image retrieval. In DDLG
model, an orthogonal fusion module effectively integrates
both local and global features. Through objective-driven
training, these components bolster each other to generate a
concise and representative descriptor.

In this work, we introduce anAdaptive Global–Local Fea-
ture FusionModule. By integrating global features into local
features, we can grasp the comprehensive environmental and
contextual context of an object. Through the synthesis of
these characteristics, we can achieve a more nuanced inter-
pretation of objects and scenes depicted in images. This can
improve the accuracy of bounding box placement.

Contrastive Learning

Contrastive learning is a prominent and widely explored
research domain within the fields of natural language pro-
cessing, computer vision, and deep learning. It involves
acquiring representations by contrasting positive and neg-
ative examples, and it emphasizes the similarity between
data points while pushing dissimilar ones apart. In recent
years, contrastive learning has exhibited outstanding per-
formance across a wide range of tasks, particularly in
the domains of unsupervised and semi-supervised learning.
Gutmann and Hyvärinen [39] introduced an estimation
approach tailored for parameterized statistical models. Uti-
lizing nonlinear logistic regression, this approach aims to
differentiate observed data from noise generated by the
model. A SimCLR model [40] was proposed by Chen et al.
which stands as a testament to the power of contrastive learn-
ing. The objective of this model is to enhance the alignment
between an original data image and its various augmented
iterations. Themethod dissolves ties between disparate mod-
ified facets of images by drawing upon contrastive loss. Oord
et al. [41] reported an all-encompassing unsupervised learn-
ing technique named Contrastive Predictive Coding. This
technique efficiently enables the latent space to predict sub-
sequent samples through the use of a probabilistic contrastive
loss. Recently, a method grounded in Triple Contrastive
Learning (TCL) [41] was introduced by Yang et al. The TCL
intensively amplifies the meanmutual information to capture
the localized and structural nuances present in both image
and textual inputs, and it connects local domains within the
image or text to provide a comprehensive overview.

In this work, to extract the semantic connections between
images and text, we employ cross-modal contrastive learn-
ing to align image and text embeddings produced by two
unimodal encoders.

Vision-Language Pre-Train Methods

In the evolving landscape of deep learning, Vision-Language
Pre-training (VLP) Methods have emerged as a seminal
research direction. It investigates the convergence of various
visual information, including images and videos, alongside
linguistic expressions such as text-based descriptions and
sentences. The utility of VLP extends across diverse visual
endeavors, notably in visual question responding [42], tex-
tual discernment in visual deduction [43], visual referential
idioms [44], and phrase-centric positioning [45]. Recently,
numerous researchers have delved into Vision-Language
Pre-training Methods [46–51]. Tan and Bansal [48] intro-
duced a Learning Cross-Modality Encoder Representations
from Transformers (LXMERT) approach for comprehend-
ing the correlations between visual and linguistic elements.
This method enables the acquisition of intra-modal as well
as cross-modal associations. Bhargava [46] proposed an
adaptive technique to enhance model clarity and computa-
tional efficacy. They also investigated attention durations by
employingboth sparse and structured dropout strategies. This
sheds light on how their attentionmechanisms operate across
both visual and linguistic challenges. Li et al. [50] reported a
loss function called ALBEF, designed to synchronize visual
and textual data. This synchronization is accomplished prior
to their integration through cross-modal attention, and it bol-
sters the foundation of vision-language learning.

In this work, we employ the extensive vision-language
pre-training framework, ALBEF, to establish alignment
between unimodal image and text representations, thereby
revealing their shared semantic content Subsequently, these
aligned text-image pairs are employed for multimodel deep-
fake detection.

Method

Overview

This work aims to tackle the challenge of countering multi-
modal deepfakes by developing a comprehensive framework
that integrates data fromboth images and text. Themain goals
of the proposed model encompass detecting potential deep-
fake alterations in images, identifying altered regions within
images, recognizing textual manipulation in descriptions,
and pinpointing changes in specific words. Constructing a
comprehensive framework to simultaneously detect deep-
fakes and establish connections between visual and linguistic
modalities represents a formidable undertaking. Detecting
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multimodal misinformation is increasingly challenging due
to the wide array of data sources and the disruptive influence
of deepfake-related distortions Therefore, within the domain
of multimodal detection, the enhancement of detection per-
formance by maximizing the utilization of diverse features
presents a significant and essential challenge.

In pursuit of obtaining a multimodal representation and
harnessing their collaborative capabilities for precise misin-
formation identification, we introduce a framework known
as Vision-Language Pre-training with Gate Fusion (VLP-
GF) framework. The primary objective of this model is to
effectively leverage a wide range of features. These features
encompass a variety of global and local characteristics, as
well as attributes related to both images and text. The overall
structure of the VLP-GF is illustrated in Fig. 2.

The presented framework consists of three main compo-
nents: (a) The multi-modal feature extraction and alignment
module. This module employs a Vision Transformer (ViT)
[52] for image feature extraction, BERT [53] for text fea-
ture extraction, and utilizes contrastive learning for semantic
alignment. (b) Feature fusion module: This transcends mere
amalgamation and actively focuses on the acquisition of
distinguishing insights from the concurrent manifestation
of the two modalities. Additionally, to enhance contextual
information on the local features, our approach employs an
adaptive technique to merge global and local features. (c)
Multimodal detection modules: The proposed model utilizes
multi-task learning modules to gain fine-grained detection
and grounding.

Consider a paired input denoted as M = [I , T ], where I
signifies an image and T encompasses a textual description.
The primary objective of the proposed framework is to extract
latent semantic information inherent in the given input. Sub-
sequently, the framework employs this information to detect
and identify multimodal deepfakes.

To achieve this, we use a ViT and BERT to extract features
from images and texts. These models play a pivotal role in
transforming input data into unimodal representations, and
they offer both conciseness and expressiveness in depicting
the underlying semantic content. To achieve semantic align-
ment across multimodal data, we recommend employing

intra-modal and cross-modal contrastive learning techniques,
which can facilitate their convergence in the feature space.
In pursuit of maximizing the collaborative influence among
these representations, we have developed a gated fusion strat-
egy proficient in harnessing multi-modal features to their
maximum potential. Meanwhile, we employ a Local–Global
Feature model (LGF) to capture both global context and
local details. The architecture of the proposed framework
has been meticulously designed to enable multimodal deep-
fake detection and leverage various distinctive traits to their
maximum potential.

Vision-Language Feature Gated Fusion

For multimodal detection tasks, it is essential to facilitate
robust interactions between different modalities. There-
fore, following the extraction of visual embeddings denoted
as PI (i) using the image encoder, and linguistic features
represented as PT (t) via the text encoder, they undergo cross-
attention mechanisms to facilitate inter-modal information
exchange.Cross-modal attention is a variant of self-attention.
Cross-modal attention facilitates the interaction between
textual and visual components, which can enhance com-
prehension of semantic relationships across different data
modalities. The structural representation of cross-attention
is depicted in Fig. 3.

Specifically, by utilizing the cross-attention framework,
one modality is assigned as the query (Q), and a differ-
ent modality operates as both the key (K) and value (V).
Subsequently, these constituents are input into the cross-
attention layer to enable the blending of modalities. The
cross-attention is represented as

Cross-Attention(Q, K , V ) = ω

(
Q · KT

√
dk

)
· V , (1)

where ω(·) is an activation function, typically embodied
as Sof tmax(·/√dk). In tackling the challenge of multi-
modal deepfake detection, the proposed method incorpo-

Fig. 2 The overarching
structure of VLP-GF comprises
three essential components: a A
multi-modal feature extraction
and alignment module. b A
multimodal feature fusion
module that integrates features
from varied modalities. c
Multimodal deepfake detection
modules for detailed detection
and bounding box grounding
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Fig. 3 The structural
representation of cross-attention
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rates both image and text modalities through two distinct
fusion techniques: Language-to-Vision (L2V) andVision-to-
Language (V2L).

In the Vision-to-Language fusion model, we consider
image embedding as the primary foundation for information
preservation, while using text embedding to provide addi-
tional and supporting context. Therefore, the fusion feature
of Vision-to-Language is defined as

Fusion(L2V) = Cross-Attn(PI (i), PT (t), PT (t)), (2)

where the Fusion(L2V) = [i1cls, i1pat]. In the context of the
Language-to-Vision (L2V) fusion model, we utilize visual
data to augment the textual modality and enhance the tex-
tual modality, similar to the concept of Vision-to-Language
fusion. We formulate the fusion feature of Language-to-
Vision (L2V) as

Fusion(V2L) = Cross-Attn(PT (t), PI (i), PI (i)), (3)

where the Fusion(V2L) = [t1cls, t1tok].
The HAMMER [20] employs Fusion(V2L) to authenti-

cate both images and textual content, while also applying
it in multi-classification tasks. However, both types of tasks
require information from two different modalities. Conse-
quently, to enhance the quality of the vision class token in
theV2Lmodel, we utilize gated fusion tomerge features gen-
erated by the Local Patch Attentional Aggregation (LPAA)
module with the original V2L features. The LPAA mod-
ule adheres to the HAMMER framework. The fused output
Fusion+

(V2L) is obtained by

α = Sigmoid(W1Fusion(V2L) + W2LPAA(i1pat)), (4)

Fusion+
(V2L) = αFusion(V2L)

+ (1 − α)LPAA(i1pat),
(5)

where W1 and W2 are learnable parameters, and they are
generated by a fully connected network. Following the aug-
mentation of embeddings, the resulting vector Fusion+

(V2L)
is deployed for ensuing multitask learning applications.

Local–Global Feature Aggregation

Within the provided framework, the primary aim of the
manipulated image bounding box grounding task is to pin-
point areas of image alteration through the identification
of local patches that deviate from text embeddings. Con-
sequently, a refined feature, denoted as Fusion(L2V), is
achieved by effectively integrating image embeddings with
text embeddings using the cross-attention model. The patch
tokens i1pat contained within Fusion(L2V) are constructed
by incorporating positional encoding. This indicates an
enhanced level of localized spatial data richness within their
possession. Therefore, Shao et al. [20] introduced the Local
Patch Attentional Aggregation (LPAA)model to enhance the
task of grounding bounding boxes in manipulated images.
The LPAA model utilizes an attention-based mechanism for
synthesizing spatial data from i1pat. Synthesis is achieved

through cross-attention involving the [AGG] token and i1pat.
This aggregation is formulated as

LPAA(i1pat) = Cross-Attn(Agg, i1pat, i
1
pat). (6)

To optimize the task of grounding bounding boxes in
manipulated images, the VLP-GF framework uses a Local–
Global Feature model (LGF) to concurrently capture global
context and local details. Specifically, the proposed frame-
work significantly improves task accuracy by integrating the
global feature i1cls and harmoniously combining it with the
local feature i1pat to provide a more comprehensive under-
standing of the context. The GLF model represents an
adaptive synthesis that combines both localized and holis-
tic features to generate the resulting feature denoted as i+cls.
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The feature i+cls is obtained as

β = Sigmoid(Fc(Cat(LPAA(i1pat), icls))), (7)

i+cls = βLPAA(i1pat) + (1 − β)icls, (8)

where Cat , Fc, and Sigmoid, respectively, represent the
data concatenation, the fully connected operation, and sig-
moid operation. The weight β is capable of adaptive adjust-
ment which is generated by a fully connected network. In
contrast with feature LPAA(i1pat), the feature i+cls embodies
an expanded scope of context-driven information.

Manipulation-Aware Contrastive Learning

The objective of contrastive learning is to align the embed-
dings of paired image-text instances, while simultane-
ously inducing divergence in the embeddings of non-paired
instances. To enhance the utilization of semantic correlations
between images and text, two unimodal encoders employ
cross-modal and intra-modal contrastive learning approaches
to align their respective embeddings.

Specifically, in the context of a multimodal image-text
pair (I , T ), this proposed method performs image segmen-
tation on I and then creates a series of image embeddings
using a ViT. For the text component, this framework uti-
lizes BERT to extract embeddings from the textual data.
Together, the image embeddings and text embeddings form
the feature extractor pair (PI , PT ). In the realm of Cross-
Modal Alignment (CMA), the principal goal is to maxi-
mize the Mutual Information (MI) shared between paired
images and textual content, based on the premise that they
convey identical semantic meanings. However, consider-
ing the computational challenges associated with directly
maximizing Mutual Information (MI) for continuous and
high-dimensional variables [54]. Therefore, an alternative
approach is employed, which minimizes the InfoNCE loss
[41] to derive a lower-bound approximation of MI.

In the proposed framework, cross-modal contrastive learn-
ing is implemented using the InfoNCE loss in both the
image-to-text and text-to-image directions. Specifically, for
the image-to-text context, the InfoNCE loss can be formally
defined as follows:

Li2t (I , T
+, T−)

= Ep(I ,T )

[
− log

e(Sim(PI (I ),PT (T+))/τ)

∑K
k=1 e

(
Sim

(
PI (I ),PT (T−

k )
)
/τ

)
]

,
(9)

where the parameter τ a temperature hyper-parameter. T+ is
a set of positive text examples that are matched to I . Con-
versely, T− is a set of negative text examples that exhibit

no correspondence with I . Similarly, the InfoNCE loss of
text-to-image is mathematically denoted as

Lt2i (T , I+, I−)

= Ep(T ,I )

[
− log

e(Sim(PT (T ),PI (I+))/τ)

∑K
k=1 e

(
Sim

(
PT (T ),PI (I

−
k )

)
/τ

)
]

.
(10)

Therefore, the cross-modal contrastive loss can be formu-
lated as

Lcross = 1

2
[Lt2i (T , I+, I−) + Li2t (I , T

+, T−)]. (11)

Different from the cross-modal contrastive learning, intra-
modal contrastive learning aims to comprehend semantic
disparities that distinguish positive and negative instances
within a single modality. Concerning the imagemodality, the
contrast loss within its modality can be formally defined as

Li2i (I , I
+, I−)

= Ep(I ,I )

[
− log

e(Sim(PI (I ),PI (I+))/τ)

∑K
k=1 e

(
Sim

(
PI (I ),PI (I

−
k )

)
/τ

)
]

.
(12)

Symmetrically, the contrast loss of text modality can be
denoted as

Lt2t (T , T+, T−)

= Ep(T ,T )

[
− log

e(Sim(PT (T ),PT (T+))/τ)

∑K
k=1 e

(
Sim

(
PT (T ),PT (T−

k )
)
/τ

)
]

.
(13)

The intra-modal contrastive loss is expressed as

Lintra = 1

2
[Li2i (I , I

+, I−) + Lt2t (T , T+, T−)]. (14)

Both cross-modal and intra-modal contrastive losses play
a crucial role in influencing the semantic alignment between
images and text. The proposed framework adheres to the
conceptual framework of HAMMER while addressing this
issue. We contend that both cross-modal and intra-modal
contrastive losses are equally significant in addressing this
problem. Therefore, the overall contrast loss is formulated as

L f lmi = γLcross + (1 − γ )Lintra . (15)

Multi-Task Learning

The proposed framework addresses not only the task of dis-
cerning the authenticity of both images and text but also
extends its scope to encompass three additional tasks: multi-
classification, bounding box grounding for manipulated
images, and token grounding for manipulated text. The pre-
sented model demonstrates the ability to authenticate images
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and detect the specific forgery operations applied to them.
Additionally, it is capable of identifying fake facial regions.
Similarly, the proposed model is not only employed for text
authentication but also for categorizing different types of text
forgery and identifying manipulated words within the text.
These loss functions of four tasks are obtained through var-
ious training supervisory techniques as described below.

Image Bounding Box Grounding To localize the manipula-
ted region within the image, our proposed framework utilizes
a three-layer Multilayer Perceptron (MLP) as the Bound-
ing Box (BBox) Detector. In contrast to HAMMER, we
employ feature i+cls for the purpose of bounding box detec-
tion. This choice is motivated by the fact that i+cls not only
captures rich local information but also encompasses specific
global characteristics.

Concretely,we input the feature i+cls into theBoundingBox
Detector (Dbbox ) to calculate the Loss for Image Manipula-
tion Grounding. This computation combines the normal L1
loss with the generalized Intersection over Union (IoU) loss
[55], and it is expressed as

LI MG = E(I ,T )∼P
[∥∥Sigmoid

(
Dbbox

(
i+cls

)) − ybox
∥∥

+ LIoU
(
Sigmoid

(
Dbbox

(
i+cls

)) − ybox
)]

,
(16)

where the ybox represents the ground truth information con-
cerning bounding box detection.

Binary Classification and Multi-Classification Detection The
proposed network simultaneously tackles both binary classi-
fication for real or fake detection andmulticlass classification
for counterfeit operation type detection tasks.

The fusion feature Fusion+
(V2L) is derived from the gated

fusion of the feature Fusion(V2L) and LPAA(i1cls) amal-
gamating a richer set of textual and image characteristics.
Therefore, these classification and detection tasks entail the
utilization of the feature denoted as t+cls extracted from the
head region of the Fusion+

(V2L) model. For the binary clas-
sification task, the loss is formulated as

LBIC = E(I ,T )∼PH
(
Cb

(
t+cls

)
, yb

)
, (17)

where H(·) is defined as a Cross-Entropy function. The
Cb serves as a binary classifier. For the multi-classification
task, the proposed framework exhibits the ability to per-
form nuanced deepfake analysis. Specifically, it endeavors
to ascertain the precise nature of manipulations that include
face swap or text swap (FS or TS) and face attribute or text
attribute (FA or TA) manipulations. The feature t+cls is fed
into a multi-label classifier Cm for the computation of the
multi-label classification loss. The multi-classification loss
is formulated as

LMLC = E(I ,T )∼PH
(
Cm

(
t+cls

)
, ym

)
, (18)

where a multi-label classifier Cm is a three-layer MLP. ym is
the ground truth label of the multi-classification detection.

Manipulated Text Token Grounding The L2V fusion fea-
ture, denoted as Fusion(L2V), not only captures textual
context comprehensively but also interacts effectively with
image features. The component t1tok within Fusion(L2V)
represents comprehensive embeddings for individual text
tokens. It aligns with identifying manipulated text tokens. In
the task of groundingmanipulated text tokens, our framework
aims to highlight altered words in the text. This task resem-
bles sequence tagging tasks in the field of Natural Language
Processing (NLP). We use a momentum-infused adaptation
of the detector module in alignment with prior research. The
proposed method uses a Bert-based Token Detector, denoted
as Dt , to ground the token t1tok within the Dt to identifymanip-
ulated text tokens. Therefore, the overall objective function
of this task is expressed as

Ltok = E(I ,T )∼P [−ytoklog(Dt (t
1
tok))],

Lm
tok = E(I ,T )∼PKL

[
ht

(
t1tok

)
‖Dm

t

(
tmtok

)]
,

Ltmg = (1 − μ)Ltok + μLm
tok,

(19)

where the tmtok is themomentumversion of t1tok. The parameter
γ is a balancing factor. And the KL denotes the KL-
Divergence algorithm. Hence, the overall loss function for
the proposed method is formulated as follows:

Lall = Lflmi + λ1Limg + λ2Ltmg

+ λ3Lmdb + λ4Lmdm.
(20)

Experiments

Implementation Details

We used the vision transformer [52] for generating image
embeddings and BERT [53] for text embeddings, respec-
tively. We implemented a learning rate warm-up phase,
during which it gradually increased to 1e-4 over the ini-
tial 1000 steps. Subsequently, a decay phase, following a
cosine-based schedule, lowered the learning rate to 1e-6. The
batch sizewas set to 64. The architectural framework used for
the Binary Classifier, Multi-Label Classifier, Bounding Box
Detector, and Token Detector comprises two Multi-Layer
Perceptron (MLP) layers, each with output dimensions of
2, 4, 4, and 2. TheW1 andW2 in Eq. (5) were experimentally
set as W1 = W2 = 1. The weight β in Eq. (8) was set as
β = 1. The weight γ in Eq. (15) was set to 0.5. The hyperpa-
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rameter in Eq. (20) was set as λ1 = 0.1, λ2 = λ3 = λ4 = 1.
The framework is implemented in PyTorch [56] framework
with 2 NVIDIA A100 GPUs.

Datasets

The DGM4 dataset [20], proposed by Shao et al., func-
tions as a publicly accessible repository meticulously crafted
to foster extensive research on machine-engineered media
distortions. This dataset employs a range of manipulation
techniques in both visual and textual domains. Each sample
is enriched with detailed labels that enable the identification
and localization of manipulated media. With a compilation
of 230,000 news samples, the DGM4 dataset includes 77,426
unaltered image-text pairs and152,574manipulated pairings.
Themanipulated instances are classified into four categories:
66,722 facial swappings (FS), 56,411 alterations of facial
attributes (FA), 43,546 text swap manipulations (TS), and
18,588 text attribute manipulations (TA). In order to gener-
ate 32,693 mixed-distortion pairings, researchers combined
approximately one-third of the manipulated images with half
of the manipulated text.

EvaluationMetrics

To assess the effectiveness of theVLP-GFmodel, we conduct
a comprehensive analysis that encompasses both objective
and subjective metrics. In the domain of objective appraisal,
this work examines four distinct tasks: binary classification,
multi-class discrimination, allocation of bounding boxes for
manipulated images, and token grounding for altered text.
These tasks are evaluated using a range of metrics. In the
context of binary classification, we utilize Area Under the
Curve (AUC), Equal Error Rate (EER), and Accuracy (ACC)
as performance metrics. The AUC quantifies the overall per-
formance of the classifier through the Receiver Operating
Characteristic (ROC) curve, while the EER determines the
point of equilibrium between the False Acceptance Rate
(FAR) and the False Rejection Rate (FRR). ACC calcu-
lates the quotient of precise judgments to total instances. We
employ an ensemble of metrics, which encompass the mean
Average Precision (mAP), class-specific F1 score (CF1), and

the overall F1 score (OF1). The mAP quantifies the average
precision across different classes, and it effectively balances
precision and recall. The CF1 assesses the algorithm’s abil-
ity to accurately classify individual instances, whereas the
OF1 provides a comprehensive metric across all classes.
Image manipulation tasks are assessed by employing met-
rics including the mean Intersection over Union (IoUmean)
as well as IoU at thresholds of 50% and 75%. IoU is a widely
used criterion in visual computational tasks, used to quantify
the degree of overlap between annotations. For manipulated
text grounding, Precision, Recall, and F1-score are the cho-
sen metrics. Notably, higher scores across all metrics except
for EER signify improved system efficiency. Conversely, a
lower EER signifies superior performance.

Comparison with State-of-the-Art Methods

To validate the effectiveness of our proposed framework,
we conducted assessments that involved comparisons with
multimodal detection models as well as methodologies for
deepfake detection and sequence tagging.

Comparison with Multimodal Deepfake Detection Mod-
els In order to assess the effectiveness of the proposed
methodology in the field of multi-modal deepfake detec-
tion, we performed a comparative analysis by comparing
it with three state-of-the-art (SOTA) multi-modal learning
approaches. These three methods under scrutiny are Con-
trastive Language-Image Pre-training (CLIP) model [57],
Vision-and-Language Transformer (ViLT) [58], and HAM-
MER [20]. Specifically, the CLIP model epitomizes an
efficient and scalable approach to acquiring knowledge
guided by natural language. This approach facilitates effort-
less zero-shot knowledge transfer to a broad range of existing
datasets, which demonstrates the remarkable versatility and
adaptability of the CLIP. The ViLT offers a remarkably
straightforward architecture for vision-and-language mod-
els. It employs the transformer module to extract and process
visual features, thus eliminating the necessity for a distinct
deep visual embedder. The results of the evaluation con-
cerning multimodal deepfake detection models are shown
in Table 1. In comparison to the second-best model HAM-
MER [20], the proposed VLP-GF framework demonstrates

Table 1 Comparison with the SOTA methods. The best results are shown in bold

Categories Binary Cls Multi-label Cls Image grounding Text grounding
Methods AUC↑ ACC↑ EER↓ mAP↑ CF1↑ OF1↑ IoUmean↑ IoU50↑ IoU75↑ Precision↑ Recall↑ F1↑
CLIP [57] 83.22 76.40 24.61 66.00 59.52 62.31 49.51 50.03 38.79 58.12 22.11 32.03

ViLT [58] 85.16 78.38 22.88 72.37 66.14 66.00 59.32 65.18 48.10 66.48 49.88 57.00

HAMMERa [20] 92.29 85.48 15.49 85.36 79.20 78.63 76.15 83.24 76.09 75.48 66.49 70.70

VLP-GF (Ours) 92.84 86.13 14.45 85.65 80.02 79.07 76.73 83.89 76.24 76.42 66.80 71.29

aPerformance evaluation was conducted using the identical platform as ours with the officially released code
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Fig. 4 The visualization
pertains to specific instances
within the DGM4 dataset.
Elements in red signify the
ground truth (GT), and the
content encapsulated in the blue
box corresponds to the
prediction (Pred)

US Olympic swimmers

prevented from flying back from

Brazil.

GT:Real Pred: Real

Survivors of the Bhopal disaster

and activists taking part in a

protest march in New Delhi.

GT:FA Pred: FA

David Cameron supported Kelly
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GT:FS Pred: FS
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GT:TA Pred: TA

Welsh Secretary Stephen Crabb
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Cameron before
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GT:TS Pred: TS
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with her husband john on their

wedding day she was happy

during their honeymoon in

Mauritius.

GT:FA_TA Pred: FA_TA
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Matthew Vaughn David

Cameron also hosted the film

director Richard Curtis.

GT:FA_TS Pred: FA_TS

Noah lost his job on The Daily

show with Jon Stewart last year.

GT:FS_TA Pred: FS_TA

Michael Moore speaking to

Susan Sarandon at the Tribeca
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phonehacking scandal may reach

Fox News.

GT:FS_TS Pred: FS_TS

Rosdeep Adekoya was originally

charged with murdering son

Mikaeel Kular.

GT:FA Pred: FA

Visiting Kiev Mr Biden warned
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behaviour would lead to greater

isolation.

GT:FA_TS Pred: FA_TS

The jury has decided on the

armchair verdicts of Eric Hall

Gordon Taylor and Steve Bruce

about the Ched Evans case.

GT:FA_TS Pred: FA_TS

outstanding performance across diverse domains. It demon-
strates notable proficiency in tasks related to binary and
multi-classification, as well as in aligning manipulated enti-
ties within both visual and textual contexts. The proposed
framework improves the ACC, CF1, IoUmean, IoU50, Pre-
cision, and F1 by 0.76%, 1.03%, 0.76%, 0.78%, 1.25%,
and 0.83%, respectively. Moreover, the VLP-GF framework
reduces the EER by 6.71%.

In Fig. 4, we illustrate the outcomes of the proposed
method within the context of manipulation detection and
grounding using visualizations. The red-highlighted text rep-
resents the ground truth (GT), while the content enclosed in
the blue delineated area represents the prediction (Pred). Sim-
ilar visualization patterns are observed in image detection.
The VLP-GF framework effectively anchors manipulated
bounding boxes while precisely identifying themanipulation
types relevant to both FA and FS.

Details of Multi-classification Detection The classification
performance for each manipulation type is graphically rep-
resented inFig. 5,which utilizes the output of theMulti-Label
Classifier. The results offer nuanced insights and reveal that
discerning text manipulation proves to be more intricate than
that of image modality, with TA manipulation posing the
utmost challenge.

ComparisonwithUnimodal DeepfakeDetectionModels We
conducted a comparative analysis between our proposed
method and competing unimodal techniques in two distinct
unimodal synthetic data partitions. To ensure a fair evalua-
tion, we incorporated a grounding module into the unimodal
model along with the initial binary ground truth and sup-
plied corresponding grounding annotations. In the context
of single-modal image forgery detection, we conducted a

comparative analysis between our proposed approach and
two prominent methodologies, namely TS [59] and MAT
[60]. The TS framework comprises three functional mod-
ules: amulti-scale high-frequency feature extractionmodule,
a residual-guided spatial attentionmodule, and a cross-modal
attentionmodule. Thesemoduleswork together to effectively
utilize high-frequency features. TheMAT is amulti-attention
deepfake detection architecture. With the assistance of atten-
tion maps, this module combines low-level textural and
high-level semantic features extracted from images, which
improves the detection performance of the system. The com-
parative outcomes are presented in Table 2. In the context
of evaluating unimodal text detection, we aim to com-
pare the proposed methodology with two well-established
sequence tagging approaches in Natural Language Process-
ing (NLP), namely BERT [53] and LUKE [61]. The BERT
was developed with the aim of pre-training comprehen-
sive bidirectional representations from the unlabeled text by
simultaneously conditioning on preceding and succeeding

Fig. 5 Performance of multi-classification detection
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Table 2 Comparison of image deepfake detection methods. The best results are highlighted in bold

Categories Binary Cls Image grounding
Methods AUC↑ EER↓ ACC↑ IoUmean↑ IoU50↑ IoU75↑
TS [59] 91.80 17.11 82.89 72.85 79.12 74.06

MAT [60] 91.31 17.65 82.36 72.88 78.98 74.70

VLP-GF (Ours) 91.61 15.95 84.64 72.85 80.81 67.88

Table 3 Comparison of text deepfake detection methods. The best results are highlighted in bold

Categories Binary Cls Text grounding
Methods AUC↑ EER↓ ACC↑ Precision↑ Recall↑ F1↑
BERT [53] 80.82 28.02 68.98 41.39 63.85 50.23

LUKE [61] 81.39 27.88 76.18 50.52 37.93 43.33

VLP-GF (Ours) 91.66 16.20 84.47 72.91 64.50 68.45

contexts across all layers. The LUKE framework, another
pre-trained model, generates contextualized representations
for words and entities through the utilization of the trans-
former architecture. It incorporates an enhanced transformer
framework that integrates an innovative self-attentionmecha-
nism designed to improve entity sensitivity. The comparative
findings are presented in Table 3. According to Tables 2
and 3, the VLP-GF demonstrates a significant performance
superiority compared to unimodal methods in the realm of
detecting single-modal forgeries. This marked enhancement
distinctly signals that our approach, trained on multimodal
data, excels in identifying and pinpointing manipulations
across various modalities and shows promising effective-
ness in detecting and establishing manipulations within each
specific modality.

Ablation Studies

Ablation Study of the Key Components In order to assess
the effectiveness of the essential elements, ablation experi-
ments were performed using the DGM4 dataset, as shown in

Table 4. In these ablation studies, HAMMER [20] serves as
the baseline. The GF denotes the gated fusion model. The
utilization of the GF model within the proposed framework
facilitates the retrieval of enhanced cross-modal information.
The LGF represents the local–global feature aggregation
model.Within this module, the envisaged framework adeptly
captures both overarching context and nuanced particulars.
This enhances the capacity of models for understanding and
representing intricate datasets. Drawing upon the informa-
tion presented in Table 4, the experimental results indicate
that the proposed framework significantly enhances the
performance of the detection task by effectively utilizing
diverse features.

Efficacy of the Local–Global Feature Aggregation Regard-
ing the placement of the manipulated bounding box, we
conducted a comparative analysis that utilized both LPAA
[20] and the proposed LGF, as shown in Fig. 6. The results
presented in Fig. 6 unequivocally demonstrate that LGF
outperforms the alternatives across all metrics and it sub-
stantiates the efficacy of the LGF model.

Table 4 Ablation study of the key components. The best results are highlighted in bold

Methods Binary Cls Multi-label Cls Image grounding Text grounding
Baseline GF LGF AUC↑ ACC↑ EER↓ mAP↑ CF1↑ OF1↑ IoUmean↑ IoU50↑ IoU75↑ Precision↑ Recall↑ F1↑
� 92.29 85.48 15.49 85.36 79.20 78.63 76.15 83.24 76.09 75.48 66.49 70.70

� � 93.05 86.10 14.59 86.04 80.29 79.32 75.45 82.53 75.32 74.75 67.56 71.08

� � 92.33 85.66 15.18 84.96 79.33 78.64 76.46 83.57 76.38 75.23 66.38 70.53

� � � 92.84 86.13 14.45 85.65 80.02 79.07 76.73 83.89 76.24 76.42 66.80 71.29
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Fig. 6 Efficacy of local–global feature aggregation model (LGF)

Conclusion

In this work, we presented the VLP-GF framework, which
is meticulously designed for the detection of intricate mul-
timodal forgeries. In contrast to traditional methods, this
framework excels in harnessing semantic information among
features. To extract complementary knowledge from cross-
modal representations, we employed a gated fusion mecha-
nism that facilitates the seamless integration of cross-modal
information byVLP-GF sub-models. Furthermore,we devel-
oped an adaptive module for the fusion of local and global
features, which allows for the concurrent capture of both
global context and local details. This enhancement bolsters
the model’s comprehension and feature representation capa-
bilities when dealing with intricate data. These innovations
significantly enhance the performance ofmultitask detection.
The experimental findings substantiate the superior perfor-
mance of VLP-GF when compared to SOTA methodologies
in both multimodal and unimodal contexts. However, this
framework heavily relies on theTransformer architecture and
multi-head attentionmechanisms,which leads to a significant
surge in computational resource requirements, escalation in
parameter count, and data redundancy. Therefore, in future
work, our primary objective will be to attain network effi-
ciencywithout compromising systemdetection performance.
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