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Abstract
Crowd counting in congested scenarios is an essential yet challenging task in detecting abnormal crowd for contemporary
urban planning. The counting accuracy has been significantly improved with the rapid development of deep learning over
the last decades. However, current models are fragile in the real-world application mainly due to two inherent weaknesses:
(1) Scale variations always exert negative influences on counting accuracy. (2) Overwhelming amount of parameters in the
deep neural network will lead to low efficiency. To address these two limitations, in this paper, we propose a Feature Pyramid
Attention Network (FPANet). Specifically, the FPANet consists of three modules, namely the feature pyramid module,
attention module, and multiscale aggregation module. The feature pyramid module is built in a lightweight architecture to
extract multiscale features. The attention module focuses on the crowd region and suppresses misleading information. The
multiscale aggregation module is derived to adaptively fuse the discriminative knowledge extracted in different granularities.
Additionaly, the efficiency of FPANet is boosted by the multi-group structure. Experimental results on five crowd benchmark
datasets, i.e., ShanghaiTech, UCF CC 50, UCF-QNRF, WorldExpo’10, and NWPU-Crowd, and two cross-domain datasets,
i.e., CARPK, and PUCPR+, demonstrate that the FPANet achieves superior performances in terms of accuracy, efficiency
and generalization.
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1 Introduction

Crowd counting has been an emerging topic in the computer
vision community in recent years. It plays crucial roles in
a wide range of applications, e.g., crowd simulation, crowd
dynamics modeling, vehicle detection, and vehicle count-
ing [51, 52, 69]. Inspired by the remarkable performance of
convolutional neural networks (CNNs) [23, 29], researchers
have lately developed numerous CNN-based crowd count-
ing methods [13, 20, 64]. The key idea of the CNN-based
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method is to employ a CNN to regress the density map and
then integrate the pixels on the map from which the final
count value is derived [20, 69] Some CNN-based crowd
counting methods [66, 69] attempted to solve the problem
of large-scale variations by taking advantage of multiscale
architectures. These methods designed subnetworks to learn
an informative feature cross-multiscale intermediate to get
rid of the effect of the distribution gap. Other approaches
adopted attention mechanisms as a guide in improving the
prediction accuracy [4, 70].

Although counting accuracy has been advanced by these
recent attempts, they are still fragile when being adopted
in real-world applications, reflected by poor adaptation
performance in counting accuracy. We attribute this mainly
to the large-scale variation which is intrinsically challenging
for model learning. Some examples of crowd scenarios with
large-scale variations are depicted in Fig. 1, which can
diminish the quality of estimated density maps, leading to
erroneous estimation in backgrounds.

Moreover, contemporary counting models typically seek
trivial performance improvement by deepening or widening
the network, which is computationally heavy and inefficient
to be deployed in low-cost devices, such as mobile phones
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Fig. 1 Crowd scenarios with large-scale variations. The top row shows some typical samples, and the bottom row represents the ground truth
density maps

and embedded equipment. To solve the problem, many
light-weight models were proposed [2, 5]. However, these
light-weight methods are struggle in finding a balance to the
computationnal cost or the counting performance and being
incapable to depict the crowd distribution [54].

In this work, we consider these two issues jointly and
proposed a unified framework named Feature Pyramid
Attention Network (FPANet) to perform precious counting
in a lightweight design. Specifically, the proposed FPANet
model consists of three modules, i.e., feature pyramid
module, attention module, and multiscale aggregation
module. The feature pyramid module adopts a multi-column
grouping structure, which extracts multi-scale features and
promotes the network to be more efficient. The attention
module focuses simultaneously on the spatial dependencies
in the whole feature map in order to acquire precise head
regions by the pyramid spatial attention (PSA) unit, and
assists in processing the relationships between channel
maps and highlights the discriminatory information in
a particular channel by light-weight channel attention
(LCA) unit. The multiscale aggregation module integrates
the multiscale spatial information and the cross-channel
knowledge into the block for each feature group. To
summarize, the contributions of this paper are as follows.

1. We deal with the scale variations in complex crowd
scenes by building a feature pyramid (FP) module
and multiscale aggregation (MA) module to exploit
the robust scale features without increasing parameters
and introduce the scale communication architecture
between multiscale inputs.

2. We build a dual-attention module, named a pyramid
spatial attention (PSA) unit and a light-weight channel
attention (LCA) unit, to accurately locate dense regions
of the input without relying on prior knowledge.

3. Experimental results on five benchmark crowd
datasets, i.e., ShanghaiTech, UCF CC 50, UCF-QNRF,

WorldExpo’10, NWPU-Crowd, and two cross-domain
datasets, i.e., CARPK, and PUCPR+, prove that the
FPANet achieves remarkable performances in accuracy,
efficiency, and generalization.

The remaining of the paper is structured as follows:
An overview of the related works is introduced in
Section 2. The proposed FPANet is shown in Section 3.
The implementation details are introduced in Section 4. The
experimental results and analysis are presented in Section 5.
This work is concluded in Section 6.

2 Related work

Recently, the CNN-based methods have been the main-
stream in this domain thanks to the powerful feature rep-
resentation ability of CNN [15, 25, 53]. In this section,
we review three kinds of CNN-based methods which are
closely related to the proposed FPANet, i.e., multiscale
CNNs methods, attention CNNs methods and light-weight
CNNs methods.

2.1 Multiscale CNNsmethods

The multiscale CNNs methods usually adopt multi-column
network (MCNN) to capture multiscale information so as
to deal with the problem of scale variation. The multiscale
CNNs architecture for crowd counting was first proposed in
[69], in which a three-column CNNs with different receptive
fields was built. Subsequently, Sam et al. [41] improved the
MCNN by adding the recurrent networks to fuse features
from multi-column CNN and leveraged a switch classifier
to tackle large-scale variations. Meanwhile, to improve the
MCNN, Marsden et al. [33] utilized a multiscale average
mechanism to address the problems of scale and perspective
variation. Unlike multi-column networks, Zhang et al. [67]
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proposed the scale adaptive convolutional neural network
(SaCNN) by progressively increasing the number of layers
from lower to higher levels with different scales. Although
the multiscale CNNs methods work well in dealing with the
scale variations, they ignore the rich context and location
information [4, 64].

2.2 Attention CNNsmethods

The attention mechanism is to adjust the weight according
to the importance of features, and it is widely applied
in many practical domains [21, 24, 26]. Recently, the
attention mechanism is also generalized to the crowd
counting domain. Liu et al. [27] pioneered the use of an
attention module called QualityNet to perceive changes in
crowd density. To improve the counting capability, Gao
et al. [4] built the spatial-/channel-wise attention regression
networks (SCAR), in which a spatial attention module
is introduced to extract global context information and
a channel attention module is built to alleviate the side
effect of background interference. Similarly, Zhai et al.
[65] proposed the DA2Net which consists of a spatial
attention module locating the heads and a channel attention
module highlighting the discriminative region which further
increases in counting accuracy. Different from the SCAR
and DA2Net which utilize the channel and spatial attention,
Jiang et al. [16] presented an attention scaling-based
counting network that exploits attention masks to label the
regions with different density levels.

2.3 Light-weight CNNsmethods

Although the multiscale CNNs methods and attention
CNNs methods have achieved remarkable progress, their
performance comes with the cost of burdensome computa-
tion. In this regard, how to reduce the burden of network

computing draws growing interest. For instance, Cao et al.
[2] proposed an efficient counting framework called scale
aggregation network. It introduced a patch-based scheme
to simplify the training process, and a lightweight loss to
reduce the computing burden. Besides, Wang et al. [54]
designed an efficient encoder-decoder architecture with lim-
ited computation resources. The aforementioned approaches
simply focus on the simplification of the network and have
not taken into account the scale information of the head
region. To address this issue, Gao et al. [5] proposed a model
to extract the large-range and perspective information with
fewer parameters. Meanwhile, Zhai et al. [63] proposed the
group-spilt attention network to process the scale features
of each group in parallel with few computational costs. The
above methods reduced the computational burden at the
expense of accuracy.

In this paper, the proposed FPANet explicitly integrates
the feature pyramid module, attention module, and mul-
tiscale aggregation module to promote the performance
of crowd counting in accuracy, efficiency and general-
ization. Besides, we conduct comprehensive studies on
the architecture variations to verify the superiority of the
proposed FPANet.

3 Proposedmethod

3.1 Overview

The structure of the proposed FPANet is depicted in Fig. 2.
It is composed of three modules, i.e., feature pyramid (FP)
module, attention module, and multiscale aggregation (MA)
module. First, the ResNet-50 [8] is tailored, and the first
three layers are retained as the backbone network. Next,
the FP module is built to extract multiscale features. Then,
a dual-aware attention module consisting of a pyramid
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Fig. 2 Diagram of the proposed FPANet for crowd counting
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spatial attention (PSA) unit and a light-weight channel
attention (LCA) unit is set up in each branch. After that,
the MAmodule integrates the multiscale spatial information
and the cross-channel attention into the block of each
feature group. Finally, an upsample operation is adopted to
output the predicted density map.

3.2 Feature pyramidmodule

Given an image I , the original crowd image is fed into
the ResNet-50 [10, 56] with the first three layers to extract
low-level features Fe ∈ R

C×H×W from the input images.
Afterwards, the feature pyramid (FP) module employs
the multi-group structure to extract the multiscale feature
in which the channel dimension of each subgroup is C.
Meanwhile, the group convolution operation is utilized to
reduce the number of calculations.The pyramid feature map
Fsi ,ki

is generated as,

Fsi ,ki
= fGconv[Fe(I )], g = 2

k−1
2 , i = 1, 2, · · · , N,

(1)

where g is the number of group convolution. The k

represents the convolutional kernel size of 3 × 3, 5 × 5,
7 × 7, and 9 × 9. Especially, the default value of g is set
to 1 when the value of k equals 3. fGconv(·) represents the
group convolution operation with different kernel sizes to
aggregate cross-channel information from the input feature
map Fe(I ). It reduces the number of parameters to be
optimized in the network. As a consequence, the model
can be trained at a low cost. In addition, to maintain
the same size of the input and output feature maps, the
values of padding are set to 1,2,3,4 and the stride is set
to 1, respectively. The Fsi,ki

∈ R
C/4×H×W represents the

global hierarchical features for the next operations. si and ki

represent the group size and the convolution kernel size of
the i-th scale level.

3.3 Attentionmodule

The attention module is designed in a dual-aware pattern,
which is composed of a pyramid spatial attention (PSA)
unit and a light-weight channel attention (LCA) unit. The
PSA unit generates a spatial attention map by utilizing the
inter-spatial features. Meanwhile, the LCA unit produces a
channel attention map by exploiting the interrelationship of
channels. The attention weights at various scales are gained
by extracting the channel attention weight information from
the multiscale preprocessed feature maps. Mathematically,
the attention weight is denoted as,

σi = fatt(Fsi ,ki
), (2)

where σi ∈ R
C/4×1×1 is the attention weight, which

represents the general term for PSA and LCA. fatt(·)
indicates an operation to obtain multiscale attention
weight. It is implemented through a series of convolutions
followed by Rectified Linear Units (ReLU) [35] and Batch
Normalization (BN) [14].

Pyramid spatial attention unit The feature map Fsi,ki
∈

R
C/4×H×W is fed into the PSA unit. An attention

mechanism based CNN model learns attention weights
from the input i-th scale sizes and multiplies each channel
in Fsi,ki

to produce a multiscale attention map. The 1-
dimension attention map Ps is formulated as,

Ps =fr(fp(Fsi ,ki
, 4))⊕fr(fp(Fsi ,ki

, 2))⊕fr(fp(Fsi ,ki
, 1)),

(3)

where fp(·) denotes the adaptive average pooling with
three scales, i.e., 4 × 4, 2 × 2, and 1 × 1. fr(·) resizes
a tensor size. ⊕ denotes the element-wise concatenation.
The architecture of PSA unit is illustrated in Fig. 3. It
consists of three types of average pooling operations. The
average pooling of 4 × 4 is utilized to acquire more feature

AAP(4)

AAP(2)

AAP(1)

Resize

Resize

Resize
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BN Batch Normalization Layer AAP Adaptive Average Pooling Layer Sig SigmoidCat Concatenate
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Fig. 3 Framework of the pyramid spatial attention (PSA) unit
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representation and structural details. The average pooling of
2 × 2 devotes to a trade-off between structural information
and structural regularization. The average pooling 1 × 1 is
the general global average pooling with a strong structural
regularization. The three outputs are resized to three 1-
dimension maps. Then, the three branches are concatenated
to generate the feature map Ps .

However, the concatenation operation is limited by learn-
ing channel dependencies and affecting the effectiveness of
the attention mechanism [7]. To tackle this problem, we
encode the Ps using the incentive block and construct a
1-dimensional attention map σpsa . The incentive block uti-
lizes two fully connected layers and a sigmoid layer for
regularizing the output to the range (0, 1). The PSA unit is
formulated as follows,

σpsa = Sigmoid(fc2ρ(fc1(Ps))), (4)

where fc1 and fc2 represent two fully-connected layer
with BN layers, respectively. ρ denotes a rectified
linear unit (ReLU) function. σpsa generates the spatial
attention weight.

Light-weight channel attention unit The aforementioned
PSA unit seeks to encode the correlations in spatial
dimension so that the head region can be precisely detected.
Nevertheless, it could lead to the incorrect estimation of the
background because of similarities between the foreground
and background area textures. In addition, to reduce the
parameters, some attention models, such as SENet [10]
and CBAM [61], involve dimensionality reduction to
reduce the model complexity. However, it is inefficient
and unnecessary to capture the dependencies across all the
channels [56].

To address these issues, we employ the complementary
LCA units inspired by the strategy in [56] to ensure accuracy
and efficiency. The architecture of LCA unit is shown in
Fig. 4. The formulation is shown as follows,

gc = 1

WH

W,H∑

i=1,j=1

Fsi,ki
,

σlca = Sigmoid(C1Dk(gc)), (5)

where Fsi,ki
represents the feature map corresponding to

each channel. gc indicates the channel-aware global average
pooling operation that acquires the aggregated features of

the background region. The LCA module generates channel
weight σlca by performing a fast 1-dimension convolution
(C1D) which utilizes the convolution kernel size (k = 3)
with fewer parameters.

3.4 Multiscale aggregationmodule

The multiscale aggregation (MA) module aggregates and
facilitates feature fusion of different channel dimensions.
It contains three operations, namely channel concatena-
tion, feature recalibration and feature map re-weighting
operation.

The channel concatenation operation fuses the multiscale
pre-processed feature map of different dimensions. It
represents the general term for multiscale layer aggregation
and attention map aggregation. The multiscale layer
aggregation is formulated as,

Fl = Fs1,k1 ⊕ Fs2,k2 ⊕ · · · ⊕ FsN ,kN
, (6)

where Fl ∈ R
C×H×W employs multiscale feature map and

⊕ is the concatenation operator. In this way, the multiscale
layer aggregation can integrate multiscale cross-hierarchy
contextual features at different scales and generate superior
pixel-level attention for high-level feature maps.

The attention map aggregation operation aggregates the
PSA unit and the LCA unit, respectively. The PSA attention
map aggregation is applied to gain the spatial attention
weight from the input feature map with different scales. The
whole multiscale PSA attention vector σs is attained in a
concatenation manner as,

σs = σpsa1 ⊕ σpsa2 ⊕ · · · ⊕ σpsaN , (7)

where σpsai
is the i-th multiscale PSA attention weight

vector.
In the same way, the LCA attention map aggregation

is used to obtain the channel attention weight from the
input feature map with different scales. The multiscale LCA
attention weight vector σc is formulated as follows,

σc = σlca1 ⊕ σlca2 ⊕ · · · ⊕ σlcaN . (8)

The feature recalibration operation adaptively selects
different spatial and channel attention scales through a
cross-channel strategy, which is guided by the attention

Fig. 4 Framework of the
light-weight channel attention
(LCA) unit Conv3GAP Sig

GAP Global Average Pooling Conv3 k=3 Sig Sigmoid

lcaFsi,ki

19203FPANet: feature pyramid attention network...



weight vectors σs and σc. The recalibrated channel spatial
attention Os is formulated as,

Os = Softmax(σs) = exp (σs)∑n
i=1 exp (σs)

, (9)

where the Softmax(·) is utilized to acquire the recalibrated
multiscale PSA weight Os . It contains the location
information on the attention weight in spatial. The PSA unit
generates the spatial attention map Os ∈ R

H×W to reflect
the importance in the spatial space of the concerned areas
(e.g., head).

Similarly, the channel attention of feature recalibration
is fused and spliced in a concatenation manner. The
recalibrated channel attention vector Oc is formulated as,

Oc = Softmax(σc) = exp (σc)∑n
i=1 exp (σc)

, (10)

where the Softmax(·) is utilized to obtain the recalibrated
multiscale LCA weight Oc.

The feature map re-weighting operation is designed
to redress the weight of the recalibrated PSA and LCA
weights. Specifically, the re-assigned spatial feature map
Fs is obtained by the multiplication of spatial attention
assignment weight Os and the multiscale feature map Fc, as

Fs = Fl ⊗ Os, (11)

where ⊗ represents the element-by-element multiplication.
The re-assigned spatial feature map Fs acts as a bridge
between the PSA unit and the LCA unit.

The re-assigned channel feature map can be formulated
by the multiplication of the re-assigned spatial feature map
Fs and the recalibrated multiscale channel weight as,

Fo = Fs ⊗ Oc, (12)

where Fo ∈ R
C×H×W represents the enhanced fea-

ture map. It provides more discriminative information
than the previous feature map Fe in both spatial and
channel dimensions.

4 Implementation details

4.1 Ground truth density map

Similar to [20, 69], the geometry-adaptive kernel is
employed to generate the density map. It is formulated as
follows,

H(z) =
N∑

i=1

δ(z − zi) ∗ Gσ (z), (13)

where zi denotes the i-th annotated head location. The delta
function δ(z − zi) and normalized Gaussian kernel G with

the fixed parameter σ are convolved to generate ground
truth density maps.

4.2 Loss function

Following the earlier works [28, 69], the Euclidean loss
is employed to measure the estimation error between
the estimated density map and the ground truth. It is
formulated as,

loss = 1

M

M∑

i=1

‖F(Ii) − Yi‖22 , (14)

where M denotes the batch size. Fθ(Ii) represents the
predicted density map. Yi represents the corresponding
density map of ground truth.

4.3 Data augmentation

The accuracy of population counting is plagued by scale
problems, so we randomly change the scale to help crowd
estimation. Particularly, we utilize random horizontal flips
to increase data diversity. The original images are resized
to 576×768 along with generating the final density images
of the same size. Images are normalized with the mean and
deviation using the PyTorch framework [4].

4.4 Training details

The default batch size is set to 4. The first three
layers of a pre-trained ResNet-50 [8] are adopted as the
backbone to extract the low-level features. Adam [18]
is adopted as the optimizer. The models are trained for
400 epochs. and the learning rate is initially set to 10−5

and multiplied by 0.995 per epoch. All the experiments
are conducted on two NVIDIA RTX3090Ti GPUs. The
source code will be available at https://github.com/wzzhai/
FPANet-for-Crowd-Counting.

5 Experimental results and analysis

In this section, we first compare the proposed FPANet
with the state-of-the-art methods on five benchmark datasets
to verify the accuracy. Besides, we apply FPANet on
two cross-datasets to validate the generalization ability.
Meanwhile, we carry out measure the parameters and
complexity of the calculations with other mainstreams to
verify the efficiency of the proposed FPANet. The typical
scenarios from the crowd datasets are illustrated in Fig. 5.
Finally, the ablation experiments are performed to verify the
effectiveness of the various modules in FPANet.

19204 W. Zhai et al.

https://github.com/wzzhai/FPANet-for-Crowd-Counting
https://github.com/wzzhai/FPANet-for-Crowd-Counting


ShanghaiTech_PartA ShanghaiTech_PartB UCF_CC_50 WorldExpo'10

UCF-QNRF NWPU Crowd CARPK PUCPR+

Fig. 5 Typical scenarios in the crowd benchmark datasets (ShanghaiTech, UCF CC 50, WorldExpo’10, UCF-QNRF, and NWPU-Crowd) and the
cross-domain car benchmark datasets (CARPK, and PUCPR+ datasets)

5.1 Evaluationmetrics

Following the earlier works [20, 44, 66], the count
performance is measured in terms of Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE), which are
formulated as,

MAE = 1

N

∑ ∣∣yi − ŷi

∣∣ , (15)

RMSE =
√

1

N

∑ ∣∣yi − ŷi

∣∣2, (16)

where N denotes the total number of test images. yi

represents the ground truth count and ŷi is the estimated
value for the i-th image.

5.2 Performance on ShanghaiTech dataset

The ShanghaiTech dataset [69] is composed of 1198
images with 330,165 annotated heads. It is composed of
two subsets, namely Part A and Part B. In Part A, 482
images (300 training images and 182 test images) are
selected from the internet. In Part B, 716 images (400
training images and 316 test images) are collected from
the downtown region in Shanghai. The comparative results
are presented in Table 1. On ShanghaiTech Part A, the
FPANet scores 70.9 in MAE, ranking first place among
the competitors. Meanwhile, it achieves a score of 120.6 in
RMSE, which ranks second place among the competitors.
On ShanghaiTech Part B, the proposed method performs
best in both MAE and RMSE, and outperforms others
competitors by a large margin. Compared with SaCNN
[67] which also combines multiple layers to solve the scale
problem, the FPANet reduces the MAE and RMSE by
18.33% and 13.4%. Figure 6 illustrates the visualization
results on the ShanghaiTech dataset.

5.3 Performance on UCF CC 50 dataset

The UCF CC 50 dataset [12] merely contains 50 images
with extremely high crowd density. Despite the limited
data samples, it still provides a variety of scenarios, i.e.,
concerts, stadiums, etc. The head annotations of each image
range from 94 to 4,543, and there are an average of
1,280 pedestrians per image. Following the principle [12],
we randomly split the dataset into five pieces for cross-
validation. We compared the proposed FPANet with the
SOTA methods in terms of MAE and RMSE. As depicted
in Table 2, the FPANet scores 159.5 and 218.4 in MAE
and RMSE, both outperforming the competitors. Specially,

Table 1 Experimental results on the ShanghaiTech dataset (The best
results are marked in bold)

Method Part A Part B

MAE RMSE MAE RMSE

Zhang et al. [66] 181.8 277.7 32.0 49.8

Marsden et al. [33] 126.5 173.5 23.8 33.1

MCNN [69] 110.2 173.2 26.4 41.3

CMTL [44] 101.3 152.4 20.0 31.1

NLT [58] 93.8 157.2 11.8 19.2

TDF-CNN [40] 97.5 145.1 20.7 32.8

Switching-CNN [41] 90.4 135.0 21.1 30.1

BSAD [11] 90.4 135.0 20.2 35.6

DecideNet [27] − − 20.8 29.4

BSAD [11] 90.4 135.0 20.2 35.6

TDF-CNN [40] 97.5 145.1 20.7 32.8

SaCNN [67] 86.8 139.2 20.7 32.8

A-CCNN [17] 85.4 124.6 11.0 19.0

MATT [19] 80.1 129.4 11.7 17.5

PCC-Net [5] 73.5 124.0 19.2 31.5

DNCL [68] 73.5 112.3 18.7 26.0

FPANet(ours) 70.9 120.6 8.8 15.5
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Fig. 6 Visualization results on the ShanghaiTech Part A (first two
columns) and Part B (first two columns) datasets. The first row
represents the four samples. The second row shows the correspond-
ing ground truth maps with real values. The last row illustrates the

estimated maps with predicted values. The sample images depict
crowd scenarios with uneven distribution and varying head sizes.
The proposed method can provide accurate crowd density maps and
counting results in both dense and sparse scenes

compared with SCAR [4], ASNet [16] and DA2Net [65]
which also utilize the attention mechanism, the proposed
proposed FPANet reduces the MAE by 37.2%, 6.92% and
5.9%, and RMSE by 39.6%, 10.3% and 7.8%, respectively.
The visualized results of the FPANet on UCF CC 50 dataset
are depicted in Fig. 7. It proves that the proposed method
implemens a satisfying result in highly dense crowd scenes.

5.4 Performance onWorldExpo’10 dataset

The WorldExpo’10 dataset [66] is a cross-scene benchmark
dataset captured by 108 surveillance cameras from Shanghai
WorldExpo. It contains 3,980 frames in 103 scenarios in the
training set, and 600 frames from the rest 5 scenarios in
the testing set. The ROI areas are defined according to the
general criteria [58]. The experimental results of 5 scenes on
the WorldExpo’10 dataset are depicted in Table 3. It depicts
that the FPANet sores the first place in Scenes 1, 2, and 3,
except for Scenes 4 and 5. Simultaneously, it obtains the
best scores in terms of average MAE, which is reduced by
1.8% compared to the suboptimal method DA2Net[65]. The
exemplar qualitative results on the WorldExpo’10 dataset
are presented in Fig. 8.

5.5 Performance on UCF-QNRF dataset

The UCF-QNRF dataset [13] is a challenging dataset
due to its diversified viewpoints, various crowd scales
and densities. It contains 1,535 high-resolution images

with an average size of 2013×2902. It involves more
outdoor real scenes (e.g., trees, sky, buildings and roads)
compared to other datasets, which makes it more realistic.
The comparative results with other SOTA methods are

Table 2 Experimental results on the UCF CC 50 dataset (The best
results are marked in bold)

Methods MAE RMSE

Idrees et al. [12] 419.5 541.6

Zhang et al. [66] 467.0 498.5

MCNN [69] 377.6 509.1

MATT [19] 355.0 550.2

CMTL [44] 322.8 397.9

SaCNN [67] 314.9 424.8

CP-CNN [45] 295.8 320.9

ACM-CNN [70] 291.6 337.0

DNCL [68] 288.4 407.7

DADNet [6] 285.5 389.7

MobileCount [54] 283.1 382.6

CSRNet [20] 266.1 397.5

ic-CNN [37] 260.9 365.5

SCAR [4] 259.0 374.0

PCCNet [5] 240.0 315.5

ASNet [16] 174.8 251.6

DSNet [3] 183.3 240.6

DA2Net [65] 169.5 237.0

FPANet (ours) 159.5 218.4
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GT: 699

Est: 742.0

GT: 2960

Est: 3034.9

GT: 681

Est: 701.0

GT: 946

Est: 1012.9

Fig. 7 Visualization results on UCF CC 50 dataset. The first row
represents the four samples. The second row shows the correspond-
ing ground truth maps with real values. The last row illustrates the

estimated maps with predicted values. The estimated density maps and
the counting number are close to the ground truth in extremely dense
crowd scenario

demonstrated in Table 4. The proposed FPANet achieves
the best result with an MAE of 108.9 and the third-best
result with an RMSE of 197.6, which are comparative to the
best RMSE from the DUBNet [36]. Particularly, it reduces
the MAE and RMSE by 2.5% and 3.3% compared with
DA2Net [65], which also employs the channel and spatial
attention mechanism. The visual density maps are depicted
in Fig. 9.

5.6 Performance on NWPU-Crowd dataset

The NWPU-Crowd dataset [57] is the largest benchmark
dataset, and it has a total number of 5,109 images with
2,133,375 head annotations. It is more challenging due to
the influence of negative samples, and large appearance
changes. Compared with the aforementioned datasets, the
difference is mainly reflected in two aspects. For one

Table 3 Experimental results on the WorldExpo’10 dataset (The best results are marked in bold)

Methods S1 S2 S3 S4 S5 MAE(Avg.)

Zhang et al. [66] 9.8 14.1 14.3 22.4 3.7 12.9

MCNN [69] 3.4 20.6 12.9 13.0 8.1 11.6

MSCNN [59] 7.8 15.4 14.9 11.8 5.8 11.7

SCAR [4] 1.9 13.8 9.6 29.8 3.9 11.8

BSAD [11] 1.4 21.7 11.9 11.0 3.5 10.5

ic-CNN [37] 17.0 12.3 9.2 8.1 4.7 10.3

PCC Net [5] 1.9 18.3 10.5 13.4 3.4 9.5

DNCL [68] 1.9 12.1 20.7 8.3 2.6 9.1

CSRNet [20] 2.9 11.5 8.6 16.6 3.4 8.6

ACM-CNN [70] 2.4 10.4 11.4 15.6 3.0 8.56

SaCNN [67] 2.6 13.5 10.6 12.5 3.3 8.5

SANet [2] 2.6 13.2 9.0 13.3 3.0 8.2

LSC-CNN [42] 2.9 11.3 9.4 12.3 4.3 8.0

M-SFANet [47] 1.88 13.24 10.07 7.5 3.87 7.32

STDNet [31] 1.83 12.78 10.3 7.88 2.5 7.05

DA2Net [65] 1.45 11.8 7.95 11.6 2.35 7.03

FPANet (ours) 1.2 10.5 8.5 12.0 2.5 6.9
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GT: 36

Est: 36.0

GT: 66

Est: 66.8

GT: 110

Est: 108.7

GT: 125

Est: 126.7

GT: 85

Est: 88.8

Fig. 8 Visualizations on the WorldExpo’10 dataset. The first row
represents the four samples. The second row shows the correspond-
ing ground truth maps with real values. The last row illustrates the

estimated maps with predicted values. It shows that the estimated maps
and counting numbers are very close to the ground truth in uneven
distributed crowd scenes

thing, it has much more diversity in scales, density and
background. For another, it includes 351 negative samples
(namely nobody scenes), which increases the variety of
datasets. As illustrated in Table 5, the proposed method
achieves the best results in both MAE and RMSE, with a
reduction of 3.4% and 1.5% compared with the suboptimal
MAE of KDMG [50] and the suboptimal RMSE of DA2Net
[65]. Figure 10 displays some qualitative validation set
results of the proposed method.

Table 4 Experimental results on the UCF-QNRF dataset (The best
results are marked in bold)

Methods MAE RMSE

Zhang et al. [66] 467.0 498.5

MCNN [69] 277.0 509.1

SCAR [4] 264.8 418.3

CMTL [44] 252.0 514.0

Switching-CNN [41] 228.0 445.0

PCCNet [5] 148.7 247.3

NLT [58] 172.3 263.1

ZoomCount [39] 130.0 204.0

CRSNet [20] 129.0 209.0

DENet [28] 121.0 205.0

LSC-CNN [42] 120.5 218.2

MobileCount [54] 117.7 207.6

DUBNet [36] 116.0 178.0

DADNet [6] 113.2 189.4

DA2Net [65] 111.7 204.3

FPANet (ours) 108.9 197.6

5.7 Cross-dataset analysis

To verify the generalization capability of the proposed
FPANet, cross-dataset evaluation is performed. Following
the work in [43], we firstly adopt the ShanghaiTech Part A
as the training set, while the ShanghaiTech Part B and
UCF-QNRF datasets as the test sets, respectively. Then, the
ShanghaiTech Part B and UCF-QNRF are adopted as the
training set, while Part A is used as the test set.

Three representative methods, i.e., MCNN [69], CSRNet
[20], and SCAR [4] are used as the competitors. Com-
parative results are reported in Table 6. It proves that
the FPANet outperforms all competitors in terms of MAE
and RMSE, which verifies the generalization ability of the
proposed method.

5.8 Cross-domain analysis

To further validate the generalization ability of the proposed
method, we perform cross-domain analysis on two car
crowd datasets, namely CARPK and PUCPR+ [9]. The
CARPK dataset includes 89,777 cars in various scenes for
4 different parking lots, while the PUCPR+ dataset consists
of 17,000 cars in total. We followed the standard evaluation
protocol in the corresponding benchmark to evaluate the
performance [9].

Table 7 exhibits the scores of MAE and RMSE between
the proposed FPANet and some state-of-the-art vehicle
counting methods [9, 22, 30, 38, 46, 48, 62]. Comparative
results demonstrate that the proposed model is flexible for
various detection and counting tasks, and it consistently
performs better than other competitors. Some Visualization
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GT: 1796

Est: 1825.1

GT: 3566

Est: 3690.9

GT: 2412

Est: 2353.5

GT: 2032

Est: 2235.2

Fig. 9 Visualization results on UCF-QNRF dataset. The first row
represents the four samples. The second row shows the correspond-
ing ground truth maps with real values. The last row illustrates the

estimated maps with predicted values. The results prove that the
proposed FPANet performs well in extremely dense scenarios with
nonuniform background illumination

results on the CARPK and PUCPR+ datasets are illustrated
in Fig. 11.

5.9 Efficiency comparison

To verify the efficiency of the proposed FPANet, several
comparative methods are carried out to measure the
parameters and complexity of the calculations. The input
size is set to 576 × 768. The comparison results are

Table 5 Experimental results on the NWPU-Crowd dataset (The best
results are marked in bold)

Methods MAE RMSE

MCNN [69] 232.5 714.6

SANet [2] 190.6 491.4

A-CCNN [17] 176.5 520.6

ADMG [49] 152.8 907.3

STANet [60] 122.6 468.3

CRSNet [20] 121.3 378.8

PCC-Net [5] 112.3 457.0

SUA [34] 111.7 443.2

TopoCount [1] 107.8 438.5

BL [32] 105.4 454.2

SFCN [55] 105.7 424.1

KDMG [50] 100.5 415.5

DA2Net [65] 102.6 378.5

FPANet(ours) 97.1 372.8

illustrated in Table 8. Comparative results prove that the
proposed method FPANet can achieve the best values with
59.9 and 7.8 in GFLOPs and parameters. Specifically, the
FPANet reduces the GFLOPs and parameters by 71.9%
and 61.8% compared with the DANet [3] which extracts
the multiscale information to solve the scale variation.
Compared with the GSANet [63] which employs the group
convolution structure to reduce the computational cost, the
proposed FPANet improves the GFLOPs by 10.2% and
parameters by 10.1%.

5.10 Ablation study

5.10.1 Ablation study on pivotal components

The validity of pivotal components in FPANet is verified
on ShanghaiTech Part A dataset by designing several
step-wise models with various combinations. The detailed
configurations are depicted as follows.

1. baseline: vanilla model without other components.
2. baseline+PSA: baseline with solely PSA (pyramid

spatial attention) unit.
3. baseline+LCA: baseline with solely LCA (light-weight

channel attention) unit.
4. baseline+PSA LCA: baseline with the sequential con-

nection of PSA and LCA units following the PSA-first
and LCA-second order.

5. baseline+LCA PSA: baseline with the sequential con-
nection of PSA and LCA units following the LCA-first
and PSA-second order.
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GT: 3537

Est: 3583.0

GT: 1426

Est: 1447.0

GT: 1268

Est: 1270.0

GT: 1205

Est: 1188.0

Fig. 10 Visualization results on NWPU-Crowd dataset. The first row
represents the four samples. The second row shows the correspond-
ing ground truth maps with real values. The last row illustrates the

estimated maps with predicted values. The visualization shows that the
FPANet performs well on congested crowd scenes with a complicated
background and large-scale variations

6. baseline+PSA‖LCA: baseline with parallel connection
of the PSA and LCA units.

7. baseline+FP+PSA‖LCA+MA: baseline with FP (fea-
ture pyramid) module, attention module (parallel con-
nection of the PSA and LCA units) and MA (multiscale
aggregation) module.

8. baseline+FP+PSA LCA+MA: final version, i.e., the
proposed FPANet, the baseline with FP module,
attention module (sequential connection of PSA and
LCA units) and MA module.

The quantitative results of the step-wise models in
terms of accuracy and efficiency are denoted in Table 9.
It illustrates that all the pivotal components, i.e., feature
pyramid (FP) module, attention module, i.e., pyramid spa-
tial attention (PSA) unit and light-weight channel atten-
tion (LCA) unit, and multiscale aggregation (MA) mod-
ule, facilitate the effective promotion in MAE and RMSE
of the baseline method. The PSA unit outperforms the
LCA unit in improving accuracy, but worse in improving

efficiency. When the PSA and LCA units are sequen-
tially connected (i.e., ‘baseline+PSA LCA’ method and
‘baseline+LCA PSA’ method) and concatenated in paral-
lel (i.e., ‘baseline+PSA‖LCA’ method), the values of MAE
and RMSE reduce evidently compared with the base-
line combined single PSA or LCA units. Compared with
‘baseline+LCA PSA’ method and ‘baseline+PSA‖LCA’
method, the ‘baseline+PSA LCA’ performs better in
improving the accuracy. Specifically, it reduces by 8.1%
and 11.0% in MAE, and meanwhile reduces by 4.9%
and 6.2% in RMSE, respectively. However, the accuracy
is increased at the expense of efficiency. To address this
problem, the FP and MA modules are equipped to reduce
the values of GFLOPs and Params. Compared with the
‘baseline+PSA LCA’, the ‘baseline+FP+PSA LCA+MA’
reduces the value of GFLOPs by 8.4%, and Params by
54.7%, respectively. It outperforms all the other counter-
parts. Furthermore, the final method scores 70.9 in MAE
and 120.6 in RMSE, both outperforming other ensemble
methods in accuracy. This can be attributed to the multiscale

Table 6 Experimental results on the cross-data testing (The best results are marked in bold)

Methods Part A→Part B Part A→QNRF Part B→Part A QNRF→Part A

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCNN [69] 73.7 101.6 340.3 375.2 182.1 264.5 233.7 404.9

CSRNet [20] 16.1 27.9 193.1 375.2 118.9 181.3 87.6 130.3

SCAR [4] 28.8 42.0 262.9 499.8 150.8 225.5 151.1 221.4

FPANet(Ours) 11.7 20.9 171.9 329.9 105.8 170.9 76.0 120.0
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Table 7 Experimental results on the CARPK and PUCPR+ datasets
(The best results are marked in bold)

Methods CARPK PUCPR+

MAE RMSE MAE RMSE

FRCN [38] 74.4 82.3 109.2 144.5

IEP [46] 51.8 − 15.17 −
LPN [9] 23.8 36.8 22.8 34.5

SSD [30] 28.2 23.3 32.9 42.1

RetinaNet [22] 16.6 22.3 24.6 33.1

SCRDet [62] 11.1 25.4 9.1 13.5

FCOS [48] 10.7 13.6 16.0 23.8

FPANet(Ours) 9.9 13.3 1.9 3.0

feature extraction of FP module and the cross-hierarchy fea-
ture fusion MA module, which facilitates the exchange of
feature map of different channel dimensions.

The qualitative comparisons of the baseline with different
components are illustrated in Fig. 12. The exemplar
images are affected by scale variances and background
clustering, as illustrated in Fig. 12(a) and (b) is the ground
truth. Figure 12(c) indicates that the estimated number
and the density map of the baseline deviate the ground
truth to a large extent. The PSA guarantees the accurate
location of heads, as depicted in Fig. 12(d). The LCA
can alleviate the error estimation for background regions,
as depicted in Fig. 12(e). Both the compound modes of
‘baseline+PSA LCA’ (Fig. 12(f)) and ‘baseline+LCA PSA’

Table 8 Comparison results of the FPANet and other methods in
calculations and parameters (The best results are marked in bold)

Methods GFLOPs Params (M)

BL [32] 182.2 21.5

DSNet [3] 213.3 20.7

SFCN [55] 274.1 38.6

CSRNet [20] 182.7 16.3

SCAR [4] 182.9 16.3

GSANet [63] 66.7 8.7

FPANet (Ours) 59.9 7.8

(Fig. 12(g)) boost the estimation accuracy, with the
former being more effective. The ‘baseline+PSA‖LCA’
(Fig. 12(h)) makes the problem even worse. Furthermore,
the ‘baseline+FP+MA’ (Fig. 12(i)) performs effective effect.
The final method (Fig. 12(j)) performs best in generating the
density map and estimating the counting number.

5.10.2 Ablation study on scale size

The multiscale feature is extracted by the FP module and the
PSA module. To explore the optimal scale size for the two
modules, ablation studies are conducted on scale size, and
the experimental results are presented in Tables 10 and 11.

As illustrated in Table 10, the FP module adopts the
configuration with four scale sizes, i.e., 3 × 3, 5 × 5, 7 × 7
and 9×9. The final configuration, i.e., baseline+FP(3,5,7,9)
outperforms the other configurations.

Est: 299.0

GT: 304 GT: 201

Est: 201.0

GT: 140GT: 106

Est: 141.0Est: 106.0

CARPK PUCPR+

Fig. 11 Visualization results on CARPK dataset and PUCPR+ dataset.
The first row represents the four samples. The second row shows the
corresponding ground truth maps with real values. The last row illus-
trates the estimated maps with predicted values. It shows that the

FPANet can attain predominant results in vehicle counting, with the
estimated density map and counting number being very close to the
ground truth
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Table 9 Ablation analysis of the step-wise models in FPANet

Methods Accuracy Efficiency

MAE RMSE GFLOPs Params (M)

Baseline 88.4 146.5 41.646 5.136

Baseline+PSA 79.0 134.9 66.243 17.325

Baseline+LCA 79.7 138.6 66.150 8.675

Baseline+PSA LCA 76.7 123.4 66.286 17.525

Baseline+LCA PSA 83.5 129.8 66.286 17.525

Baseline+PSA‖LCA 86.2 131.5 66.473 17.625

Baseline+FP+PSA‖LCA+MA 74.6 125.6 60.919 8.043

Baseline+FP+PSA LCA+MA 70.9 120.6 59.929 7.768

The best results are marked in bold. For the indexes of GFLOPs and Params, the baseline scores the lowest value because it equips no component

(a) Input (b) ground truth (c) baseline

GT: 362 Est: 468.6

(d) baseline+PSA (e) baseline+LCA

(f) baseline+ PSA_LCA

(sequential)
(g) baseline+ LCA_PSA

 (sequential)

(h) baseline+ PSA||LCA

(parallel)

(j) baseline+

FP+PSA_LCA+MA

(sequential)

Est: 298.5 Est: 266.7

Est: 332.8 Est: 381.6Est: 408.5Est: 229.6 Est: 235.7

(i) baseline+

FP+PSA||LCA+MA

(parallel)

Fig. 12 Qualitative comparisons on the step-wise models

Table 10 Comparisons of the FP module with different scale sizes
(The best results are marked in bold)

Methods MAE RMSE

Baseline 88.4 146.5

Baseline+FP(3) 82.2 142.4

Baseline+FP(3,5) 78.9 133.1

Baseline+FP(3,5,7) 77.5 128.9

Baseline+FP(3,5,7,9) 75.1 124.5

Table 11 Comparisons of the PSA module with different scale sizes
(The best results are marked in bold)

Methods MAE RMSE

Baseline 88.4 146.5

Baseline+PSA(1) 85.8 143.2

Baseline+PSA(1,2) 87.6 136.6

Baseline+PSA(1,2,4) 79.0 134.9
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As depicted in Table 11, the PSA module employs
three scale sizes, which utilize the adaptive average pooling
operation with 4×4, 2×2, and 1×1. The final configuration,
i.e., baseline+PSA(1,2,4), performs best compared with
other configurations.

6 Conclusion

In this paper, we propose a Feature Pyramid Attention
Network (FPANet) for accurate and efficient crowd count-
ing. The FPANet consists of three modules, namely the
feature pyramid module, attention module, and multiscale
aggregation module. The feature pyramid module extracts
multiscale features from the crowd to increase multiscale
expression ability. The attention module consists of two cas-
caded attention units. It focuses on the head regions and
handles the relations between channel maps, which restrains
the background information. The multiscale aggregation
module fuses diversified scale features and cross-channel
attention information to enable information communica-
tion. Meanwhile, the FPANet adopts a multi-group structure
to facilitate network efficiency. Comparative experiments
on five benchmark crowd datasets and two cross-domain
datasets have proven the superiority of the proposed FPANet
compared with the state-of-the-art methods in terms of
accuracy, efficiency, and generalizability.
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