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Abstract
Person Re-Identification (ReID) matches pedestrian across disjoint cameras. Existing ReID
methods adopting real-value feature descriptors have achieved high accuracy, but they are
low in efficiency due to the slow Euclidean distance computation as well as complex quick-
sort algorithms. Recently, some works propose to yield binary encoded person descriptors
which instead only require fast Hamming distance computation and simple counting-sort
algorithms. However, the performances of such binary encoded descriptors, especially with
short code (e.g, 32 and 64 bits), are hardly satisfactory given the sparse binary space. To
strike a balance between the model accuracy and efficiency, we propose a novel Sub-space
Consistency Regularization (SCR) algorithm that can speed up the ReID procedure by 0.25
times than real-value features under same dimensionswhilst maintain a competitive accuracy,
especially under short codes. SCR transforms real-value features vector (e.g, 2048 float32)
with short binary codes (e.g, 64 bits) by first dividing real-value features vector into M
sub-spaces, each with C clustered centroids. Thus the distance between two samples can be
expressed as the summation of respective distance to the centroids, which can be sped up
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by offline calculation and maintained via a look-up-table. On the other side, these real-value
centroids help to achieve significantly higher accuracy than using binary code. Lastly, we
convert the distance look-up-table to be integer and apply the counting-sort algorithm to speed
up the ranking stage. We also propose a novel consistency regularization with an iterative
framework. Experimental results on Market-1501 and DukeMTMC-reID show promising
and exciting results. Under short code, our proposed SCR enjoys Real-value-level accuracy
and Hashing-level speed.

Keywords Fast person re-identification · Hashing · Counting-sort

1 Introduction

Person Re-Identification (ReID) [12, 55] is a branch of computer vision task that explicitly
deals with person matching cross non-overlapping camera installations. Recent ReIDmodels
have made a impressive progress due to the rapid development of deep learning [17–19, 22,
35, 39, 45–47, 59? ]. However, the critical issue of person ReID in the real world is far from
being resolved. In addition to high performance, quick retrieving speed requires improvement
when applying ReID in an open-world setting.

Most existing ReID approaches [7, 11, 38, 41, 42, 44, 48, 51] achieve a promising accu-
racy performance using Euclidean distance to measure the similarities of high-dimensional
real-value person descriptors. Analogous to image retrieval, finding the matched image of a
given query in a large gallery first involves calculating pairwise distances in the feature space
and then sort per query to obtain a ranking list. Measuring the Euclidean distance between
two high-dimensional descriptors is computational expensive. Despite that quick-sort algo-
rithm [14] has been adopted to boost the ranking process, it still has the time complexity of
O(N log N ), which would also become costly when the gallery size N is large. The detailed
speed comparisons can be viewed in Table 1.

This has encouraged the ReID community to pay attention to fast ReID [3, 36], seeking
to speed up the ReID process while sustaining a high accuracy. In practice, most existing fast
ReID methods [3, 4, 9, 25, 40, 43, 53, 60] adopt hashing algorithms to generate compact and
efficient binary codes as the image descriptor to replace the real-valued features. Binary codes
can represent long vectors with fewer bits and achieve higher similarity comparison speed
based on Hamming distance calculation. Counting-sort, compared to quick-sort, has less
time complexity as it creates a number array and counts to sort. It owns a linear complexity

Table 1 Comparisons for ranking
speed per query image

Gallery size Query time (s)

Quick-sort Counting-sort

1 × 103 3.4 × 10−3 4.7 × 10−4

1 × 104 1.0 × 10−1 2.7 × 10−3

1 × 105 4.3 × 10−1 2.7 × 10−2

1 × 106 6.4 × 100 2.6 × 10−1

1 × 107 1.1 × 102 2.7 × 100

Per sample complexity – 2.6 × 10−7

O (NlogN ) O (N )
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concerning the gallery size O(N ). On another note, counting-sort can only take int type of
vectors as input, making it suitable for sorting binary codes. In fast ReID works, Hamming
distance and counting-sort [1] algorithm are used to obtain the final ranking list.

Even though binary codes can significantly speed up the process, the direct conversion
of extracted real-value features to binary code features would lead to a significant ReID
performance drop, especially when the coding bits are small, e.g, 32 and 64, as have been
reported in previous works [36]. Wang et al. proposes a CtF [36] method, which using
self-distillation learning to learn a shorter code mimicked from a longer code. The Rank-
1 and mAP accuracies of CtF adopting with 2048-bits are 1.56× and 2.26× higher than
CtF adopting with 32-bits, which demonstrates that the shorter code length generates worse
performance. ReID in its essence is a fine-grained retrieval task which sets high requirements
for the model to disambiguate between person images with large intra-class variations and
low inter-class variations. In this regard, it is expected for binary codes to yield inferior
performances as they inherently havemuchweaker representation capability compared to real
value features, especially when the code bits are small. Above observations have motivated
us to focus our research attention on improving the performance for person descriptors,
especially when bits are low, and at the same time achieve comparable speed with binary
code.

The speed of ReID relies on twomain aspects: pairwise distancemeasurement and ranking
speed. In order to increase the computation speed, we propose to reduce the complexity of the
similarity measurement by introducing sub-spaces. The prevailing similarity measurement
is done via the Euclidean distance which is calculated in a vector-to-vector fashion and we
denote this as instance-based. The complexity would be huge when the image numbers are
large. In this regard, we propose to quantize the original image feature vector into multiple
sub-spaces and find cluster centroid in each sub-space which serves as the basis for similarity
calculation. More concretely, given a set of sub-space centroids, we first find for image
pairs their respective sub-space centroids, then regard the sum of distances between their
centroids as their distance. The centroid based formulation greatly reduces the calculation as
the number of centroids are way less than the demension of the feature vector. On the other
side, to improve the ranking speed, we resort to build a look-up-table (LUT) to memorize the
pre-calculated query-gallery pair-wise distances which allows for faster searching speed in
the distance matrix based on their respective centroid index. By extension, we can quantize
the distance values into int type and apply counting-sort algorithm to further decrease the
ranking cost.

The above mentioned methods aim at improving computation speed and seeking better
ranking strategies.Another goal of a fast personReID is to sustain highperformance. Instance-
based distance [26] achieves high performance as it is computed directly based on the real-
value feature vectors between the query and gallery set. As the above analysis introduced,
measurement by using Euclidean distance [29] on real-value features leads to a complex
computing process. To increase speed, we choose centroids-based distance [24] instead of
instance-based distance. While our effort for fast ReID imposes centroid-based distance,
which bypasses the element-wise calculation with the distance between centroids. It is less
accurate and would lead to a performance drop. Similarity structure in the Euclidean space
preserves a more rigorous form of sample relations. Thus, we plan to bring closer two types
of distance matrices, i.e, instance-based and centroid-based, to inject more precision into
the centroid-based matrix. The coarser centroid-based similarity matrix can thus retain a
high-performance value during testing. Specifically, we propose a consistency regularization
loss forcing the similarity outputs from two different measurements to be consistent. The
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proposed consistency regularization loss has made the centroid-based distance closer to the
instance-based distance during the training iterations.

Combining the two keys aspects, we propose in this paper a Sub-space Consistency Reg-
ularization (SCR) model to perform fast ReID. On the one hand, our proposed SCR model
first divides the extracted feature vectors into multiple sub-spaces and creates a distance
look-up-table for memorizing the similarity calculation based on the sub-space centroids to
speed up the testing speed. On the other hand, we propose a consistency regularization loss
to guide the model learning towards consistent similarity structures for both instance-based
and centroid-based measurements to retain an accuracy even with low bits of encoding.

We summarize our contributions as follows: (1) We propose a novel fast ReID model
named Sub-space Consistency Regularization (SCR) which targets to speed up ReID and at
the mean time retain a high accuracy, especially with low bit binary codes. (2) We propose to
divide person descriptors into multiple sub-spaces where a look-up-table based on sub-space
centroids distances can be used for fast construction of sample distances. We further show
a faster ranking speed can be achieved with our quantized version of look-up-table com-
bined with counting-sort algorithm. (3) We propose a sub-space consistency regularization
loss to transfer the rigorous Euclidean distance information to the quick centroid-based dis-
tance calculation. (4) Extensive experiments on two ReID benchmarksMarket-1501 [54] and
DukeMTMC-reID [57] show that our model significantly outperforms the state-of-the-arts
in terms of Rank-1 score and speed time.

The remaining contents of this paper are organized as follows: Sect. 2 reviews the related
work in ReID. Sect. 3 elaborates the proposed framework and algorithm. Experiments and
discussions are presented in Sect. 4. Finally, Sect. 5 concludes this work.

2 RelatedWorks

ReID is a person retrieval taskwhich aims tomatch the same pedestrian images across disjoint
cameras from a large dataset. Therefore, the high accuracy and better efficiency for matching
are the two main goals in ReID task. In this regard, we review the related works as accuracy
oriented and efficiency oriented.

Accuracy oriented ReID The main challenge on the ReID accuracy comes from the differ-
ent camera viewpoints, illuminations, low resolution, poses variations and occlusions. These
factors cause a large intra-class gap and a small inter-class gap. There are three main streams
of methods: hand-crafted, deep learning, and metric learning. Feature learning approaches
seek to learn better feature representations. Hand-crafted methods [10, 23] aim to produce a
robust feature representation. Such as, SDALF method [23] proposes a novel feature extrac-
tion and matching strategy method based on the localization of perceptual concerned person
parts to achieve robustness of illumination variations, viewpoint and pose. While recent deep
methods [6, 18, 19, 26, 28, 32, 37, 47] learn robust and discriminative feature representa-
tions with deep neural networks. Sun et al. [32] proposes a novel approach named PCB,
which improves the part-based feature learning by proposing a refined part pooling method.
Qian et al. [28] proposes an adversarial image generation model for pose normalization.
The generated images are identity-preserving, realistic, and pose controllable. Luo et al. [26]
collects and combines many state-of-the-art person ReID training tricks as a strong person
ReID baseline, which achieves 94.5% rank-1 and 85.9% mAP on Market-1501 with global
features. Yin et al. [47] proposes a novel network that uses multi-view labels voting to assign
soft pseudo labels and performs a confidence-based clustering. Li et al. [18] proposes an
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end-to-end network that learns with cross-adversarial consistency (CAC) and consistency
self-prediction (CSP) constraint. CAC improves the domain invariance of the learned fea-
tures, while CSP increases the feature discrimination. Li et al. [19] proposes a novel triple
adversarial learning and a multi-view imaginative reasoning network (TAL-MIRN). The pro-
posed network comprises two modules to extract comprehensive descriptions of pedestrian
appearance and alleviate the problematic domain shift. Metric learning algorithms [5, 8, 16,
21, 56] leverage the similarities between sample pairs [56] or triplets [5] to pull closer person
images with the same identity and push further away images of different identities. Those
methods can obtain a high accuracy based on their real-value person descriptors, however,
they are time-consuming during testing due to the slow speed of similarity calculation as
well as ranking.

Efficiency oriented ReID Existing approaches addressing the efficiency problem mainly
applies hashing algorithms that can achieve a fast speed for the retrieval process and mean-
while obtain a reasonable accuracy. Specifically, in replacement of inefficient real-value based
Euclidean distance and quick-sort algorithm, the binary-code based methods adopt hamming
distance and counting-sort that are much more efficient. For example, TDDH [52] unifies
the extracted discriminative feature representation and the binary codes which are trans-
formed with the independence and balance properties in an end-to-end pipeline. CSBT [4]
applies sub-space projection to alleviate the cross-view variations by maximizing intra-class
compactness and inter-class well-separation. ABC [25] distinguishes the real-value feature
from binary codes by training a discriminator network. CtF [36] utilizes shorter codes to
rank coarsely and uses longer codes to refine the top candidates, where the shorter codes
are encouraged to mimic the longer codes by self-distillation learning. These methods with
binary codes are quick in searching, but would lead to an unsatisfying performance when the
codes are short. In this work, we bridge the distances gap between centroid-to-centroid and
vector-to-vector by learning joint feature spaces with our proposed sub-space consistency
regularization loss.

3 The ProposedMethod

The proposed Sub-space Consistency Regularization (SCR) model comprises three main
parts, i.e, the backbone, holistic branch and sub-spaces branch. Given a selected backbone
network, the holistic branch is introduced to learn robust and discriminative person descrip-
tors; while the sub-spaces branch is imposed to perform the fast inference of the ReID task
and hence the focus of this paper. The sub-spaces branch also includes two sub-branches:
Euclidean and SCR branches shown in yellow blocks separately. As shown in the sub-spaces
branch in Fig. 1, the input features vectors in dimension of N × 2048 are divided into M
sub-spaces which is N × M . Fig. 1 depicts the overall framework. In the sub-space branch,
there are two sub-branches for generating VInt SCR and VR . In the SCR branch, an exemplar
(denoted by �) shows the quantization process per sub-space, and

⊗
represents the interval

center re-initialization. In sub-space quantization,mm represents them-th sub-space and each
sub-space includes 256 centers.
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Fig. 1 SCR framework. Image features are obtained via CNN backbone and then fed into two branches:
global branch (holistic) for calculating ReID cross-entropy loss and triplet loss, local branch (sub-spaces) for
consistency regularization learning

3.1 BackboneModel and Holistic Branch

Given a training set X = {x1, x1, ..., xN } of N total images from Y identities, a pre-trained
ResNet50 [13] is adopted as the CNN backbone which extracts a 2048-dimensional feature
for each image. Following previous work for person ReID [20, 34], in holistic branch, we
apply the commonly adopted cross-entropy and triplet loss together to enforce the feature
learning written as:

L = lce + ltri (1)

More concretely, we write the cross-entropy loss

lce = 1

N

N∑

i=1

p(yi ) log
(
f (φ(xi ; θ);ω)

)
, (2)

where θ denotes the parameter for backbonemodelφ(·) and f (·;ω) is the last fully-connected
layer parametrized by ω. A triplet loss ltri is imposed on the derived feature vector vx
generated from the base CNN model in holistic branch. ltri would minimize the intra-class
distinctness while maximizing the inter-class discrepancy. For each image x , we sample a
negative image xneg which has different identity label and a positive image xpos which has
the same identity label to form a triplet tuple. Then the distances between x and xneg(or xpos)
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can be calculated as:

dx,neg = ∥
∥vx − vx,neg

∥
∥
2 , dx,pos = ∥

∥vx − vx,pos
∥
∥
2 , (3)

Hence, the triplet loss ltri is formulated as:

ltri = max(0,m + dx,pos − dneg), (4)

where m ∈ R > 0 and it is a margin parameter which can enforce the separation between
negative and positive image pairs. With the above loss formulation, we can learn the discrim-
inative feature representations which will be used in our sub-spaces branch.

3.2 Sub-Space Consistency Regularization

The Sub-spaces branch builds two heterogeneous distance matrixes, i.e, Euclidean-based
and Quantization-based, and the sub-space consistency regularization loss is imposed to
align above two distance matrixes such that a high accuracy can be obtained. Given image
features extracted by the backbone network, we first split each feature vector uniformly to
form a fixed number of M sub-spaces, i.e, each sub-space is spawned by sub-portions of
original feature vector. Within each sub-space, we create two types of pairwise distance
matrix between each batch of person images.

Euclidean-based distance matrix VR . The similarity of image pair d
(
xi , x j

)
is equal to the

summation of each corresponding sub-space similarity
∑M

m=1 d
(
xmi , xmj

)
.Wherewe choose

to use the Euclidean distance to calculate and store the sub-space similarities in the matrix
VR . Therefore the size of this look-up-table VR is M × N × N .

Quantization-based distance matrix VSCR . For the quantization distance matrix, within each
sub-space, k-means clustering algorithm [27] is applied to find in total C centroids. Then a
vector can be represented by a short code which consists of its separated sub-space quanti-
zation indices.

Vectorxi = Combine
(
M1

x1i
, M2

x2i
, ..., Mm

xmi

)
, M1

x1i
= C1

x1i
(5)

where C is consists of 256 centeroids. The quantization indices are defined as their corre-
sponding clustering centroids indices. For example, C1

x1i
represents the quantization indices

of the vector’s first sub-space. Thus, the original distance can be replaced with the summa-
tion of each sub-space’s centroids pre-computed Euclidean distances. The computation of
distances based on their short codes between two vectors is more efficient due to the order
of magnitude change of targets (vector-to-centroid distance calculation). As Fig.1 shown,
feature vectors in the sub-branch SCR enjoys the same division process of the sub-branch
Euclidean. We split the input feature vectors into M sub-spaces and quantize each of them
separately. Therefore, each sub-space of the batch image feature vectors are quantized in C
centers by k-means algorithm [27]. Figure 2 illustrates the detailed process of quantization in
SCR. For a given input image xi encoded as a 2048-d feature vector, the first step is to divide
xi into four sub-spaces yielding a set of sub-features x j

i , where j is the sub-space index.
Therefore, each sub-space has a dimension of 512. Within each subspace, image instances
are quantized into C = 256 centroids. After this, each sub-feature can be represented as an
indication of its cluster belonging, which we term the quantization index. The quantization
index Cm

xmi
is equivalent to the cluster indicator, except that it is in a binary-encoded form
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512 components

divide a vector 
into four 

sub-spaces

quantize each 
sub-space
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quantization 
index

bits

Fig. 2 Quantization in SCR

with the length of 8 bits
(
log2562

)
. Concatenating all sub-feature vectors restores a 32 bits

whole image representation.
The similarity of image pair in SCR branch is calculated as following:

d
(
xi , x j

) =
M∑

m=1

d
(
Cm
xmi

,Cm
xmj

)
(6)

where xmi and xmj represent them-th sub-space of xi and x j separately.Cm
xmi

andCm
xmj

represent

the centers these two sub-spaces belong to in m-th sub-space. Therefore, the image pair
similarity is equal to the summation of all sub-spaces’ corresponding centers similarities,
which is an approximate distance. The corresponding center represents that the sub-space
belongs to.

We calculate the image-level similarity between two images as their cumulative distance
over all pairs of subspace centroids where sub-features belong. Obtaining the quantized
indexes for each image as described above helps us identify corresponding clusters. This
distance is simple and efficient as only cluster centroids are used for calculation. Fig. 3
shows a distance calculation example between two quantized feature vectors. In the SCR
method, we stored all pre-calculated pairwise distances between centroids in a look-up table
to boost the speed further.

Sub-space Consistency Regularization (SCR) algorithm also adopts an offline calculation
(pre-calculation before storing) of centroids distances and stores them in a look-up-table
(VSCR). Based on the optimized principle, SCR vividly avoids slowmultiplication operations
and leaves only fast summation operations. Thus, distances computation speed is significantly
increased compared with the original Euclidean distance. Besides, due to the dense feature
space (centroids are real-value features vector), the accuracy is much higher than binary
codes.

Even though, the SCR distance is still in the type of float since the centroids are real-value
feature vectors. This factor prevents the application of the simple counting-sort algorithm.
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*
.

*
.

256 centroids

Fig. 3 Distance calculation based on their quantization indexes

In online stage, since the Euclidean distance is pre-calculated, the complex multiplication
operations is avoided while only simple summation operation is needed. Consequently, the
approximate distance computation is very fast.

Consistency Regularization This section introduces how the proposed consistency regu-
larization loss work. As we mentioned, the float type of SCR distance would prevent the
application of counting-sort algorithm. In order to compare the performance of using integer
SCR distance (IntSCR) and SCR distance (SCR), we compare both distances with Consis-
tency Regularization loss separately. Method by adopting SCR distance utilizes quick-sort
algorithm to sort, another one by adopting integer SCR distance utilizes counting-sort algo-
rithm. Here, we choose theMSE loss as the consistency regularization loss tominimize losses
and optimize the semantic features training, which is based on SCR distances (from VSCR)
and shown below:

�cr = 1

N 2

N∑

i, j=1

(
M∑

m=1

∥
∥
∥VSCR

(
Cm
xmi

,Cm
xmj

)
− VR

(
xmi , xmj

)∥
∥
∥
2
)

(7)

The consistency regularization loss enhances the quantization influence, which aims to
reduce the differences between features generated from CNN (image pair Euclidean dis-
tances) and the quantization process (centroid SCR distances), to produce robust and precise
cluster centroids.

Combined with the holistic branch, the final loss for our proposed SCR is written as:

� = �ce + �tr i + α�cr , (8)

where α is a hyper-parameter to control the weight of consistency regularization loss.

Centroid Update An iterative framework is proposed to optimize the centroid results and the
semantic feature training. In each iteration, the initial cluster centers are the last iteration
center results. A parameter of iteration frequency T is used to control this progress. We
found empirically that a delayed update of centroids can help stabilize the learning process
and achieve better performance.

3.3 IntSCR for Faster Inference

In branch SCR,we replace the images pair distanceswith their respective distances of centers.
Therefore, a pre-calculated offline look-up-table of centroids Euclidean distances per sub-
space is constructed, named VSCR , which size is M × C × C (as shown in Fig. 1). VSCR

can achieve a quick image pair distance searching because each feature vector consists of
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Fig. 4 Counting-sort results of float type of SCR and integer type of SCR, where the x-axis represents the
distance values and the y-axis represents the counting numbers

their sub-spaces center indices. The final distance is the summation of each sub-space center
distance. Even though the SCR distance look-up-table speeds distance computation stage
up. In ranking stage, it still takes quick-sort algorithm with complexity O(NlogN ), where
N is the gallery size, because it is still based on float values. Counting-sort is a ranking
algorithm with linear complexity, i.e. O(N ). However, it requires the array to be ranked in
type of int. Therefore, in this section, we further transfer SCR distance look-up-table to be int
(VInt SCR in Fig. 1) and optimize it by a novel iterative framework together with a consistency
regularization loss.

Figure 4 represents the distribution of distances for float type of SCR distances and integer
type of SCR distances. As we can see, the counted number of a float type is decuple of integer
type. Therefore, the ranking speed of using integer type of SCR distances is muchmore faster
than that of float type, which is verified in Fig. 7. For the ranking accuracy, integer type of
SCR distances cannot significantly drop because the learned centroids are precise and have
a distinct disaffinity between each centroid. Therefore, the integer type centroids differences
are large enough to result in a small influence comparing with the float type of centroid
differences in terms of the lost float information. Fig. 6 supports this principle.

For the subspace consistency loss, we can slightly modify Eq. (7) to adapt for VInt SCR by
replacing VSCR with Vint SCR :

�
′
cr = 1

N 2

N∑

i, j=1

(
M∑

m=1

∥
∥
∥VInt SCR

(
Cm
xmi

,Cm
xmj

)
− VR

(
xmi , xmj

)∥
∥
∥
2
)

(9)

The final loss is then written as below:

� = �ce + �tr i + α�
′
cr (10)

3.4 Learning Scheme

The detailed training algorithm is presented in Algorithm 1. SCR algorithm has an iterative
process to update the clustering centers, generating accurate centroids controlled by a weight
parameter T . This repetition is implemented per T epochs. The centroid results of the current
iteration are the initial value of the next clustering. A precise VSCR is produced to afford a
quick distance researching in the distance computing stage. Counting-sort algorithm applied
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Algorithm 1 SCR

Require: training data X = {xi }Ni=1, CNN model φ (·; θ), iteration frequency T , number of sub-spaces M ,
number of cluster centers C , weight of consistency regularization loss α.

Ensure: optimised CNN model φ̂(·; θ̂ )

1: for t in range(epoches=120) do
2: Base CNN Model(Sec. 3.1):
3: generate 2048-d feature vector, CNN model learning by cross-entropy and triplet losses.
4: if t mod T = 0 then
5: initialing the cluster center values and repeat the quantization per sub-space.
6: end if
7: Sub-space Consistency Regularization (Sec. 3.2):
8: divide feature vector into multiple sub-spaces and construct VR based on Euclidean distance.
9: quantize each of sub-space and construct VSCR based on the learned centroids to speed up distance

computation.
10: apply consistency regularization loss to enhance the quantization influence and produce precise cluster

centroids.
11: IntSCR for Faster Inference
12: transfer VSCR to VInt SCR and apply counting-sort algorithm to speed up rank stage.
13: train φ

(·; θ t
)
with X and Y with loss in Eq. 10;

14: update Y t with updated clustering centroids in Eq. 9;
15: end for

for VInt SCR has a significant improvement of speeding up the ranking stage. Furthermore,
consistency regularization loss enhances the CNN model to maintain the accuracy of ReID.
In conclusion, the proposed SCR achieves high speed for evaluating while maintaining the
ReID accuracy.

4 Experiments

4.1 Datasets

We evaluate the proposed SCR on two representative re-identification datasets.Market-1501
[54] has 32,688 images of 1501 identities which are captured by 6 out-door cameras. The
training set consists of 12,936 images of 751 identities. The testing set consists of 19,732
images of 750 identities.DukeMTMC-reID [57] has 36,411 images of 1404 identities which
are captured by 8 cameras. The training set consists of 16,522 images of 702 identities. The
query set has 2228 images of the other 702 identities. The gallery set has 17,661 images.

4.2 Training and Evaluation Protocols

In the training stage, the iteration frequency of clustering is controlled by a hyper-parameter
T , and is set to 10 via cross-validation. After finishing the training stage, the clustering results
of training set will be used for constructing the VInt SCR . Following existing works [26, 36],
mean average precision (mAP) and Rank-1 for precision are chosen as the evaluationmetrics.
We also compared the speed and accuracy of different feature types (real-value feature vector,
Hashing binary, and SCR vector) via their corresponding algorithms.
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4.3 Implementation Details

Following the existing methods [26, 36], we set the batch size to 64, input image size is
set to 256 × 128, training epochs are 120, initial learning rate is 3.5 × 10−4 and decreased
to its 0.1× after 40 epochs and 0.01× after 70 epochs, 10 epochs warm-up is used. The
weight of consistency regularization loss α is 0.01, and the number of cluster centers C is
256. The number of sub-spaces M is adjustable, resulting in a different vector length, which
can guarantee a fair comparison with Hashing and real-value algorithms. C = 256 = 28,
therefore bits= 8 × M .

4.4 Parameters Study

Wevary theweight of our proposed consistency regularization loss, the number of sub-spaces
M and clusters C , and report the overall performance in Fig. 5.

Figure 5a illustrates the different influences by different settings of subspace and centroid
numbers. The line in three colours represents corresponding centroid number and the x-axis
represents the number of sub-spaces, which can represent its corresponding code length.
As we can see from Fig. 5a, larger numbers of cluster centroids can generate high accuracy,
especially on lowdimensions, butwould also result in a high computation consumption.When
the number of sub-spaces becomes larger, the rank-1 score gap between different centroids
is decreasing. Therefore, we choose the number of centers is 256 in our later experiments.

In Fig. 5b, we compare different weightings of consistency regularization loss (α) with
a fixed number of centroids (C = 256). Different colours represent the different number of
sub-spaces. As we can see from Fig. 5b, the results of all different code length illustrate that
α is 0.01 can obtain the best performance when using IntSCR distances.

In Table 2, we compare different settings of iteration frequency T , which represents the
times for re-initializing the cluster center values. It can be inferred that a larger T can help
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Fig. 5 Analysis of different parameters setting on Market-1501 with IntSCR distances, including number of
centers, subspaces and weight of consistency regularization loss
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generate better performance when T < 10, while when T > 10, the performance drops.
Therefore, we choose T = 10 as our iteration frequency.

4.5 Comparison with the State-of-the-Arts

We compare our proposed method IntSCR (integer type of SCR distances) with three real-
value feature methods (BoT [26], PN-GAN [28], PCB [32]) and two binary code methods
(CtF [36], TDDH [52]). Experimental results are shown inTables 3 and 4.Generally speaking,
binary code is very fast but accuracy is relatively lower especially under short code, real-
value features get high accuracy even under short feature but speed down a lot. Our proposed
IntSCR significantly outperforms binary codes meanwhile keeps very fast speed, beats real-
value features in speed. In conclusion, the proposed IntSCR achieves a better balance between
speed and accuracy than both real-value features and binary codes.

Comparison with real-value features Generally, a longer feature contributes to a higher
accuracy but usually with a slower speed. BoT [26] achieves the results of R1 94.1% and
mAP 85.7% but with a lower speed 2.2s on Market-1501, and results of R1 86.4% and
mAP 76.4% but with a lower speed 2s on DukeMTMC-reID. These BoT results outperform
IntSCR (2048-d) in R1 0.5%, mAP 3.9% on DukeMTMC-reID and mAP 1.4% on Market-
1501. But R1 of BoT on Market-1501 is lower than that of IntSCR by 0.3% and speeds
of BoT are 3.9 × /4.3× slower than that of IntSCR (0.56s/0.46s) on Market-1501 and
DukeMTMC-reID, respectively.

Table 3 illustrates that IntSCR (1024-d) outperforms PN-GAN [28] in both R1 by 3.4%
and mAP by 8.9% on Market-1501 and R1 by 12.1% and mAP by 19.1% on DukeMTMC-
reID.We compare with PCB [32] which has 12,288-dimensional features. Table 3 shows that
IntSCR (2048-d) outperforms PCB in R1 by 0.6%/2.6% and mAP by 2.7%/3.3%, speed of
IntSCR are 0.08×/0.07× quicker than that of PCB onMarket-1501 and DukeMTMC-reID,
respectively.

Comparisonwith binary codes InHashingReIDmethods,CtF [36]with 2048-dimensional
binary codes achieves the results ofR1 93.7%,mAP85.4%and considerable speed 2.8×10−1

on Market-1501, results of R1 87.7%, mAP 75.7% and considerable speed 2 × 10−1 on
DukeMTMC-reID. Table. 4 shows that CtF outperforms IntSCR (2048-d) in R1 by 1.8%,
mAP by 3.2%, speed 0.44× onDukeMTMC-reID andmAP by 1.1%, speed 0.5× onMarket-
1501. But its R1 on Market-1501 is lower than IntSCR by 0.7%. On low-dimensional binary
codes (32 bits), Table. 4 shows that IntSCR (32-d) outperforms CtF on both R1 11.8% and
mAP 25.6% and speed 0.44× on Market-1501 and R1 15.5% and mAP 34.7% and speed
0.39× on DukeMTMC-reID. IntSCR (512-d) also outperforms TDDH [52] which has 512-
dimensional binary codes in R1 by 17.3% and mAP by 56.6% on Market-1501 and R1 by
19.1% and mAP by 43.8% on DukeMTMC-reID. However, IntSCR has a slower speed than

Table 2 Comparisons different
iteration frequency T

Code length T

1 5 10 20

32 69.1 70.7 71.8 71.5

128 85.3 86.0 87.1 87.0

512 90.1 90.5 91.8 91.6

2048 91.2 92.9 94.4 94.1
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Fig. 6 Performance comparisons of distance types onMarket-1501, including Hamming, Euclidean, SCR and
IntSCR

TDDH which is 9.9× on Market-1501. In conclusion, in terms of image searching speed,
IntSCR is quicker than real-value methods and low-dimensional binary codes but slower
than Hashing. For the accuracy of low dimensions features, IntSCR outperforms both the
real-value method (PN-GAN) and Hashing (CtF, TDDH) by a large margin.

Figures 6 and 7 show the compare four different distance methods, i.e, Hashing, real-
value, SCR and IntSCR). Figure 7 shows that SCR and IntSCR can achieve significant
speed improvements compared to real-value counterparts. The performances are comparable
to Hashing, especially on low dimensions. The speed of IntSCR is 17× faster than Euclidean
with the code length being 32-d. The reason is that the computation complexity of Euclidean

Table 3 Comparisons with the state-of-the-art non-hashing ReIDmethods onMarket-1501 and DukeMTMC-
reID

Methods Code Market-1501 DukeMTMC-reID

Type Length R1(%) mAP(%) Q.time(s) R1(%) mAP(%) Q.time(s)

PSE [30] R 1536 78.7 56.0 – – – –

PN-GAN [28] R 1024 89.4 72.6 – 73.6 53.2 –

IDE [55] R 2048 88.1 72.8 – 69.4 55.4 –

Camstyle [58] R 2048 88.1 68.7 – 75.3 53.5 –

BoT [26] R 2048 94.1 85.7 2.200 86.4 76.4 2.000

SPReID [15] R 10,240 92.5 81.3 – 84.4 71.0 –

VPM [33] R 14,336 93.0 80.8 – 83.6 72.6 –

PCB [32] R 12,288 93.8 81.6 6.900 83.3 69.2 6.300

IntSCR(ours) B 1024 92.8 83.3 0.205 85.7 72.3 0.211

IntSCR(ours) B 2048 94.4 84.3 0.558 85.9 72.5 0.456

‘Q.Time’ represents researching timeper query image. ’R’ represents the real-value featurewhich demonstrates
that longer features produce higher accuracy but with a slower speed. ‘IntSCR’, integer type of our proposed
SCR distance, shows its balancing ability between keep comparable accuracy with non-hashing methods and
quicker speed
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Table 4 Comparisons with the state-of-the-art hashing ReIDmethods onMarket-1501 and DukeMTMC-reID

Methods Code Market-1501 DukeMTMC-reID

Type Length R1(%) mAP(%) Q.Time(s) R1(%) mAP(%) Q.Time(s)

DRSCH [49] B 512 17.1 11.5 – 19.3 13.6 –

HashNet [2] B 512 29.2 19.1 – 40.8 28.6 –

CSBT [4] B 512 42.9 20.3 – 47.2 33.1 –

TDDH [52] B 512 74.5 25.9 0.010 65.7 27.8 –

ABC [25] B 512 69.4 48.5 0.098 69.9 52.6 0.075

ABC [25] B 2048 81.4 64.7 0.280 82.5 61.2 0.200

CtF [36] B 32 60.0 37.7 0.034 49.5 28.7 0.023

CtF [36] B 128 88.9 71.0 0.042 78.6 59.4 0.032

CtF [36] B 512 92.8 82.2 0.098 85.4 71.6 0.075

CtF [36] B 2048 93.7 85.4 0.280 87.7 75.7 0.200

IntSCR(ours) B 32 71.8 63.3 0.015 65.0 63.4 0.009

IntSCR(ours) B 128 87.1 80.7 0.040 81.4 67.0 0.031

IntSCR(ours) B 512 91.8 82.5 0.099 84.8 71.6 0.094

IntSCR(ours) B 1024 92.8 83.3 0.205 85.7 72.3 0.211

IntSCR(ours) B 2048 94.4 84.3 0.558 85.9 72.5 0.456

’B’ represents the binary code
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Fig. 7 Speed comparisons of distance types on Market-1501, including Hamming, Euclidean, SCR and
IntSCR. IntSCR gets a better balance between accuracy and speed

is higher than IntSCR, and also, quick-sort requires more time than counting-sort. With
the increase in code length, all methods slow down in speed. That is because the distance
calculation cost increases with the feature dimension. Figure 6 shows that SCR and IntSCR
can achieve performance close to real-value and have an impressive advantage over Hashing
on low dimensions. The Rank-1 accuracy of IntSCR is 1.4× that of Hamming distance,
while mAP is 1.7× higher with a 32-d code length. This improvement is not surprising as
the IntSCR distance is based on real-value features. In contrast, Hamming distance operates
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Fig. 8 Ranking lists comparisons of two methods on Market-1501 and DukeMTMC-reID datasets

on binary codes. As code length increases, all methods’ performance rises because more
discriminative features are used as input. Such comparison demonstrates the effectiveness of
our proposed IntSCR in addressing the Fast ReID problem. We conclude that the Euclidean
distance method achieves the best performance with the slowest speed. While Hamming
distance method obtains the best speed but the worst performance across all code lengths.
Our proposed IntSCR distance method achieves a good trade-off between performance and
speed.

Fig. 8 visualizes the outputs from different methods on two benchmarks. We compared
CtF [36] to our proposed IntSCR with the same experimental setting with 2048-d feature
inputs. We plot top-10 ranking results for three randomly sampled query images. It can be
seen that both methods obtain excellent ranking lists with only extremely few mismatches.
Thus, our proposed IntSCR demonstrates a competitive retrieving ability compared to the
state-of-the-art CtF [36].

4.6 Evaluation on Large-Scale Dataset

The size of the gallery matters when evaluating the accuracy and speed of a faster ReID
approach.We further apply our approach and other algorithms on a larger-scale ReID dataset,
i.e, Market-1501+500K [54].Market-1501+500K extends thewidely-usedMarket-1501 [54]
dataset by providing 500k more bounding box annotations. The experimental results are
reported in Fig. 9.

As the gallery size increases, Rank-1 and mAP accuracies of all methods experienced
different degrees of decrease, and the speed of image retrieval also slows down. This is
expected asmore gallery imagesmakeReIDmore challenging. Besides, an increase in gallery
images accounts for more distance computing and sorting time. Similar to what we observed
on a smaller dataset, the 2048-d Euclidean distance method obtains the best accuracy but
has the worst searching time. Two Hamming distance methods take less time than other
methods because counting sort and hamming distance calculation of binary codes are faster
to compute. At the same time, 2048-d binary code requires more time than 32-d binary
code simply because 32-d is easier. Our proposed method IntSCR still manages to obtain a
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Fig. 9 Compared different methods on large-scale dataset Market-1501+500k

Table 5 Comparisons of different
models with IntSCR algorithm on
Market-1501

Model Type Rank-1(%) mAP(%) Speed (query/s)

VGG-19 56.2 51.1 73

ResNet-18 61.1 61.6 76

ResNet-50 71.8 63.3 69

ResNet-101 72.1 65.7 59

comparable accuracy to the Euclidean distance algorithm and a comparable searching time
to hamming distance algorithm. That demonstrates that our proposed method remarkably
balances accuracy and time on a larger-scale dataset.

4.7 Backbones

Wefurther study the generalizability of our proposedmethodby incorporating itwithmultiple
backbone architectures. These backbones include VGG-19 [31], ResNet-18 [13], ResNet-50
[13] and ResNet-101 [13]. We append our proposed IntSCR on top of different backbones
and report the results with 32-d feature inputs in Table 5. As is reported, ResNet-101 acquires
the best accuracy but the worst speed. VGG-19 produces the worst accuracy, and ResNet-18
obtains the worst speed. In conclusion, models that are deeper in layers generally yield higher
performance but slower speed. That is because more layers allow for more fine-tuning but
spend more time on computing. Compared to other backbone options, ResNet-50 achieves a
better balance between accuracy and speed.

5 Conclusions

This work proposes a novel model named SCR for improving ReID matching speed whilst
maintaining accuracy, especially on low-dimensional feature representations, to solve the
disadvantage of Hashing and real-value feature distance metrics. We explore SCR on ReID
to generate an effective distance table for image searching speed. Clustering per sub-space
is implemented to achieve precise distances for keeping high accuracy. The effectiveness of
SCR is evidenced through extensive comparative evaluations. Our proposed method strikes
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a decent balance between algorithm accuracy and efficiency. However, as we observe, there
is still a performance gap compared to real-value feature methods and a speed gap compared
to Hashing methods. In the future, we will continue to investigate how to improve the ReID
performance while achieving faster speed.
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