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Abstract
Crowd counting in congested scenes is a crucial yet challenging task in video surveillance and urban security system. The 
performance of crowd counting has been greatly boosted with the rapid development of deep learning. However, robust crowd 
counting in high-density environment with scale variations remains under-explored. To address this problem, we propose a 
dual attention-aware network ( DA2Net) for robust crowd counting in dense crowd scene with scale variations. Specifically, 
the DA2Net consists of two modules, namely Spatial Attention (SA) module and Channel Attention (CA) module. The SA 
module focuses on the spatial dependencies in the whole feature map to locate the heads accurately. The CA module attempts 
to handle the relations between channel maps and highlights the discriminative information in specific channels. Thus, it 
alleviates the mistaken estimation for background regions. The interactions between SA module and CA module provide 
the synergy which facilitates the learning of discriminative features with a focus on the essential head region. Experimental 
results on five benchmark datasets, i.e., ShanghaiTech, UCF_CC_50, UCF-QNRF, WorldExpo’10, and NWPU, demonstrate 
that the DA2Net can achieve the state-of-the-art performance on both accuracy and robustness.
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1  Introduction

Crowd counting aims to predict the number of people or 
estimate the density maps for crowd scenarios. It has been 
a popular topic and arouse a great deal of interest in recent 
years, especially with the rapid growth of urban popula-
tions. Accurate crowd counting plays a crucial role in many 
real-world applications, such as video surveillance, crowd 
control, and public safety management [1, 2, 22, 46, 64]. 
Although crowd counting has drawn much attention, it is 
inherently challenging due to various degradation factors, 
e.g., scale variations, perspective distortion, serious occlu-
sion, and non-uniform distribution.

To address these problems, a lot of efforts have been 
done in previous works which can be classified into three 

categories, namely detection-based methods, regression-
based methods, and deep learning-based methods [46]. The 
detection-based methods attempt to estimate the number 
of people by detecting the body or head of each individual 
in the crowd. These methods lead to poor performance in 
highly dense crowd scene because of the poor detection per-
formance in such scenarios. The regression-based methods 
dedicate to train regression models to directly map the vis-
ual features to the number of people. These methods ignore 
the spatial information as they are regressing on the global 
count. Benefiting from the powerful learning ability of deep 
convolutional neural networks (CNNs), CNN-based method 
have achieved commendable performance in crowd counting 
[1, 22, 46]. These approaches conduct crowd counting by 
learning density maps in an end-to-end manner.

Although the aforementioned methods have achieved 
great progress, they are still insufficient for real applica-
tions, especially with large-scale variations. The main chal-
lenge in crowd counting is the scale variations caused by the 
camera perspective distortion. Figure 1 illustrates the scale 
variation in crowd scenarios caused by perspective distor-
tion. The large-scale variation will decrease the quality of 
estimated density maps, thus result in the error estimation 
for backgrounds.
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In this paper, we address the problem of scale variation 
in dense crowd scenario and propose a robust crowd count-
ing method named DA2Net. The proposed method consists 
of two cascaded attention modules, i.e., Spatial Attention 
(SA) module and Channel Attention (CA) module. The SA 
module concentrates on the head region in the whole fea-
ture map. The CA module guides the network to focus on 
the relation between channel maps to eliminate the error 
estimation for background. Experimental results prove that 
the proposed DA2Net achieves compelling performance on 
accuracy and robustness compared with the SOTA methods.

The paper is structured as follows. Section 2 presents an 
overview of the relevant prior works. Section 3 introduces 
the details of the proposed DA2Net. Experiments are pre-
sented in Sect. 4. This work is concluded in Sect. 5.

2 � Related work

In this section, we briefly review the relevant works from 
three aspects, i.e., detection-based methods, regression-
based methods, and deep learning-based methods.

2.1 � Detection‑based methods

The early crowd counting approaches mainly adopt the 
detection-based schema. The detection-based methods 
mainly employ a sliding-window-like detector scanning the 
image, detect the body or head of each individual, and train 
a classifier to discriminate the positive samples. The crowd 
count is the number of positive samples outputted by the 
classifier, and the global detection scores are employed to 
estimate the crowd densities. Among these early approaches, 
Dollar [11] utilized a slide window detector over the image 
for person counting. Li et al. [24] estimated the number 

of people in the surveillance area by constructing detec-
tors of head and shoulder. These methods locate peaks in 
foreground pixels to detect the heads or body parts, which 
depend on the exact foreground shape. The detection-based 
approaches work well in crowd scenarios with low-density, 
but they perform poorly in dense crowd scenes due to the 
issues of occlusion and background clutter [7].

2.2 � Regression‑based methods

Since the accuracy of detection-based method is unsatis-
factory in highly congested scene, many regression-based 
methods are developed. The regression-based approaches 
aim at training regression models to map the visual feature 
maps to the number of people directly. The regression-based 
methods are proven to be feasible approaches in congested 
environments, as there is no need for explicit pedestrian 
segmentation and tracking. Davies et al. [9] first solved the 
problem of crowd statistics through regression methods. 
They extracted the underlying features of video frames to 
create a linear regression model of direct mapping of the 
overall feature information to the amount of people. Idress 
et al. [18] built a regression model to learn multi-features 
(i.e., head detection and SIFT [31]) of person in dense crowd 
images. Chen et al. [4] proposed an attribute-based cumu-
lative regression approach to take into account the scalar 
variation of objects and achieve promising results on sparse 
data and imbalanced training data. Pham et al. [35] utilized 
a random forest regression to learn a non-linear mapping of 
feature and the number of people. Although the regression-
based methods work well in high-density crowd scene, they 
ignore the crowd attention information and the spatial infor-
mation, since the global count is declining.

Fig. 1   Scale variations in the crowd scenes caused by perspective distortion. The first row depicts some representative samples, and the second 
row shows the corresponding ground truth density maps with counting numbers
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2.3 � Deep learning‑based methods

Recently, thanks to powerful learning abilities, the deep 
learning-based methods have been introduced and achieved 
dominant performance in crowd counting. The main idea 
behind these methods is treating the task of crowd count-
ing as a problem of estimating the density map, where the 
integral of the density map is used to estimate the number 
of persons in the corresponding region. Zhang et al. [56] 
introduced a deep CNN to address the across-scene counting 
problems. Marsden et al. [33] exploited the fully convolu-
tional network (FCN) to handle the problem of crowd count-
ing in highly dense scenarios. Zhang et al. [62] presented 
a multi-column CNN (MCNN) architecture to increase the 
receptive field to deal with the problem of scale variations. 
A contextual pyramid CNN (CP-CNN) [45] was built to 
fuse the global and local context information to generate 
high-quality density maps. Shen et al. [42] combined the 
cross-scale consistency pursuit loss and the adversarial loss 
together to tackle the problem of scale variations. Liu et al. 
[28] proposed a learnable spatial transform module with a 
region-wise refinement process to deal with both scale and 
rotation variations. Li et al. [25] built a deep CNN architec-
ture for crowd counting by replacing the pooling operations 
with dilated kernels to obtain larger reception fields. Wang 
et al. [52] proposed a domain adaption framework for crowd 
counting by leveraging synthetic data.

Meanwhile, attention mechanism has become increas-
ingly important in the field of deep learning, and it has been 
widely adopted in diverse vision domains [29, 51, 53, 59, 
63]. The concept of attention is to focus selectively on a 
discrete aspect of information, both subjective and objective, 
while ignore other perceptible information [41]. The atten-
tion mechanism has also been adopted in crowd counting 
in recent years. Liu et al. [26] utilized an attention block 
termed QualityNet to capture the different importance 
weight of detection based map and regression based map by 
dynamically assessing the qualities of them for each pixel. 
Zhang et al. [61] exploited an attention model to generate a 
probability map to present higher probability scores in head 
regions. Kang et al. [21] utilized an image pyramid to deal 
with scale variations and proposed an across-scale attention 
map to softly select a suitable scale for each pixel. Hossain 
et al. [16] achieved the crowd counting by fusing a global 
scale attention module and a local scale attention module, 
among which the global scale attention module is to cap-
ture the overall density level of an image and the local scale 
attention module is to obtain the local scale information at 
different locations in an image. Zhang et al. [60] generated a 
score map using a multi-resolution attention model in which 
the response of the head position is higher than the non-head 
areas. Compared with the aforementioned attention methods, 
we devise a dual-aware attention model which consists of 

a spatial attention module and a channel attention module. 
The former module focuses on the spatial dependencies in 
the whole feature map and locates the heads accurately by 
channel-pool operations. The latter module handles the rela-
tions between channel maps and highlights the discrimina-
tive information in specific channels by a fast 1-dimension 
convolution and a sigmoid activation function. Then, the two 
modules are interacted to facilitate the learning of discrimi-
native features with a focus on the essential head region.

3 � Proposed method

3.1 � Overview

Given an image I captured in congested scenes, the goal of 
crowd counting is to estimate the number of people by learn-
ing a discriminative model � , which is capable of producing 
a faithful dense map x ∶ f�(I) → x to reflect the number of 
people. Considering the scale variations caused by perspec-
tive distortion, it is essential for the model � to learning 
from the most significant regions while suppress the side 
effect brought by the disturbed patterns, e.g., scale variation. 
To this aim, we propose the dual attention-aware network 
( DA2Net) which explores the mutual reinforcement of spatial 
attention (SA) and channel attention (CA). The flowchart of 
the proposed DA2Net is shown in Fig. 2.

Supposing there is a feature map F ∈ ℝ
C×H×W extracted 

from the corresponding input image I, the SA module gener-
ates a 2-dimension spatial attention map Osa(F) ∈ ℝ

H×W to 
reflect the importance in spatial space regarding vital regions 
(e.g., head). The spatial-enhanced feature map Fs is obtained 
by

where Osa(⋅) is the function of SA module, and ⊗ denotes the 
element-wise multiplication. The spatial-enhanced feature 
map Fs serves as the bridge between SA and CA modules, 
which is further refined by exploring the complementary 
channel-wise importance with the proposed CA,

Where Oca(⋅) is the function of CA module, and ⊕ denotes 
the element-wise sum. Fcs ∈ ℝ

C×H×W is the enhanced feature 
map, which is more discriminative than the original coun-
terpart F in both spatial and channel spaces. Based on Fcs , 
we infer the density map to achieve the counting of people.

3.2 � Spatial attention module

Due to the perspective changes of crowd scenarios, the dis-
tribution of head region in both global and local view has a 

(1)Fs = Osa(F)⊗ F,

(2)Fcs = Oca(Fs)⊕ Fs.
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certain degree of regularity. From the global point of view, it 
is consistent with a gradual change in density. For instance, 
as shown in Fig. 1, the density maps are increasing from 
proximal to distal due to the perspective distortion. In terms 
of local image patches with high density, their textures and 
patterns are similar.

To encode the aforementioned two observations, we build 
the SA module to focus on the head region, and guarantees 
the location of the head accurately. The architecture of the 
SA module is shown in Fig. 3. It is denoted as follows,

where the symbol C7 represents a convolution layer with the 
kernel size of 7 × 7 . MaxPool(⋅) and AvgPool(⋅) denote the 
max pooling and average pooling on channel dimensions, 
respectively.

3.3 � Channel attention module

The aforementioned SA module attempts to encode the 
dependencies on a spatial dimension, which can locate the 
head position accurately. However, it will result in error esti-
mation for the background due to the resemblances between 
foreground and background region texture. To address this 

(3)Osa = Sigmoid(C7([MaxPool(F));AvgPool(F)]),

problem, we design the complementary CA module as 
shown in Fig. 4. The CA module is formulated as follows.

where gc represents the channel-aware global average pool-
ing (GAP) which obtains the aggregated features of back-
ground region. The CA module generates channel weights 
by performing a fast 1-dimension convolution (C1D). 
Fc =

[
F
i,j
c

]

H×W
∈ ℝ

H×W , c ∈ {1, 2,… ,C} represents the fea-
ture map corresponding to each channel.

3.4 � Loss function

We adopt the pixel-wise Mean Square Error (MSE) to meas-
ure the difference between the estimated density map and the 
ground truth. Given an image Ii , the learnable parameter � 
of DA2Net is optimized as follows,

(4)
gc =

1

WH

W,H∑

i=1,j=1

Fc(i, j),

Oca = Sigmoid(C1Dk(gc)),

(5)loss =
1

N

N∑

i=1

‖‖f�(Ii) − Yi
‖‖
2

2
,

Density Map
conv-1

layer1 layer2

SA CA

Upsample

Input

Attention Path

SumMultiply

ResNet-50

Fs Fcs

Fig. 2   The flowchart of the DA2Net for crowd counting. The pro-
posed approach consists of two modules, i.e., SA and CA in a cas-
caded pattern, to encode the local range and global contextual feature 

maps, respectively. It concatenates these two types of feature maps 
and then produces a 1-channel predicted density map via upsample 
operation

Cat Conv Sig

Conv SigCatAvg MaxAvgPool MaxPool Concatnate Conv-7*7 Sigmoid

Spatial attention module 

F

Channel-Pool

Fs

Avg

Max

Fig. 3   The architecture of the spatial attention (SA) module. The 
channel-pool operation employs the max pooling and average pooling 
on channel dimensions to get different feature vectors which are fused 

through concatenation. Then, the spatial attention map is generated 
by a convolution operation and a sigmoid activation function
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where N is the batch size of input mini-batch, f�(Ii) denotes 
the estimated results, and Yi is the corresponding ground 
truth density map.

3.5 � Implementation details

3.5.1 � Ground truth density map

The Ground truth density map H(x) is generated with the 
geometry-adaptive Gaussian kernel G� and convolving with 
a delta function. The formula is defined as follows,

where N is the number of head annotations, x corresponds 
to a pixel in the image, and xi represents the coordinates of 
the head annotation. The delta function �(x − xi) is utilized 
to depict a head. When the delta function is equal to 1, there 
is a head in this pixel.

3.5.2 � Training details

In this work, the experimental training and evaluation are 
implemented on two paralleled NVIDIA RTX2080S GPU 
using PyTorch framework [12]. All the images and the corre-
sponding density maps are resized to 576 × 768 . The Adam 
optimizer is adopted. The learning rate is initialized at 10−5 
and reduced to 0.995 times per epoch to minimize the train-
ing loss.

(6)H(x) =

N∑

i=1

�(x − xi) ∗ G�(x),

4 � Experiments

Experiments on five benchmark datasets, i.e., ShanghaiTech 
[62], UCF_CC_50 [18], UCF-QNRF [19], WorldExpo’10 
[56], and NWPU [47], are conducted to compare the DA2

Net with other SOTA methods.

4.1 � Evaluation metrics

Following the general evaluation principles [25, 44, 56], we 
adopt the Mean Absolute Error (MAE) and Mean Square 
Error (MSE) as the evaluation metrics. The definitions of 
the MAE and MSE are indicated in formula (7) and (8), 
respectively.

where N denotes the number of images to be tested, ŷi is the 
estimated count value of the i-th testing image, and y is the 
corresponding ground truth density map. Generally, MAE 
and MSE indicate the accuracy and robustness of the crowd 
estimation, respectively [6, 55].

4.2 � Performance on ShanghaiTech dataset

The ShanghaiTech dataset [62] contains 1,198 images with 
330,165 annotations. It is divided into two parts, i.e., Part_A 
and Part_B. The former part consists of 482 images (300 
images for training and 182 images for testing) which were 
randomly collected from the Internet. The later part includes 
716 images (400 images for training and 316 images for test-
ing) which were taken from the urban areas in Shanghai city.

(7)MAE =
1

N

∑||yi − ŷi
||,

(8)MSE =

√
1

N

∑||yi − ŷi
||
2
,

Channel attention module

GAP Sig

Oca(Fs) 

k

Fs GAP Global Average Pooling Sig Sigmoid

Fig. 4   The architecture of the channel attention (CA) module. It takes 
the high level feature map Fs as input and employs the global aver-
age pooling (GAP) operation to generate a channel-wise weight vec-
tor gc ∈ ℝ

C . Then, the channel weights are generated by performing 

a fast 1-dimension convolution and a sigmoid activation function. 
Finally, the channel attention map is generated by the product of 
channel weights and the input Fs
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The quantitative results for ShanghaiTech dataset are 
depicted in Table 1. It shows that the proposed DA2Net 
obtains the score of 73.5 and 112.3 in MAE and MSE on 
Part_A, and 7.9 and 13.2 on Part_B. Especially, the DA2Net 
ranks the first in both MAE and MSE on Part_B. Although 

the DA2Net does not acquire the first place on Part_A, it is 
comparable to the most popular SOTA methods. Figure 5 
illustrates some representative results on Shanghai Part_A, 
and Part_B. It shows that the proposed method is robust to 
the interference from scale variation. The estimated crowd 
density map can depict the densities of different regions, 
and the estimated counting numbers are approximate to the 
ground truth value.

4.3 � Performance on UCF_CC_50 dataset

The UCF_CC_50 dataset [18] includes 50 images collected 
from highly-crowded scenes. The crowd counts within it 
ranging from 94 to 4543, and the average is 1280. Following 
the general principle [18], we adopt 5-fold cross-validation 
strategy in evaluation.

Experimental results on the UCF_CC_50 dataset are 
depicted in Table 2. It indicates that the proposed DA2Net 
achieves a score of 169.5 in MAE and a score of 237 in 
MSE, both ranking first among the compared methods. This 
reveals the exceptional performance on accuracy and robust-
ness in highly dense crowd scenes. Especially, compared 
with SCAR [14] and ASNet [20] which also adopt the atten-
tion mechanism in crowd density estimation, the proposed 
DA2Net reduces the score of MAE by 34.56% and 3%, MSE 
by 36.63% and 5.8%, respectively. In order to highlight the 

Table 1   Experimental results on the ShanghaiTech dataset

Best results are marked in bold

Method Part_A Part_B
MAE MSE MAE MSE

Zhang et al. [56] 181.8 277.7 32.0 49.8
Marsden et al. [33] 126.5 173.5 23.8 33.1
MCNN [62] 110.2 173.2 26.4 41.3
TDF-CNN [37] 97.5 145.1 20.7 32.8
Switching-CNN [40] 90.4 135.0 21.1 30.1
DecideNet [26] – – 20.8 29.4
BSAD [17] 90.4 135.0 20.2 35.6
TDF-CNN [37] 97.5 145.1 20.7 32.8
C-CNN [43] 88.1 141.7 14.9 22.1
SaCNN [57] 86.8 139.2 20.7 32.8
A-CCNN [23] 85.4 124.6 11.0 19.0
PCC-Net [13] 73.5 124.0 19.2 31.5
DNCL [58] 73.5 112.3 18.7 26.0
DA

2Net(ours) 74.1 128.4 7.9 13.2

Fig. 5   Exemplar images of the ShanghaiTech_Part_A and ShanghaiTech_Part_B datasets(the first row), the ground truth (the second row), and 
the estimated results (the third row)
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effectiveness of the proposed method intuitively, we perform 
subjective evaluations with three representative methods, 
i.e., MCNN [62], CRSNet [25], and SCAR [14]. Specifi-
cally, the MCNN [62] was also proposed to solve the prob-
lem of head-scale variations caused by perspective effect. 
The CSRNet [25] is a competitive method which expands 
the receptive field by the dilated convolutions. The SCAR 
[14] takes into account the large-range pixel-wise contextual 
information and utilizes attention mechanism to improve the 
estimated accuracy. The subjective results are compared in 
Fig. 6. One can see that compared with the three competi-
tors, the crowd density maps and counting numbers esti-
mated by the proposed method are closer to the ground truth 
even in high-density scenarios.

4.4 � Performance on UCF‑QNRF dataset

The UCF-QNRF dataset [19] consists of 1535 challenging 
images (1201 images for training and 334 images for testing) 
with 1,251,642 manual annotations. The minimum, maxi-
mum, and mean counts are 49, 12,865, and 815.4 respec-
tively. Also, the images in this dataset are captured in the 
wild, making it more realistic as well as difficult.

Table 3 shows the comparative results on the UCF-QNRF 
[19] dataset. It can be observed that the proposed DA2Net 
achieves the lowest MAE of 111.7 and the third lowest MSE 
of 204.3. Figure 7 illustrates the qualitative results for sam-
ple images from the UCF-QNRF datasets. It depicts that the 
DA2Net has superior robustness against both the density and 
scale variation.

4.5 � Performance on WorldExpo’10 dataset

WorldExpo’10 dataset [56] is a large data-driven cross-scene 
benchmark dataset for crowd counting. It contains 3380 
frames in 103 scenes in the training set and 600 labelled 
frames from the remaining 5 scenes in the testing set. Fol-
lowing the general setting [49], we set an ROI in which the 
number of people to be counted.

The performance of our model against other SOTA meth-
ods are reported in Table 4. It indicates that the proposed 
method outperforms all the other SOTA methods, except for 
the Scene 4. The average value of MAE is 7.03, and it ranks 
the first place among the compared method which verifies 
the efficiency of the proposed method for diverse scenes. 
Exemplar qualitative results of the WorldExpo’10 dataset 
are shown in Fig. 8. The experimental results indicate that 
the proposed method is robust and effective in both dense 
scenes and sparse scenes.

4.6 � Performance on NWPU dataset

The NWPU dataset [47] is currently the largest dataset for 
crowd counting and localization. It includes 5109 images 
with 2,133,375 head annotations. Compared with other data-
sets, it has many challenge factors such as containing nega-
tive samples, high-resolution and large appearance changes.

The subjective evaluation of the DA2Net model with 
SOTA methods are reported in Table 5. It demonstrates that 
the proposed DA2Net gains the results of 102.6 and 378.5 in 
MAE and MSE, which are both the best results compared 
with other SOTA method. Compared with another atten-
tion-based method, i.e., SCAR [14], the proposed DA2Net 
reduces the score of MSE by 23.58% which indicates that the 
DA2Net is more robust than SCAR [14] for the large-scale 
congested crowd counting. Some exemplar images with the 
corresponding density maps are shown in Fig. 9. One can 
see that the DA2Net generates a density map which is highly 
closed to the corresponding ground truth.

4.7 � Cross‑dataset analysis

To demonstrate the generalization ability of the proposed 
model, cross-dataset analysis is conducted in this section. 
We take the ShanghaiTech Part_A as the training set, and 
the UCF_50 and UCF-QNRF datasets as the test sets, 
respectively. Three representative methods, i.e., MCNN 
[62], CRSNet [25], and SCAR [14] are used as the com-
petitors. The comparative results are reported in Table 6. It 
shows that compared with the three competitors, the pro-
posed method attains the best results in both MAE and MSE, 
which verifies the competitive generalization ability of the 
proposed method.

Table 2   Experimental results on the UCF_CC_50 dataset

Best results are marked in bold

Methods MAE MSE

Idrees et al. [18] 419.5 541.6
Zhang et al. [56] 467.0 498.5
MCNN [62] 377.6 509.1
Switching-CNN [40] 318.1 439.2
CMTL [44] 322.8 397.9
SaCNN [57] 314.9 424.8
CP-CNN [45] 295.8 320.9
DR-ResNet [10] 307.4 421.6
CSRNet [25] 266.1 397.5
ic-CNN [36] 260.9 365.5
SCAR [14] 259.0 374.0
ASNet [20] 174.8 251.6
D2CNet [8] 182.1 254.9
DA

2Net (ours) 169.5 237.0
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4.8 � Ablation study

The effectiveness of critical components in DA2Net are 
demonstrated by designing several counterparts with differ-
ent combinations. Counterparts are denoted as follows. (1) 
‘baseline’ refers to the vanilla model that does not adopt the 
SA module and CA module. (2) ‘baseline+SA’ denotes the 

baseline model with solely SA module. (3) ‘baseline+CA’ 
denotes the baseline model by solely combing CA module. 
(4) ‘baseline+SA ‖ CA’ represents the SA and CA are par-
allelly combined into the baseline. (5) ‘baseline+CA-SA’ 
denotes the CA and SA modules are sequentially connected 
following the CA-first, SA-second order. (6) ‘baseline+SA-
CA’ also sequentially connected following the SA-first, 

Fig. 6   Exemplar images of the UCF_50 dataset(the first row), the 
ground truth (the second row), the estimated results of MCNN (the 
third row), the estimated results of CSRNet (the fourth row), the esti-

mated results of SCAR (the fifth row), and the estimated results of 
DA

2Net (the sixth row)
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CA-second order as opposite to ‘baseline+CA-SA’ and 
‘baseline+SA ‖ CA’.

The overall quantitative performance is shown in Table 7. 
It indicates that the two critical components, i.e., SA module 
and CA module, contribute to the substantial improvement 
of the baseline method in terms of both MAE and MSE. The 
SA module is more effective that CA module in improving 
the accuracy and robustness. The final DA2Net boost the 

baseline significantly by 13.2% and 11.4% in terms of MAE 
and MSE, respectively.

The qualitative comparison of the baseline with different 
components is shown in Fig. 10. Although the number of 
people in this exemplar image is small (70), it is still chal-
lenging as it suffered from scale variations and background 
cluster, simultaneously, as shown in the red and green box 
in Fig. 10a. It shows that baseline method is suffered from 
the background cluster and scale variations. The estimated 
number and the density map deviate the ground truth to 
a large extent, as depicted in Fig. 10c. The SA module 
guarantees the accurate location of heads, as depicted in 
the green box in Fig. 10d. The CA module can alleviate 
the error estimation for background regions, as depicted 
in the red box in Fig. 10e. The ‘baseline+CA-SA’ mode 
in Fig. 10g makes the problem worse. Both the compound 
modes of ‘baseline+SA ‖ CA’ (Fig. 10f and ‘baseline+SA-
CA’ (Fig. 10h) boost the estimation accuracy, with the latter 
being more effective.

4.9 � Failure cases

The proposed DA2Net outperforms most the SOTA meth-
ods by a large margin. However, there are some failure 
cases under the extremely challenging scenarios, as shown 
in Fig. 11 shows. Specifically, When the crowd scenarios 
are captured in highly low-light environment, the estimated 
density map and the counting results deviate the ground 

Table 3   Experimental results on the UCF-QNRF dataset

Best results are marked in bold

Methods MAE MSE

Zhang et al. [56] 467.0 498.5
Idress et al. [18] 315.0 508.0
MCNN [62] 277.0 509.1
CMTL [44] 252.0 514.0
SCAR [14] 264.8 418.3
PCCNet [13] 148.7 247.3
Switching-CNN [40] 228.0 445.0
CRSNet [25] 129.0 209.0
DENet [27] 121.0 205.0
LSC-CNN [38] 120.5 218.2
DADNet [15] 113.2 189.4
DUBNet [34] 116.0 178.0
DA

2Net (ours) 111.7 204.3

Fig. 7   Exemplar images of the UCF-QNRF dataset (the first row), the ground truth (the second row), and the estimated results (the third row)
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truth to a large degree. Crowd counting in low-light envi-
ronment is a difficult problem as the feature maps in head 
region are very close to the background area. Future work 
is expected on reliable crowd feature map extraction in low-
light environment.

5 � Conclusion

The scale variation in crowd scenario is a primary degra-
dation factor in crowd counting, which degrades the accu-
racy of the crowd estimation. To address this problem, we 

Table 4   Experimental results on 
the WorldExpo’10 dataset

Best results are marked in bold

Methods Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 MAE(Avg.)

LBP+RR [5] 13.6 58.9 37.1 21.8 23.4 31.9
Zhang et al. [56] 9.8 14.1 14.3 22.4 3.7 12.9
MCNN [62] 3.4 20.6 12.9 13.0 8.1 11.6
MSCNN [52] 7.8 15.4 14.9 11.8 5.8 11.7
ConvLSTM-nt [54] 8.6 16.9 14.6 15.4 4.0 11.9
SCAR [14] 1.9 13.8 9.6 29.8 3.9 11.8
TDF-CNN [37] 2.7 23.4 10.7 17.6 3.3 11.5
IG-CNN [39] 2.6 16.1 10.15 20.2 7.6 11.3
PSCC+DCL [50] 1.8 16.2 9.2 25.0 2.8 11.0
ic-CNN [36] 17.0 12.3 9.2 8.1 4.7 10.3
CSRNet [25] 2.9 11.5 8.6 16.6 3.4 8.6
SANet [3] 2.6 13.2 9.0 13.3 3.0 8.2
DRSAN [28] 2.6 11.8 10.3 10.4 3.7 7.76
DA

2Net (ours) 1.45 11.8 7.95 11.6 2.35 7.03

Fig. 8   Exemplar images of the WorldExpo’10 dataset (the first row), the ground truth (the second row), and the corresponding estimated density 
map (the third row). Each column represents a typical scene

Table 5   Experimental results on 
the NWPU dataset

Best results are marked in bold

Methods MAE MSE

MCNN [62] 232.5 714.6
CRSNet [25] 121.3 378.8
SANet [3] 190.6 491.4
PCC-Net [13] 112.3 457.0
CAN [30] 106.3 386.5
SCAR [14] 110.0 495.3
BL [32] 105.4 454.2
SFCN [48] 105.7 424.1
DA

2Net(ours) 102.6 378.5



3037DA
2 Net: a dual attention‑aware network for robust crowd counting﻿	

1 3

propose a dual attention-aware network ( DA2Net) which 
consists of a spatial attention module and a channel atten-
tion module. The former module guarantees the accurate 
location of heads, while the latter module alleviates the error 
estimation for background regions. These two modules high-
light the crucial information in spatial and channel spaces 
in a mutual-promotion manner. Comprehensive experiments 
on five benchmark datasets prove that the DA2Net achieves 
compelling performance on accuracy and robustness com-
pared with the SOTA methods.

Fig. 9   Exemplar images of the NWPU dataset (the first row), the ground truth (the second row), and the estimated results (the third row)

Table 6   Comparative results on the cross-data testing

Best results are marked in bold

Methods Source dataset Target dataset MAE MSE

UCF_50 Dataset
 MCNN [62] UCF_50 UCF_50 377.6 509.1
 CSRNet [25] UCF_50 UCF_50 266.1 397.5
 SCAR [14] UCF_50 UCF_50 259.0 374.0
 DA2Net(ours) UCF_50 UCF_50 169.5 237.0

UCF_50 Cross-Dataset
 MCNN [62] ShanghaiTech Part_A UCF_50 496.5 709.5
 CSRNet [25] ShanghaiTech Part_A UCF_50 409.9 604.6
 SCAR [14] ShanghaiTech Part_A UCF_50 470.6 686.4
 DA2Net(ours) ShanghaiTech Part_A UCF_50 379.0 567.7

UCF-QNRF Dataset
 MCNN [62] UCF-QNRF UCF-QNRF 277.0 509.1
 CSRNet [25] UCF-QNRF UCF-QNRF 129.0 209.0
 SCAR [14] UCF-QNRF UCF-QNRF 264.8 418.3
 DA2Net(ours) UCF-QNRF UCF-QNRF 111.7 204.3

UCF-QNRF Cross-Dataset
 MCNN [62] ShanghaiTech Part_A UCF-QNRF 340.3 571.9
 CSRNet [25] ShanghaiTech Part_A UCF-QNRF 193.1 375.2
 SCAR [14] ShanghaiTech Part_A UCF-QNRF 262.9 499.8
 DA2Net(ours) ShanghaiTech Part_A UCF-QNRF 172.5 330.3

Table 7   Ablation analysis of the key components in DA2Net on 
ShanghaiTech Part B dataset

Best results are marked in bold

Methods MAE MSE

Baseline 9.1 14.9
Baseline+SA 8.6 13.9
Baseline+CA 8.9 14.0
Baseline+SA ‖ CA 8.6 13.3
Baseline+CA-SA 9.4 16.1
Baseline+SA-CA 7.9 13.2
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