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Abstract
Correlation filters (CF) based tracking methods have attracted considerable attentions for their competitive performance.

However, the inherent issues of boundary effect and filter degradation, as well as the scale variation, degrade the tracking

accuracy. In addition, the frame-by-frame updating strategy limits the tracking speed, especially in those deep features-

based CF trackers. To address these issues, we propose a novel tracker, namely Accelerated Duality-aware Correlation

Filters (ADCF), in this paper. In the proposed tracker, dual correlation filters, i.e., translation filter and scale filter, are

designed for target localization and scale estimation, respectively. A spatio-temporal regularization term is employed to

suppress the boundary effect and filter degradation. Moreover, a model updating strategy named Sparse learning-based

Average Peak-to-Correlation Energy (S-APCE) is proposed to accelerate the tracking speed. Finally, an Alternating

Direction Method of Multipliers (ADMM) formulation is developed to optimize the ADCF efficiently. Extensive exper-

imental results over six tracking benchmarks prove that the proposed tracker outperforms the state-of-the-art (SOTA)

trackers in tracking accuracy and speed.

Keywords Visual tracking � Correlation filters � Spatio-temporal regularization � Online model update

1 Introduction

Visual tracking is a fundamental problem in computer

vision, and it has been applied in many applications, e.g.,

video retrieval [2], robotic perception [22] and human-

machine interaction [13]. Despite significant progress in

recent years, visual tracking remains challenging due to

numerous complicating factors in real scenarios [29, 36],

e.g., illuminations, background clutter, and scale variation.

Generally, current visual tracking models are divided

into two categories, namely generative models and dis-

criminative models [36]. In generative models, the tracking

task is implemented via searching the best-matched win-

dow, while discriminative models discriminate the target

patch from the background by learning a discriminative

classifier. Among the discriminative models, correlation

filters (CF)-based trackers [3, 7, 17, 21] have drawn

extensive attention. The advantage of the CF lies in a cir-

culant matrix structure exploited, which can be calculated

effectively by point-to-point operations and Fast Fourier

Transform (FFT).

Bolme et al. [3] pioneered CF in visual tracking by

learning a Minimum Output Sum of Squared Error

(MOSSE) between multiple training image patches and the

ideal correlation response template specified by the user.

Galoogahi et al. [14] proposed an improved version of

MOSSE named Multi-Channel Correlation Filters

(MCCF), which utilizes features in multiple channels to

boost the tracking performance. The part-based CF [34, 37]

and scale-adaptive CF [6, 12] were proposed to handle the

occlusion and size change. In addition, the features in CF

were studied, and more discriminative features are pro-

posed, e.g., Color Names (CN) [7, 23], HOG [9, 15] and

deep features [39, 44]. Moreover, model update strategies

[25, 26] were proposed to improve the tracking accuracy

and robustness in the multimedia environment.
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Although CF has achieved great success in visual

tracking, it remains a challenge to gain satisfying perfor-

mance in unconstrained scenarios due to the inherent

issues, i.e., boundary effect [9, 51] and filter degradation

[5, 23, 51]. Meanwhile, the scale variation of the target has

severe impacts on the tracking accuracy, and this problem

is far from solved [6, 40, 47]. Moreover, although deep

features have been adopted in CF to promote the tracking

accuracy, as explored in [8, 10, 20, 43], the tracking speed

of these trackers is reduced significantly.

To address the issues above, we propose an efficient yet

effective tracker, namely Accelerated Duality-aware Cor-

relation Filters (ADCF). The main contributions are sum-

marized as follows.

1. A duality-aware CF model which consists of a

translation filter and a scale filter is built to improve

the tracking performance. The former translation filter

ensembles deep and handcrafted features to localize the

target accurately, and the latter scale filter exploits

handcrafted features to estimate the scale efficiently.

Meanwhile, a spatio-temporal regularization term that

employs prior information is introduced to suppress the

boundary effect and filter degradation.

2. An effective model updating strategy named Sparse

learning-based Average Peak-to-Correlation Energy

(S-APCE) is proposed to accelerate the tracking speed.

3. An ADMM formulation is developed to optimize the

ADCF model efficiently, in which each subproblem is

ensured a closed-form solution.

4. Extensive evaluations on six challenging tracking

benchmarks are conducted, and experimental results

demonstrate the competitive performance of the pro-

posed tracker compared with more than 20 SOTA

trackers.

The rest of this work is organized as follows. In Sect. 2, an

overview of the relevant prior work is presented. In Sect.3,

the ADCF model is proposed, and an ADMM formulation

is developed to optimize this model. Meanwhile, the scale

estimation and model updating strategy are presented. In

Sect. 4, extensive evaluations of the proposed tracker with

SOTA trackers are presented. Finally, this work is con-

cluded in Sect. 5.

2 Related work

We introduce the related work in a problem-orientated

manner, i.e., boundary effect, filter degradation, and scale

variation.

2.1 Boundary effect

CF utilizes FFT in the training and tracking process with

the underlying periodic assumption. Although this

assumption guarantees the strategy of dense sampling to

construct the circulant matrix from a training sample patch,

leading to unwanted boundary effect [9]. To suppress the

unwanted boundary effect, Danelljan et al. [9] put forward

the Spatially Regularized Discriminative Correlation Fil-

ters (SRDCF) method, in which a spatial regularization

component was added for penalizing the model coefficient

with a predefined weight constraint. Unlike SRDCF

method in which negative examples are limited to circular

shifted patches, Background-Aware Correlation Filters

(BACF) [15] multiplied the filter with a binary matrix

directly to generate real negative and positive training

examples for tracker training. Furthermore, Context-Aware

Correlation Filters (CACF) [32] model incorporated the

global context information and takes advantage of more

negative samples to alleviate the unwanted boundary

effect.

2.2 Filter degradation

The filter updated by the linear interpolation cannot adjust

to ubiquitous appearance changes, leading to filter degra-

dation [23]. The filter degradation can be tackled from

many aspects. In terms of training set management,

Danelljan et al. [11] put forward Efficient Convolution

Operators (ECO) for tracking model. ECO model formu-

lated a compact generative model of the training sample

distribution. In terms of temporal restriction, Li et al. [20]

proposed Spatial-Temporal Regularized Correlation Filters

(STRCF). In terms of overfitting alleviation, Sun et al. [33]

adopted the concept of Region Of Interest (ROI)-based

pooling and proposed an ROI Pooled Correlation Filters

(RPCF) tracker with equality constraints. In terms of

tracking confidence verification, Wang et al. proposed

Large Margin object tracking with Circulant Feature maps

(LMCF) [35] tracker using a multimodal target detection

method. Among these strategies, temporal regularization

has been proved to be an effective and efficient way [23].

2.3 Scale variation

The scale variation of the target has a serious impact on

tracking accuracy [6]. To tackle this problem, some recent

trackers adopted either multi-scale spatial pyramid [6, 28]

or part-based multiple filters [27] to estimate the optimal

scale. Moreover, several SOTA trackers [15, 20, 43, 44]

attempted to introduce more complex scale models to

further improve the tracking accuracy. However, the
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computational efficiency drops sharply due to multiple

filtering operations performed in a single frame. Especially

for the trackers with deep features [8, 20, 43], they are

extremely time-consuming because the scale estimation

requires multi-scale convolutional features.

3 Proposed method

In this section, we firstly review the formulation of STRCF

[20], which is the foundation of the proposed model. Then,

we propose the ADCF model and develop ADMM [4]

formulation to optimize it efficiently. Finally, the target

localization and scale estimation method, and the model

update strategy are presented.

3.1 Revisit STRCF

The goal of spatial-temporal regularized correlation filter

(STRCF) [20] is to learn a correlation filter f 2 RM�N�K

with M � N size and K channels at the tth frame, from the

sample x 2 RM�N�K . The desired output y 2 RM�N is the

Gaussian-shaped response, which includes a label for each

location in the sample. The correlation filter can be trained

by minimizing the following objective function,

argmin
f

1

2
y�

XK

k¼1

xkt � f kt F
�����

�����

2

þ 1

2

XK

k¼1

wt � f kt
�� ��2

F

þ l
2

XK

k¼1

f kt � f kt�1

�� ��2
F
; ð1Þ

where � and � denote the circular convolution and point-

wise multiplication, respectively. k is the channel index.

The spatial weight w acts on the filter f t to alleviate

boundary effect. fkt � fkt�1

�� ��2
F
is the temporal regulariza-

tion term to restrict abrupt changes of the filter by penal-

izing the difference between the current (tth frame) and

previous (t � 1th frame) filters. l is the temporal regular-

ization parameter.

In STRCF, however, both the target localization and

scale estimation are performed on the same feature space.

The computational cost of such a tracking strategy is

extremely expensive when using deep features [20].

Moreover, the STRCF model is updated in a frame-by-

frame manner, resulting in a low frame rate, which is not

suitable for real-time scenarios.

3.2 Accelerated duality-aware correlation filter
model

Based on STRCF, we propose an ADCF tracking model, as

shown in Fig. 1. The ADCF tracker consists of a translation

filter and a scale filter. The translation filter exploits

ensembles of deep and handcrafted features for accurate

target localization, while the scale filter exploits hand-

crafted features for efficient scale estimation. Meanwhile, a

developed spatio-temporal regularization term that

employs prior information is introduced to suppress the

boundary effect and filter degradation. Moreover, an effi-

cient and effective model update strategy named S-APCE

is proposed to accelerate the tracking speed. The overall

process of the ADCF tracker is divided into two portions,

namely training and detection.

Training. Features are extracted by the pre-trained VGG-

Net and HOG at the tth frame. The translation filter and

scale filter are trained in a duality-aware manner, sharing

portion features, spatio-temporal regularization and desired

output. Both filters are optimized by the developed ADMM

formulation.

Detection. The translation filter and scale filter from the

training frame (tth frame), and the feature maps from the

detection frame (t þ 1th frame) are combined to calculate

the cross-correlation. In this stage, the translation filter is

designed for accurate target localization, while the scale

filter is used for fast scale estimation based on the maxi-

mum value of the response map. Finally, the S-APCE

strategy is proposed to update the learning rate (g) of the
appearance model.

The objective function of the ADCF can be formulated

as follows,

argmin
f

1

2
y�

XK

k¼1

xkt � f kt

�����

�����

2

F

þ k1
2

XK

k¼1

wt � f kt
�� ��2

F

þ k2
2

wt � wt�1k k2F þ
l
2

XK

k¼1

f kt � f kt�1

�� ��2
F

ð2Þ

Where the first term is the least square term. The second

term introduces a spatial regularization term to alleviate the

boundary effect. The third item introduces prior informa-

tion of the spatial weight w to avoid its abrupt changes and

degradation. The fourth term introduces a temporal regu-

larization term to avoid filter degradation. k1 and k2 are the
spatial regularization parameters, and l is the temporal

regularization parameter.

To optimize the ADCF model, we introduce an auxiliary

variable bg ¼
ffiffiffiffi
T

p
Ff. Here, the symbol b: denotes the dis-

crete Fourier transform (DFT) of a signal, T ¼ M � N is

the feature length, and F 2 CT�T is an orthonormal matrix

to map any T dimensional vector to the Fourier domain.

Then, Eq. (2) can be transformed into the Fourier domain,
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argmin
f

1

2
by �

XK

k¼1

bxkt � bgkt

�����

�����

2

F

þ k1
2

XK

k¼1

wt � fkt
�� ��2

F

þ k2
2

wt � wt�1k k2Fþ
l
2

XK

k¼1

bgkt � bgkt�1

�� ��2
F
;

s:t:; bgkt ¼
ffiffiffiffi
T

p
Ffkt ; k ¼ 1; 2; . . .;K:

ð3Þ

By minimizing Eq. (3), the optimal solution is obtained by

ADMM formulation [4]. The augmented Lagrangian form

of Eq. (3) can be formulated as,

...

...

Locate target
Estim

ate scale

Frame  t+1

Desired output y

Extract features

Extract features

Extract
features

Extract
features

...

...

Translation
filter A

Frame  t+1

Detecting

Training

Training

...

Update

Update

...

...

...

...

...

Frame  t

Scale response map

Translation response map

Translation
filter At

Translation
filter At-2Ns

Translation
filter At-Ns

Desired output y

Feature maps (CNN+HOG)

Feature maps (CNN+HOG)
One scale

Feature maps (HOG)
Multi-scale

Feature maps (HOG)

Learning
rate ƞA

Learning
rate ƞB

Scale filter B 

...

S- A
PC

E
S -A

PC
ECorrelation

Correlation

Training

Training

Scale filter Bt Scale filter Bt-2Ns Scale filter Bt-Ns

Spatial wight wt-Ns Spatial wight wt

Spatial wight wt-Ns Spatial wight wt

Spatio-temporal regularization

Spatio-temporal regularization

Fig. 1 Tracking framework of the proposed ADCF tracker
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L ¼ 1

2
by �

XK

k¼1

bxkt � bgkt

�����

�����

2

F

þ k1
2

XK

k¼1

wt � fkt
�� ��2

F

þ k2
2

wt � wt�1k k2F

þ l
2

XK

k¼1

bgkt � bgkt�1

�� ��2
F
þ c
2

XK

k¼1

bgkt �
ffiffiffiffi
T

p
Ffkt

���
���
2

F

þ
XK

k¼1

bvkt
� �T bgkt �

ffiffiffiffi
T

p
Ffkt

� �
;

ð4Þ

where c controls the step size for regularization, and v

denotes the Lagrange multiplier. The superscript :T on a

complex vector or matrix indicates conjugate transpose

operation. By assigning s ¼ 1
c v, the optimization of Eq. (4)

can be reformulated as,

L ¼ 1

2
by �

XK

k¼1

bxkt � bgkt

�����

�����

2

F

þ k1
2

XK

k¼1

wt � fkt
�� ��2

F

þ k2
2

wt � wt�1k k2F

þ l
2

XK

k¼1

bgkt � bgkt�1

�� ��2
F

þ c
2

XK

k¼1

bgkt �
ffiffiffiffi
T

p
Ffkt þ bskt

���
���
2

F
:

ð5Þ

Then, the ADMM formulation is adopted by solving the

following subproblems alternately.

Subproblem bg: If f, w and bs are given, the optimal bg�
can be estimated by solving the optimization problem as,

bg� ¼ argmin
bg

1

2
y�

XK

k¼1

bxkt � bgkt

�����

�����

2

F

þ l
2

XK

k¼1

bgkt � bgkt�1

�� ��2
F

8
<

:

þ c
2

XK

k¼1

bgkt �
ffiffiffiffi
T

p
Ffkt þ bskt

���
���
2

F

)
:

ð6Þ

However, it is hard to optimize Eq. (6) because of the high

computational complexity. So, We consider processing all

K channels of each pixel j to simplify formulation as,

V�
j ðbgÞ ¼ argmin

bg

1

2
byj � V jðbxtÞTV jðbgtÞ

�� ��2
F

�

þ l
2

V jðbgtÞ � V j bgt�1ð Þ
�� ��2

F

þ c
2

V jðbgtÞ � V jð
ffiffiffiffi
T

p
Ff tÞ þ V jðbstÞ

���
���
2

F

	
;

ð7Þ

where V jðbxtÞ 2 CK�1 denotes the vector containing values

of bxt on pixel j. The solution of Eq. (7) is obtained as,

V�ðbgÞ ¼ 1

lþ c
I� V jðbxtÞV jðbxtÞT

lþ cþ V jðbxtÞTV jðbxtÞ

" #
p; ð8Þ

where I is an identity matrix,

p ¼ V jðbxtÞbyj þ l V j bgt�1ð Þ

 �

þ c V jð
ffiffiffiffi
T

p
Ff tÞ � V jðbstÞ

h i
:

ð9Þ

The derivation of Eq. (8) adopts the Sherman Morrsion

formulation [30],

Aþ uvT
� ��1¼ A�1 � A�1uvTA�1

1þ vTA�1u
; ð10Þ

where u and v are two column vectors, and uvT is a rank-

one matrix.

Subproblem f: If bg, w and bs are given, the optimal f� is
determined as,

f� ¼ argmin
f

k1
2

wt � fkt
�� ��2

F
þ c
2

bgkt �
ffiffiffiffi
T

p
Ffkt þ bskt

���
���
2

F

� 	

¼ k1W
T
t Wt þ cTI


 ��1
cT gkt þ skt

� �

¼
cT gkt þ skt

� �

k1ðwt � wtÞ þ cT
;

ð11Þ

where Wt ¼ diag wtð Þ 2 RT�T denotes diagonal matrix. gkt
and skt can be obtained by inverse discrete Fourier trans-

form (IDFT) (i.e., gkt ¼ 1ffiffiffi
T

p FT bgkt and skt ¼ 1ffiffiffi
T

p FT bskt ).
Subproblem w: Given f, bg and bs, the optimal w� can be

obtained as,

w� ¼ argmin
w

k1
2

XK

k¼1

w� fkt
�� ��2

F
þ k2

2
kwt � wt�1k2F

( )

¼ k1
XK

k¼1

Nk
t

� �T
Nk

t þ k2I

" #�1

k2wt�1

¼ k2wt�1

k1
PK

k¼1 f
k
t � fkt þ k2I

;

ð12Þ

where Nk
t ¼ diag fkt

� �
2 RT�T .
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Lagrangian multiplier update: The Lagrange multi-

plier can be updated as,

bsiþ1 ¼ bsi þ bgiþ1 � bf iþ1; ð13Þ

where i is the iteration index.

By solving the subproblems above iteratively, the

objective function can be optimized effectively. Then the

optimal filter bgt is utilized for detecting at the t þ 1th

frame.

3.3 Target localization and scale estimation

The response map of the target in the Fourier domain is

defined as,

bRt ¼
XK

k¼1

bxk � bgkt�1; ð14Þ

where xk denotes candidate area, and gkt�1 denotes trained

filter from last frame.

ADCF is designed in a duality-aware manner in which

the translation filter is designed for target localization, and

the scale filter is for scale estimation. The translation filter

is trained on ensembles of deep CNN features and hand-

crafted features (HOG feature in this work). Although the

feature extraction is time-consuming, it merely executes on

a single-scale search region during the tracking process.

After obtaining the translation response map using

Eq. (14), then, the target is localized by the maximum

value of the response map.

Unlike the translation filter, which ensembles deep and

handcrafted features, the scale filter exploits handcrafted

features (HOG feature in this work) to estimate the scale

efficiently. We apply the scale filter on five scale search

regions and obtain their response maps using Eq. (14).

Then, the best scale is the scale corresponding to the

maximum value of the scale response maps. This proposed

strategy can reduce the computational complexity

Fig. 2 The ideal response map (top), and non-ideal response map (bottom)
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efficiently under the premise of high tracking accuracy.

This inference is verified in the ablation study in Sect. 4.5.

3.4 Model update

Most existing trackers update their models without con-

sidering the accuracy of detection [8, 9, 15, 20]. When the

target is detected inaccurately, it will lead to a determin-

istic failure, e.g., in the case of severely occluded.

Generally, the peak value and the fluctuation of the

response map can reflect the confidence of the tracking

results to a certain extent [35]. To this aim, we depict the

ideal response map and the non-ideal response map of a

target in Fig. 2. It depicts that when the detected target is

completely matched with the correct target, the ideal

response map should be unimodal, and other areas are

smooth. Wang et al. [35] first proposed a high-confidence

update strategy by adopting the maximum response value

and an Average Peak-to-Correlation Energy (APCE)

measure in LMCF tracker. The maximum response value is

defined as,

Rmax ¼ maxF�1 bR
� �

; ð15Þ

where F�1 denotes the inverse Fourier transform. The

APCE measure is defined as,

APCE ¼ Rmax � Rminj j2

mean
P

w;h Rw;h � Rmin

� �2h i ; ð16Þ

where Rmax, Rmin and Rw;h denote the maximum, minimum

and the wth row hth column elements of response R,

respectively.

APCE reflects the smoothness of the response maps and

the confidence level of the detected targets. The APCE

value will drop significantly when the target encounters

aberrance (i.e., aberrant training samples) such as occlusion

and background clutter [35]. According to the description

of the high-confidence update strategy proposed by the

LMCF, if the judgment condition ‘‘the maximum response

value and APCE value both reach the threshold’’ is satis-

fied, the model will be updated. Assuming that multiple

consecutive frames satisfy the judgment conditions, a

continual update strategy will be activated, which results in

a lower frame rate and robustness degradation due to

overfitting the recent frames. On the contrary, if the model

is not updated for a long time, which will lead to model

degradation.

To this end, we propose a sparse update strategy based

on APCE measure. This model update strategy not only

inherits the advantages of APCE measure, but also con-

siders the effectiveness of training samples and the effi-

ciency of model update. Specifically, APCE value and

maximum response value are used to control the learning

rate of the appearance model to ensure the effectiveness of

the current sample. The model is updated at the interval of

Ns frames after initialization. Where, the appearance model

X of the ADCF is updated as,

Xt ¼ 1� gð ÞXt�1 þ gXt;

g ¼ g� if APCE[ fAPCEhmð Þ \ Rmax [ fRhmð Þ
0 otherwise

�

ð17Þ

where g and g� are the learning rate and the learning rate

when the training samples are high quality, respectively.

APCEhm and Rhm denote the historical mean value of

APCE and R, respectively. f is a threshold parameter. It is

worth noting that although the model is updated in a sparse

manner, the appearance model is constantly updated to

adjust the appearance changes of the target. This model

update strategy is verified in Section 4.5. The overall

tracking algorithm of the ADCF tracker is summarized in

Algorithm 1.
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Algorithm 1: Overall tracking algorithm of the ADCF tracker.
Input: Initial the target state (i.e., position p1 and scale s1) by ground truth at

the first frame.
Output: Target state at the tth frame.

1 Initialize the hyperparameters of the ADCF.
2 for t = 1 : end do
3 Training
4 if (t == 1||mod(t− 1, Ns) == 0) then
5 1. Extract CNN and HOG feature maps for translation filter training, and

HOG feature maps for scale filter training, respectively.
6 2. Optimize the translation filter and scale filter at the tth frame using

Eq. (8), Eq. (11), Eq. (12) and Eq. (13) in N iterations.
7 end
8 Detection
9 1. Crop multi-scale search regions centered at pt with S scales based on the

bounding box at the tth frame.
10 2. Extract VGG-Net and HOG feature maps with one scale for target

localization, and HOG feature maps with S scales for scale estimation,
respectively.

11 3. Compute translation response map with one scale, and scale response maps
with S scales using Eq. (14), respectively.

12 4. Estimate the target bounding box with position pt+1 as the center and st+1
as the scale size, based on the maximum value of response maps.

13 end

4 Experimental results and discussion

In this section, we evaluate the ADCF tracker on six

tracking benchmarks, i.e., OTB2013 [41], OTB2015 [42],

TC128 [24], UAV123 [31], UAV123@10 fps [31] and

VOT2016 [19]. First, the implementation details and

evaluation metrics are described. Then, quantitative and

qualitative evaluations of the proposed tracker with the

SOTA trackers are presented. Meanwhile, a more sophis-

ticated analysis of the ADCF tracker is proved through

ablation studies.

4.1 Experimental setup

The proposed tracker is implemented using the mixed

programming of MATLAB2017a with the MatConvNet

toolbox1 on a PC with CPU (Intel i7 9700k) and GPU

(NVIDIA GTX 1080Ti).The Parameters of ADCF are set

as follows.

(1) For the translation CF, the spatial regularization

parameters are set as k1 ¼ 1:2 and k2 ¼ 0:001. The

temporal regularization parameter is set as l ¼ 0:01.

One-scale CNN (Conv4-3 from VGG-16) and HOG

feature map are exploited for target localization.

(2) For the scale CF, the spatial regularization param-

eters are set as k1 ¼ 1:2 and k2 ¼ 0:001. The

temporal regularization parameter is set as

l ¼ 0:01. Five-scale HOG feature maps are adopted

for scale estimation.

(3) We set model update interval Ns ¼ 5, the iteration of

ADMM optimization N ¼ 3, the threshold parameter

f = 0.7, and the learning rate g� = 0.02. The step size

parameter c is initialized to 1 and updated by ciþ1 ¼
min cmax; bc

ið Þ b ¼ 10; cmax ¼ 10; 000ð Þ [15].
To make a fair comparison, the parameters of the ADCF

model are fixed, and the compared trackers employ the

public codes or results provided by the original

publications.

4.2 Evaluation metrics

For OTB2013 [41], OTB2015 [42], TC128 [24],

UAV123@10fps [31] and UAV123 [31] tracking bench-

marks, success rate and precision are utilized under the rule

of One Pass Evaluation (OPE) [41, 42]. The success rate

denotes the percentage of frames in which the Intersection

Over Union (IOU) exceeds a threshold (Note that the IOU

is sometimes called overlap). Given the tracked bounding

box rt and the ground truth bounding box rg, the IOU is

defined as,

IOU ¼
rt
T
rg

�� ��

rt
S
rg

�� �� ; ð18Þ

where
T

and
S

represent the intersection and union of two

regions, respectively. �j j denotes the number of pixels in the

region. The precision denotes the percentage of frames

where the Center Location Error (CLE) is under a thresh-

old. Area Under Curve (AUC) in success rate and Distance

Precision (DP, denoted by the percentage of frames whose1 https://www.vlfeat.org/matconvnet/.
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CLE � 20 pixels) in precision are adopted as the evalu-

ation metrics to rank the success rate and precision of

different trackers. In this work, accuracy evaluation on

these benchmarks is based on the One Pass Evaluation

(OPE) rule [42]. Moreover, the tracking speed is measured

by Frames Per Second (FPS).

For VOT2016 [19] tracking benchmark, three primary

evaluation metrics, namely Accuracy (A), Robustness

(R) and Expected Average Overlap (EAO), are adopted to

evaluate the tracking performance. A is calculated as the

average overlap during successful tracking periods, and R

is the total number of failures. The EAO metric combines

the raw values of per-frame accuracy and the failures in a

principled manner and has a clear practical interpretation.

Meanwhile, it measures the expected no-reset overlap of a

tracker running on a short-term sequence, and addresses the

problem of increased variance and bias of the average

overlap due to variable sequence lengths on practical

datasets.

4.3 Quantitative evaluations

4.3.1 Evaluation on OTB2013 and OTB2015

OTB2013 [41] tracking benchmark contains 50 fully

annotated sequences with substantial variations. OTB2015

tracking benchmark [42] is the extension of OTB2013,

which contains 100 sequences. These two OTB tracking

benchmarks are annotated with 11 attributes, i.e., out-plane

rotation (OPR), illumination variation (IV), out-of-view

(OV), scale variation (SV), background clutter (BC), in-

plane rotation (IPR), deformation (DEF), motion blur (MB),

occlusion (OCC), low resolution (LR) and fast motion (FM).

We compare the ADCF tracker with the recent SOTA

trackers, including ECO [11], DeepSTRCF [20], MCCT

[37], STRCF [20], MCPF [48], LADCF-HC [44], CFWCR

[16], ADNet [45], MCCT-H [37], BACF [15], ECO-HC

[11], UDT [38], ARCF [18], ARCF-H [18], UDT? [38],

AutoTrack [23], STAPLE_CA [32], fDSST [12], RSST

[49] and RaF [46]. The success and precision plots of the

evaluated trackers on these two OTB tracking benchmarks

are shown in Fig. 3. The comparative results indicate that

the ADCF performs competitively against all the SOTA

trackers. It achieves the best score in AUC and DP,

respectively. Accuracy and speed comparisons of the top-5

trackers on OTB2013 and OTB2015 are shown in Table 1

and Table 2, respectively. The comparative results show

that ADCF achieves the fastest speed on OTB2013 and

OTB2015 among the GPU-based trackers, which benefits

from the proposed model update strategy.

To analyze the performance of the trackers in handling

different challenges, the attribute-based evaluations are

performed. Some representative results are depicted in

Fig. 4. For the sequences with the appearance variation of

the target itself, i.e., DEF, OPR and SV attributes, ADCF

achieves 0.656, 0.673 and 0.661 AUC scores. For the

sequences with environmental challenge scenarios, i.e.,

BC, IV and OCC attributes, the target encounters partial or

complete disappearance, which adversely affects the

tracking accuracy. ADCF achieves 0.684, 0.701 and 0.670

AUC scores in these attributes, which surpass the second-

best tracker by 3.5%, 2.5% and 0.4%, respectively. The

improvement can be attributed to two factors. On the one

hand, the temporal regularization in ADCF achieves a

balance between the current filter f t and the latest filter f t�1

to prevent filter degradation when the appearance of the

target changes drastically. On the other hand, the spatial

regularization establishes a balance between the current

weight wt and the latest weight wt�1. Thus, it enables the

wt close to the wt�1 to avoid abrupt changes and degra-

dation. Particularly, ADCF achieves the best AUC score

(0.661) in SV attribute. This can be attributed to the design

of the scale filter, which avoid the loss of some detailed

information in the feature description due to the pooling

operation.

4.3.2 Evaluation on TC128

TC128 benchmark [24] consists of 128 challenging color

sequences. We provide a comprehensive comparison of the

proposed ADCF with SOTA trackers, including ECO [11],

ASRCF [5], MCCT [37], LADCF-HC [44], MCCT-H [37],

STRCF [20], ECO-HC [11], CFWCR [16], MCPF [48],

UDT? [38], ARCF [18], UDT [38], AutoTrack [23],

STAPLE_CA [32], ARCF-H [18], SAMF_CA [32], BACF

[15], RSST [49], fDSST [12], DCF_CA [32], RaF [46] and

MOSSE_CA [32]. Fig. 5 shows the comparative results. It

shows that ADCF achieves the best score both in AUC and

DP. It is worth mentioning that the ASRCF tracker also

designs a scale filter. Different from ASRCF which only

uses spatial regularization for translation filter, the pro-

posed ADCF introduces spatio-temporal regularization into

both translation filter and scale filter. Meanwhile, the

S-APCE update strategy in ADCF results in greater accu-

racy and faster speed.

We calculate the accuracy and speed of the top-5

trackers on TC128 benchmark, and the results are depicted

in Table 3. Among these top-ranked trackers, the ADCF

achieves the best accuracy and the fastest speed

simultaneously.

4.3.3 Evaluation on UAV123 and UAV123@10fps

UAV123 tracking benchmark [31] contains 123 aerial

sequences with more than 110K frames. This benchmark is
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more complex and challenging than other benchmarks as it

includes significant changes in aspect ratio, abrupt camera

motion, and severe occlusion. Meanwhile,

UAV123@10fps [31] benchmark is a temporarily down-

sampled version of the UAV123. Compared with the

original UAV123 benchmark, UAV123@10fps is more

challenging because the displacement of moving objects

becomes bigger.

To further verify the performance of the ADCF tracker,

comparative experiments are performed on UAV123 and

UAV123@10fps benchmarks with SOTA trackers includ-

ing ECO [11], DeepSTRCF [20], ASRCF [5], UDT? [38],

MCCT [37], ECO-HC [11], LADCF-HC [44], STRCF

[20], UDT [38], AutoTrack [23], ARCF [18], RSST [49],

BACF [15], MCCT-H [37], ARCF-H [18], STAPLE_CA

[32], SAMF_CA [32], fDSST [12], DCF_CA [32], MOS-

SE_CA [32] and RaF [46]. The success and precision plots
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Fig. 3 Success and precision plots of the evaluated trackers on OTB2013 and OTB2015

Table 1 Comparative results of top-5 trackers on OTB2013 bench-

mark in accuracy and speed.

Trackers DeepSTRCF MCCT STRCF ECO Ours

AUC 0.679 0.679 0.678 0.682 0.709

DP 0.873 0.901 0.889 0.904 0.930

FPS 5.56 2.60 20.51 1.85 25.49

CPU/GPU GPU GPU CPU GPU GPU

The best three results are highlighted in bold, Italics and boldItalics,

respectively

Table 2 Comparative results of top-5 trackers on OTB2015 bench-

mark in accuracy and speed.

Trackers MCCT DeepSTRCF ECO LADCF-HC Ours

AUC 0.655 0.675 0.670 0.660 0.689

DP 0.885 0.880 0.890 0.861 0.918

FPS 2.60 5.45 1.82 18.66 24.95

CPU/GPU GPU GPU GPU CPU GPU

The best three results are highlighted in bold, Italics and boldItalics

respectively
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of these evaluated trackers are shown in Fig. 6. Meanwhile,

the comparison of top-5 trackers in accuracy and speed are

presented in Tables4 and 5, respectively. Generally, the

AUC and DP scores of all the trackers on these two UAV

benchmarks are worse than that on OTB [41, 42] and

TC128 [24]. However, ADCF performs favorably against

most trackers. Although the proposed tracker slightly

underperforms ECO [11] and DeepSTRCF [20] in terms of

accuracy, it is more than 12 times faster than ECO and 4

times faster than DeepSTRCF, respectively.

4.3.4 Evaluation on VOT2016

VOT2016 [19] tracking benchmark contains 60 chal-

lenging sequences. We compare the ADCF with top-10

trackers which are publicly listed in the VOT2016 official

report [19], including C-COT [10], EBT [50], TCNN,

Staple [1], STAPLE?, SSAT, MLDF, DDC, SRBT and

DNT. The comparative results are shown in Table 6. As

indicated in the VOT2016 report [19], the strict SOTA

bound is 0.251 under EAO metrics, and the trackers whose

EAO score exceeds this bound will be considered as SOTA
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Fig. 4 Success plots of the evaluated trackers under 6 challenging attributes on OTB2015. The title of each sub-figure indicates the number of

sequences marked with their attributes
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Fig. 5 Success and precision plots of the evaluated trackers on TC128
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trackers. Table 6 shows that the EAO score of the ADCF is

0.317 indicating that the ADCF is a SOTA tracker.

Moreover, Table 6 shows that ADCF ranks second in

accuracy and fourth in EAO and robustness, respectively.

4.4 Qualitative evaluations

The qualitative evaluations of the ADCF with nine SOTA

trackers, i.e., ARCF [18], ECO [11], BACF [15], Auto-

Track [23], fDSST [12], UDT? [38], MCCT [37], STRCF

[20] and LADCF-HC [44] are shown in Fig. 7. Due to
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Fig. 6 Success and precision plots of the evaluated trackers on UAV123 and UAV123@10fps

Table 4 Comparative results of top-5 trackers on UAV123 bench-

mark in accuracy and speed

Trackers DeepSTRCF ASRCF UDT? ECO Ours

AUC 0.508 0.508 0.502 0.528 0.511

DP 0.705 0.738 0.729 0.749 0.743

FPS 5.34 20.45 20.94 1.98 25.31

CPU/GPU GPU GPU GPU GPU GPU

The best three results are highlighted in bold, Italics and boldItalics,

respectively

Table 3 Comparative results of top-5 trackers on TC128 benchmark

in accuracy and speed

Trackers MCCT LADCF-HC ASRCF ECO Ours

AUC 0.572 0.556 0.577 0.579 0.579

DP 0.774 0.744 0.783 0.782 0.785

FPS 2.65 21.62 22.26 1.82 24.96

CPU/GPU GPU CPU GPU GPU GPU

The best three results are highlighted in bold, Italics and boldItalicse,

respectively
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space constraints, we present representative results on ten

challenging sequences from OTB2013 [41], OTB2015

[42], TC128 [24], UAV123 [31] and UAV123@10fps [31]

tracking benchmarks. As shown in Fig. 7, the AutoTrack,

ARCF and fDSST are less effective in handling scenarios

with occlusion (Biker, Lemming and Ball_ce2) attributes.

The LADCF-HC, STRCF, BACF and UDT? trackers

achieve poor performance on sequences with fast motion

(Bird1, Skiing and uav1) attributes. Although MCCT and

ECO perform well on most sequences, they are less

effective when dealing with scale variation (Surf_ce1 and

car18). The qualitative evaluation demonstrates that the

proposed ADCF is more competitive than other trackers.

4.5 Ablation studies

First, we conduct an ablation study to demonstrate the

effectiveness of the critical components in the ADCF

tracker. The overall evaluation is shown in Table 7. The

basic concepts are as follows. (1) ‘‘Baseline’’ refers to the

method which does not adopt the spatio-temporal regular-

ization, scale filter and S-APCE update strategy. (2)

‘‘Baseline?(STR)’’ denotes the baseline method by adding

spatio-temporal regularization. (3) ‘‘Baseline?(SF)’’

denotes the baseline method by adding scale filter. (4)

‘‘Baseline?(S-APCE)’’ represents the baseline method by

adopting the S-APCE update strategy. (5) ‘‘Base-

line?(STR)?(SF)?(S-APCE)’’ is the final ADCF tracker.

As shown in Table 7, all the critical components, i.e.,

scale filter, S-APCE update strategy and spatio-temporal

regularization, contribute to the substantial improvement of

the baseline method in terms of AUC and DP. Especially,

the components of the scale filter and S-APCE update

strategy boost the FPS by 38.4% and 83.7%. The final

tracker improves the baseline method by 6.4%, 5.4% and

129.1% in AUC, DP and FPS, respectively.

Second, we conduct an ablation study on the feature

configurations in ADCF tracker. The tracking performance

with different feature configurations are compared in terms

of AUC and DP metrics on OTB2015 benchmark. As

shown in Table 8, the fused features of HOG and Conv-4

outperform other feature configurations.

5 Conclusion

In this paper, we propose an accelerated duality-aware

correlation filters (ADCF) model to improve the tracking

performance. In the ADCF model, the translation filter

exploits deep features to localize the target accurately,

while the scale filter exploits handcrafted features to esti-

mate the scale efficiently. Meanwhile, the spatial and

temporal constraints are introduced into ADCF model to

suppress the boundary effect and filter degradation simul-

taneously. Moreover, a model update strategy, namely

sparse learning-based average peak-to-correlation energy

(S-APCE), is proposed to update the ADCF model by the

response map adaptively. Finally, an ADMM formulation

is developed to optimize the ADCF model. Experiments

are conducted on six challenging tracking benchmarks, i.e.,

OTB2013, OTB2015, TC128, UAV123, UAV123@10fps

and VOT2016. The qualitative and quantitative experi-

mental results demonstrate the superiority of the proposed

method against SOTA trackers in terms of tracking accu-

racy and speed.

Table 6 Comparison between ADCF and the top-10 trackers on VOT2016 benchmark in expected average overlap (EAO), accuracy (A) and

robustness (R)

Trackers C-COT TCNN SSAT MLDF Staple DDC EBT SRBT STAPLE? DNT Ours

EAO " 0.331 0.325 0.321 0.311 0.295 0.293 0.291 0.290 0.286 0.278 0.317

A " 0.539 0.554 0.577 0.490 0.544 0.541 0.465 0.496 0.557 0.515 0.570

R # 0.238 0.268 0.291 0.233 0.378 0.345 0.252 0.350 0.368 0.329 0.261

Table 5 Comparative results of top-5 trackers on UAV123@10fps

benchmark in accuracy and speed

Trackers UDT? DeepSTRCF ASRCF ECO Ours

AUC 0.476 0.499 0.481 0.519 0.486

DP 0.674 0.682 0.692 0.706 0.697

FPS 21.62 5.41 21.86 1.91 25.01

CPU/GPU GPU GPU GPU GPU GPU

The best three results are highlighted in bold, Italics and boldItalics,

respectively
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