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Abstract
The advance of visual tracking has provided unmanned aerial vehicle (UAV) with the intriguing capability for various
practical applications. With promising performance and efficiency, discriminative correlation filter (DCF)-based trackers
have drawn significant attention and undergone remarkable progress. However, the boundary effect and filter degradation
remain two intractable problems. In this work, we propose a novel Adaptive Spatio-Temporal Regularized Correlation Filters
(ASTR-CF) model to address the two problems. The ASTR-CF model simultaneously optimizes the spatial and temporal
regularization weights adaptively, and it is optimized by the alternating direction method of multipliers (ADMM) effectively.
Extensive experiments on 4 UAV tracking benchmarks have proven the superiority of the proposed ASTR-CF compared
with more than 30 state-of-the-art trackers in terms of accuracy and speed.
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1 Introduction

Visual tracking is an established yet rapidly developed
research area in computer vision. It aims to estimate the
spatial trajectory of a target in image sequences given its
initial state. Specially, visual tracking of unmanned aerial
vehicles (UAVs) draws much attention benefiting from their
inherent advantages, e.g., easy deployment, high mobility,
large field of vision and uniform scale [14]. Meanwhile,
it has enabled many new applications in computer vision,
such as visual surveillance [13, 43], aerial navigation [50,
61], and obstacle avoidance [41, 46]. Unlike the generic
object tracking, UAV-based tracking is to locate a certain
target from a low-altitude aerial perspective, which poses
new challenges, e.g., rapid changes in scale and perspective,
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limited pixels in the target region, and multiple similar
disruptors [65].

Generally, visual tracking models can be classified into
two categories, namely generative trackers and discrimina-
tive trackers. The former trackers manage to build models to
represent the appearance of the target and search the most
similar candidate region with minimal reconstruction error.
While the later trackers treat tracking as an online classifica-
tion task and train a classifier to distinguish the target from
the candidate area.

Recently, discriminative correlation filter (DCF)-based
trackers boost the tracking performance to a higher level
[26, 32, 35]. One prominent merit of the DCF-based tracker
is the efficient in the training and detection, as they can
be transferred into the Fourier domain and operated by
element-wise multiplication. The overall framework of
DCF-based trackers is depicted in Fig. 1.

However, it is still challenging for DCF-based trackers
to achieve high performance tracking for an arbitrary object
in unconstrained scenarios. The main obstacles include spa-
tial boundary effect, temporal filter degeneration, and the
limited feature representation capacity [33]. Learning DCF
in the frequency domain comes with a high cost, especially
from circularly shifted examples around the foreground
target. Consequently, it results in the unwanted boundary
effect, which has an adverse impact on tracking accuracy
[8]. This dilemma can be alleviated by applying additional
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Fig. 1 Overall framework of the
DCF-based trackers. Initially,
the CF is trained using image
patches cropped from the target
in the first frame. Then, the
image patch at the predicted
position is cropped and features
are extracted. Subsequently, a
response map is calculated by
the cross-correlation operation
between the features and the
filter. Last, the location with the
maximum response is predicted
as the new location of the target
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predefined spatial constraints on filter coefficients. For exam-
ple, Danelljan et al. [8] introduced the Spatially Regularized
Discriminative Correlation Filters to mitigate the boundary
effect. Galoogahi et al. [19] multiplied the filters directly
with a binary matrix to generate real positive and nega-
tive samples for model training. Those aforementioned two
spatial constraints are widely adopted in the subsequent
works [6, 27]. On the other hand, the appearance model
in DCF-based trackers is updated via a linear interpola-
tion approach, thus it cannot adapt to ubiquitous appearance
change. This results in the filter degradation inevitably. To
address the problem of filter degradation, some solutions,
e.g., training set management [9, 11, 36], temporal restric-
tion, tracking confidence verification [52] and over-fitting
alleviation [45], are proposed. Among them, temporal reg-
ularization has been proven to be an effective way [30,
34]. Moreover, to build a robust appearance model, deep
learning-based trackers have drawn much attention, e.g.,
deep feature-based trackers [21, 22, 37] and Siamese neu-
ral network-based trackers[2, 20, 49, 59]. Although the deep
learning-based trackers promote the tracking accuracy for
generic visual tracking, the tracking speed of these methods
is limited due to the complex calculation. Also, it is very
hardware-dependent (especially on GPU), which is not in
conformity with the requirements for UAV (e.g., lightweight
and low-power dissipation).

In this work, we proposed an adaptive spatio-temporal
regularized correlation filters (ASTR-CF) model to address
the issues of boundary effect and filter degradation. The
merits of the ASTR-CF are summarized as follows.

1. The ASTR-CF model can effectively estimate an object-
aware spatial regularization and a context-aware tempo-
ral regularization adaptively and simultaneously.

2. The ASTR-CF model can be effectively optimized via
the alternating direction method of multipliers (ADMM),
where each sub-problem has the analytic solution.

We perform comprehensive experiments on 4 UAV track-
ing benchmarks with more than 30 state-of-the-art trackers.
Experimental results indicate the superiority of the proposed
ASTR-CF tracker in terms of both accuracy and speed.

2 Related work

This section briefly reviews the DCF-based tracking approaches
given their outstanding performance in recent tracking com-
petitions [16, 28, 38, 57]. One of the seminal works is
MOSSE [4], which formulates the tracking task as discrimi-
native filter learning. To generate more background samples
in the learning stage, the circulant matrix concept is intro-
duced to DCF by CSK [25] with a padded search window.
Additionally, spatio-temporal context [55] and kernel tricks
[26] are used to improve the learning formulation.

Despite the success of DCF, it remains a challenge to
achieve high performance tracking for an arbitrary object in
unconstrained scenarios due to the inherent spatial boundary
effect and temporal filter degradation [30]. To solve these
problems, spatial regularization and temporal regularization
are introduced to the DCF framework as constrains for
model optimization.

2.1 Spatial regularization

Learning DCF in the frequency domain inevitably incurs
the boundary effect due to the periodic assumption. To alle-
viate the boundary effect, Danelljan et al. [8] proposed
the SRDCF tracker by introducing a spatially penalized
coefficient to focus on the information near the target cen-
ter. Fu et al. [17] proposed a Part-Based Background-Aware
Tracking (PBBAT) method. The part-based strategy endows
PBBAT the ability against boundary effect and object occlu-
sion compared with the holistic appearance model. Huang
et al. [27] proposed the Aberrance Repressed Correlation
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Filters (ARCF) tracker to suppress the distortion effectively.
Moreover, Fu et al. [18] proposed an object saliency-
aware Dual Regularized Correlation Filters (DRCF) model
by introducing a dual regularization strategy to suppress
the boundary effect. Dai et al. [6] proposed an Adaptive
Spatially Regularized Correlation Filters (ASRCF) model,
which could estimate an object-aware spatial regulariza-
tion and obtain more reliable filter coefficients during the
tracking process.

2.2 Spatio-temporal regularization

In DCF-based trackers, the appearance model is updated
by linear interpolation. Thus, it cannot adapt to ubiquitous
appearance changes. To address this problem, Li et al.
[30] proposed the Spatial and Temporal Regularization
Correlation Filter (STRCF) by introducing the temporal
regularization module to SRDCF and incorporating both
spatial and temporal regularization into DCF. The STRCF
is a rational approximation of the full SRDCF formulation
on multiple training images, and it can be exploited
for simultaneous DCF learning and model updating. In
addition, Li et al. [34] introduced the intermittent context
learning strategy to restrain filter degradation.

In this work, we propose a novel Adaptive Spatio-
Temporal Regularized Correlation Filters (ASTR-CF)
model based on STRCF. The proposed ASTR-CF can adap-
tively estimate an object-aware spatial regularization and
context-aware temporal regularization. Meanwhile, it can
be efficiently optimized by the ADMM algorithm [5]. The
tracking framework of the proposed ASTR-CF is presented
in Fig. 2.

3 Proposedmethod

In this section, we first revisit CF [26], SRDCF [8], and
STRCF [30]. Then, the ASTR-CF model is presented.
Finally, an ADMM [5] algorithm is developed to optimize
the proposed model.

3.1 Objective function of ASTR-CF

CF: The standard multi-channel CF model in the spatial
domain aims to minimize the following objective function
[26],

E(H) = 1
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where, xk ∈ R
T ×1(k = 1, 2, . . . , K) and hk ∈ R

T ×1(k =
1, 2, . . . , K) denote the extracted feature and the filter

trained feature in the t-th frame, respectively. T denotes
the length of feature. The vector y ∈ R

T ×1 is the desired
response (i.e., the Gaussian-shaped ground truth) and ∗
denotes the convolution operator. H = [

h1, h2, . . . ,hK
]

is
the matrix representing the filter from all the K channels.

The standard CF model suffers from periodic repetitions
on boundary positions caused by circulant shifted samples,
which inevitably degrades the tracking performance. To
solve this problem, several spatial constraints have been
introduced to alleviate unexpected boundary effects. The
representative methods are SRDCF [8] and STRCF [30].

SRDCF The SRDCFmethod [8] introduces a spatial regular-
ization to penalize the filter coefficients with respect to their
spatial locations and the objective function is formulated as,

E(H) = 1

2

∥
∥
∥
∥
∥
y −

K
∑

k=1

xk ∗ hk

∥
∥
∥
∥
∥

2

2

+ 1

2

K
∑

k=1

∥
∥
∥w̃ � hk

∥
∥
∥

2

2
, (2)

where, w̃ is a negative Gaussian-shaped spatial weight to
make the learned filter have a high response around the
center of the tracked object. Although SRDCF suppresses
the adverse boundary effects effectively, it increases the
computational burden for two reasons. (i) The failure of
exploiting circulant matrix structure. (ii) The large linear
equations and Gauss-Seidel solver.

STRCF The STRCF method [30] adopts a spatial-temporal
regularized module to CF and the objective function is formu-
lated as,

E(H) = 1
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where, xk ∈ R
T ×1(k = 1, 2, . . . , K) is the extracted

feature with length T in frame t . hk, hk
t−1 ∈ R

T ×1(k =
1, 2, 3, . . . , K) denotes the filter of the k-th channel trained
in the t-th and (t-1)-th frame, respectively. The spatial
regularization weight w̃ is imitated from SRDCF [8] to
reduce the boundary effect, and temporal regularization is
firstly proposed to restrict filter variation by penalizing the
difference between the current and previous filters.

However, as aforementioned, the spatial regularization
and temporal penalty strength of STRCF [30] are fixed.
Therefore, it cannot adapt well to the appearance variation
in the unforeseeable aerial tracking scenarios.

The proposed ASTR-CF model To tackle these issues, we
propose a novel adaptive spatio-temporal regularized method
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Fig. 2 Tracking framework of the proposed ASTR-CF model. In
the training stage, a training patch is cropped at the estimated loca-
tion of the target at the t-th frame. Here, w and μ are object-aware
spatial regularization weight and context-aware temporal regulariza-
tion parameter, respectively. w is flexible in different frames, and
it introduces prior information to avoid model degradation. μ can
be adaptively adjusted according to the response map variations. We

extract the feature maps (HOG [7] and Color Names [48]) combined
with prior filter ht−1, spatial regularization weight w and desired out-
put y to train the current filter ht . At the (t + 1)-th frame, the trained
filter ht and the feature map xt of the current frame generate a response
map through cross-correlation operations. Finally, the target is located
based on the maximum value of the response map. More details are
presented in Section 3.2

to learn multi-channel CFs effectively. The objective function
of the proposed ASTR-CF model is defined as follows,

E(H,w, μ) = 1
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where, the first term is the ridge regression term that
convolves the training data X = [

x1, x2, . . . , xK
]

with the
filter H = [

h1, h2, . . . ,hK
]

to fit the Gaussian-distributed
ground truth y. The second term introduces an adaptive
spatial regularization on the filter H. The spatial weight
w requires to be optimized to approximate a reference
weight w̃. This constraint introduces prior information
on w and avoids model degradation. λ1 and λ2 are the
regularization parameters of the second term. The third term
introduces an adaptive temporal regularization, where μ̃

and μ denote the reference and optimized context-aware

temporal regularization parameter, respectively [33]. μ̃ is
denoted as,

μ̃ = ζ

1 + log (ν||�||2 + 1)
, ‖�‖2 ≤ φ, (5)

where, � = [∣
∣�1

∣
∣ , |�2|, . . . , ∣∣�T

∣
∣
]

denotes the response
variations, φ denotes threshold. ζ and ν denote hyperparam-
eters.

3.2 Optimization of ASTR-CF

We formulate the objective function i.e., Eq. (4), in the
frequency domain using Parseval’s theorem, and convert it
into the equality constrained optimization form,

E(H, Ĝ,w, μ)= 1
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s.t ., ĝk =√
T Fhk, k = 1, 2, . . . , K .

(6)
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Where, Ĝ = [

ĝ1, ĝ2, . . . , ĝK
]

(̂gk = √
T Fhk, k =

1, 2, . . . , K) is an auxiliary variable matrix. The symbol
ˆ denotes the discrete Fourier transform form of a given
signal. F is the orthonormal T × T matrix of complex basis
vectors to map any T dimensional vectorized signal into the
Fourier domain. The model in Eq. (6) is bi-convex, and it
can be minimized to obtain a local optimal solution using
ADMM [5]. The augmented Lagrangian form of Eq. (6) can
be formulated as,

L(H, Ĝ,w, μ, V̂) = E(H, Ĝ,w, μ)
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where, γ denotes the step size regularization parameter,V is
the Lagrange multiplier, and V̂ is the corresponding Fourier
transform. By introducing sk = 1

γ
vk , the optimization of

Eq. (7) is equivalent to solving,
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Then, the ADMM [5] algorithm is applied by alternately
solving the following 5 subproblems.

Subproblem̂G If H, w, μ, and Ŝ are given, the optimal Ĝ∗
can be estimated by solving the optimization problem as,
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However, it is difficult to optimize Eq. (9) due to its high
computation complexity. Thus, it can be simplified via
processing each pixel of all channels by,
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∥Vj (Ĝ) + Vj (̂S) − Vj (

√
T FH)

∥
∥
∥

2

2

}

,

(10)

where, Vj (X̂) ∈ C
K×1 denotes the values on the pixel

j (j = 1, 2, . . . , T ) in all K channels of X̂. Then, the
analytical solution of Eq. (10) can be obtained as,

V∗(Ĝ) = 1
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The derivation of Eq. (12) uses the Sherman Morrsion
formula,
(

A + uvT
)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
, (13)

where, u and v are two column vectors and uvT is a rank-one
matrix.

Subproblem H If Ĝ,w, μ, and Ŝ are given, the optimal H∗
can be obtained as,
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where, W = diag (w) ∈ R
T ×T . Eq. (14) shows that the

solution of hk merely requires the element-wise multipli-
cation and the inverse fast Fourier transform (i.e.,gk =
1√
T
FT̂gk and sk = 1√

T
FT̂sk).

Solving w: If H, Ĝ, μ and Ŝ are fixed, the closed-form
solution regrading w can be determined as,
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where, Nk = diag
(

hk
) ∈ R

T ×T .
The visualization of the learned weightsw along with the

change of target’s appearance is shown in Fig. 3. It shows
that the adaptive spatial regularization works well in intro-
ducing large penalties on the unreliable regions and encour-
ages the learned filter to focus more on the reliable regions
in the next iteration. Thus, the ASTR-CF can obtain more
reliable filter coefficients during the tracking process.

Solvingμ Given other variablesH, Ĝ,w, and Ŝ, the optimal
solution of μ can be determined as,
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Fig. 3 Visualization of the proposed adaptive spatial regularization weight w

Specifically, adaptive temporal regularization is intro-
duced to restrict filter variation by penalizing the difference
between the current and previous filter adaptively. Thus,
ASTR-CF can gain a more robust appearance model than
SRDCF and STRCF when the target is suffered from sig-
nificant appearance variations. The visualization of the
adaptive temporal regularization parameter μ along with the
variations of response is shown in Fig. 4.

Lagrangian Multiplier Update We update Lagrangian mul-
tipliers as,

Ŝi+1 = Ŝi + Ĝi+1 − Ĥi+1, (17)

where, i and i + 1 denote the iteration index.
By solving the aforementioned five subproblems itera-

tively, we can optimize the objective function effectively
and obtain the optimal filter Ĝ, object-aware spatial regular-
ization weight w and context-aware temporal regularization
parameter μ in frame t . Then, Ĝ is used for detection
in frame t + 1. The pseudocode of the filter training is
summarized in Algorithm 1.

μ

frame

μ

frame

μ

frame

SRDCF STRCF Ours

Fig. 4 Visualization of the proposed adaptive temporal regularization parameter μ
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3.3 Target localization

The location of the target can be determined in the Fourier
domain as,

R̂t =
K

∑

k=1

x̂k � ĝk
t−1, (18)

where, Rt and R̂t denote the response map and its Fourier
transform. After obtaining the response map, the optimal
location can be obtained based on the maximum response.

4 Experiments and discussions

4.1 Evaluationmetrics

We conduct quantitative and qualitative experiments on 4
popular UAV tracking benchmarks, i.e., UAV123@10fps
[38], DTB70[31], VisDrone2018-SOT-test-dev [56], and
UAVDT [14]. Two evaluation metrics, namely success rate
and precision [57], are adopted. These two evaluation
metrics have been widely adopted to evaluate the tracking
accuracy in the visual tracking domain. The success rate
denotes the percentage of frames in which the Intersection
Over Union (IOU) exceeds a threshold. The precision
denotes the percentage of frames whose estimated location
falls in the given threshold distance from the ground truth.
In this work, performance evaluation on these benchmarks
is based on the One Pass Evaluation (OPE) rule [57].

Given the tracked bounding box rt and the ground truth
bounding box rg , the overlap score is defined as,

S =
∣
∣rt

⋂
rg

∣
∣

∣
∣rt

⋃
rg

∣
∣
. (19)

Where,
⋂

and
⋃

represent the intersection and union of
two regions, respectively. |·| denotes the number of pixels
in the region. The tracking accuracy is evaluated by success
rate and precision, and these two evaluation indices are
measured by overlap score S and center location error
(CLE), respectively. Area Under Curve (AUC) and Distance
Precision (denoted by percentage of frames whose CLE
≤ 20 pixels) are adopted to rank the success rate and
precision of different trackers. Moreover, the tracking speed
is measured by Frames Per Second (FPS).

4.2 Experimental setup

The performance evaluation are implemented using MAT-
LAB R2017a on a PC with an i7-8700K processor
(3.7GHz), 32GB RAM and NVIDIA GTX 1080Ti GPU.
For the parameters of ASTR-CF tracker, we set λ1 =

1, λ2 = 0.001, ν = 2 × 10−5, and ζ = 13. The thresh-
old of φ is 3000, and the ADMM iteration is set to 4.
The scheme for selecting γ (initially set to 1) is γ i+1 =
min

(

γmax, βγ i
)

(β = 10, γmax = 10000). To make a fair
comparison, the compared results are based on the codes or
results which are publicly available.

4.3 Quantitative evaluation

4.3.1 Evaluation on UAV123@10fps benchmark

The UAV123@10fps benchmark [38] is down sampled from
the UAV123 benchmark, which contains 123 UAV sequences,
among which 115 sequences are captured by a UAV cam-
era and 8 sequences are rendered by a UAV simulator. The
UAV123@10fps benchmark provides a comprehensive sam-
pling of tracking nuisances that are ubiquitous in low-altitude
UAV videos. To the best of our knowledge, it is the first
benchmark to address and analyze the performance of the
state-of-the-art trackers on a comprehensive set of annotated
aerial sequences that exhibit specific tracking nuisances.

Fifteen state-of-the-art trackers are employed for com-
parison, including i.e., AutoTrack [33], STRCF [30], BACF
[19], ECO-HC [11], RaF [62], DCF-CA [39], MOSSE-CA
[39], Staple-CA [39], SAMF-CA [39], SAMF-AT [3], Sta-
ple [1], SRDCF [8], ARCF-H [27], LADCF-HC [58] and
fDSST [12]. The comparative results are depicted in Fig. 5.
It shows that the ASTR-CF tracker ranks first in terms of
both success rate and precision. It surpasses the baseline
STRCF [30] by 2.2% and 5.1% in terms of success rate and
precision, respectively.

To further analyze the effectiveness of the proposed
ASTR-CF model, we evaluate it on UAV123@10fps
benchmark [38] with different attributes. UAV123@10fps
[38] has defined 12 challenging attributes, including Aspect
Ratio Change (ARC), Background Clutter (BC), Camera
Motion (CM), Fast Motion (FM), Full Occlusion (FOC),
Illumination Variation (IV), Low Resolution (LR), Out-
of-View (OV), Partial Occlusion (POC), Similar Object
(SOB), Scale Variation (SV) and Viewpoint Change
(VC). Evaluation of different trackers with 12 challenging
attributes on UAV123@10fps benchmark in terms of
precision is listed in Table 1. One can see that the proposed
tracker performs well in all the challenging situations.
Particularly, it has a significant improvement on 6 attributes,
e.g., FM, IV, LR, POC, SV and VC. The success rate and
precision of these attributes are shown in Fig. 6. Compared
with the baseline STRCF [30], the success rate and precision
for ASTR-CF notably improved by 3.9% and 9.1% in the
attribute of IV. This phenomenon can be attributed to the
fact that the learned filters can alleviate unexpected noises
within the object region by introducing the adaptive spatial
regularization.

L. Xu et al.7572
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Fig. 5 Performance evaluation on the UAV123@10fps in terms of success rate and precision

4.3.2 Evaluation on DTB70 benchmark

The DTB70 benchmark [31] contains 70 challenging UAV
image sequences in which the targets are surfed from large-
scale changes and aspect ratios in various cluttered scenes.
We compare the ASTR-CF tracker with 15 state-of-the-
art trackers, i.e., AutoTrack [33], STRCF [30], BACF [19],
ECO-HC [11], RaF [62], DCF-CA [39], MOSSE-CA [39],
Staple-CA [39], SAMF-CA [39], SAMF-AT [3], Staple [1],
SRDCF [8], ARCF-H [27], LADCF-HC [58] and fDSST
[12]. Fig. 7 depicts the performance evaluation of the

trackers in terms of success rate and precision. Overall,
the proposed ASTR-CF outperforms most of the competing
trackers in terms of precision, with slightly lower (0.2%)
than AutoTrack [33]. It is noteworthy that the proposed
tracker surpasses its counterpart SRDCF [8] and STRCF
[30] by 22% and 6.6%, respectively. For the success rate,
the proposed tracker achieves the best result among all the
other trackers. Compared with AutoTrack [33], ASTR-CF
model brings in a reference weight w̃ which introduces prior
information on w (i.e., weight of spatial regularization) to
avoid model degradation.

Table 1 Evaluation of different trackers with 12 challenging attributes
on UAV123@10fps in terms of precision. The top-3 results are
shown in red, green, and blue fonts, respectively. The proposed tracker

outperforms the conventional CF based methods and other sophisticate
models in 9 situations

ARC BC CM FM FOC IV LR OV POC SOB SV VC Average

DCF-CA 0.335 0.318 0.366 0.231 0.307 0.312 0.360 0.313 0.367 0.470 0.411 0.365 0.464

RaF 0.398 0.280 0.463 0.386 0.315 0.373 0.271 0.442 0.377 0.476 0.437 0.379 0.480

MOSSE-CA 0.376 0.351 0.411 0.255 0.324 0.349 0.400 0.375 0.396 0.507 0.446 0.375 0.492

SAMF-AT 0.412 0.328 0.425 0.322 0.400 0.387 0.395 0.421 0.438 0.537 0.473 0.390 0.507

fDSST 0.418 0.319 0.432 0.350 0.379 0.395 0.399 0.447 0.451 0.533 0.471 0.400 0.587

SAMF-CA 0.408 0.328 0.466 0.391 0.359 0.369 0.365 0.429 0.419 0.536 0.474 0.404 0.523

BACF 0.478 0.425 0.532 0.407 0.336 0.430 0.431 0.421 0.467 0.605 0.525 0.491 0.572

Staple 0.459 0.409 0.499 0.356 0.388 0.438 0.408 0.441 0.507 0.612 0.519 0.485 0.573

SRDCF 0.472 0.389 0.527 0.427 0.418 0.436 0.431 0.492 0.504 0.585 0.531 0.474 0.575

Staple-CA 0.480 0.446 0.511 0.319 0.408 0.469 0.448 0.466 0.518 0.637 0.534 0.496 0.587

ARCF-H 0.530 0.428 0.558 0.402 0.392 0.483 0.486 0.449 0.533 0.667 0.575 0.516 0.587

STRCF 0.524 0.477 0.602 0.488 0.426 0.493 0.509 0.523 0.559 0.630 0.580 0.537 0.627

ECO-HC 0.549 0.540 0.606 0.447 0.458 0.512 0.531 0.510 0.558 0.654 0.582 0.548 0.630

LADCF-HC 0.561 0.443 0.637 0.503 0.432 0.481 0.550 0.537 0.564 0.653 0.608 0.549 0.645

AutoTrack 0.598 0.502 0.647 0.525 0.444 0.550 0.532 0.554 0.584 0.664 0.629 0.588 0.671

Ours 0.603 0.507 0.653 0.554 0.446 0.584 0.536 0.533 0.598 0.679 0.636 0.607 0.678

Visual tracking for UAV using adaptive spatio-temporal regularized correlation filters 7573
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UAV123@10fps: Illumination Variation (31)
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UAV123@10fps: Partial Occlusion (73)
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UAV123@10fps: Scale Variation (109)
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UAV123@10fps: Scale Variation (109)
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UAV123@10fps: Viewpoint Change (60)
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Fig. 6 Evaluation of different trackers with 6 challenging attributes on UAV123@10fps in terms of the success rate and precision. The title of each
plot indicates the number of videos labelled with the respective attribute. The proposed ASTR-CF performs the best in these challenging situations

4.3.3 Evaluation on VisDrone2018-SOT-test-dev benchmark

The VisDrone2018-SOT-test-dev [56] benchmark includes
35 sequences with 29, 367 frames, and provides fully
annotated bounding boxes of the targets as well as several
useful attributes, e.g., occlusion, background clutter, and
camera motion. The targets in these sequences include
pedestrians, cars, buses, and animals. The ASTR-CF

tracker is compared with 15 state-of-the-art trackers, i.e.,
AutoTrack [33], STRCF [30], BACF [19], ECO-HC [11],
RaF [62], DCF-CA [39], MOSSE-CA [39], Staple-CA
[39], SAMF-CA [39], SAMF-AT [3], Staple [1], SRDCF
[8], ARCF-H [27], LADCF-HC [58] and fDSST [12]. As
shown in Fig. 8, the ASTR-CF tracker outperforms most
of the state-of-the-art trackers and achieves comparable
performance with ECO-HC [11] both in terms of success
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Fig. 7 Performance evaluation on DTB70 benchmark in terms of success rate and precision
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Fig. 8 Evaluation of different trackers on VisDrone2018-SOT-test-dev benchmark in terms of success rate and precision

rate and precision. This can be contributed to the stabilizing
learning of the filter, especially in scenarios where a new
sample is affected by sudden changes, such as out-of-view,
and ratio change. The proposed tracker has advantages
over ECO-HC in the situations of illumination variation
and fast motion. Evaluation details of different trackers
with 4 challenging attributes on VisDrone2018-SOT-test-
dev benchmark [56] are shown in Fig. 9.

4.3.4 Evaluation on UAVDT benchmark

The UAVDT [14] benchmark focuses on complex scenarios
with new level challenges (i.e., about 80, 000 representative
frames from 10 hours raw videos) and 14 kinds of attributes
(e.g., weather condition, flying altitude, camera view,
vehicle category, and occlusion). The average, min, and max

length of a sequence are 778.69, 83, and 2,970 respectively.
We compare the ASTR-CF with 19 state-of-the-art deep
learning-based trackers, i.e., ASRCF [6], DeepSTRCF [30],
UDT+ [54], ADNet [60], CFNet [47], CREST [44], ECO
[11], IBCCF [29], MCPF [63], PTAV [15], C-COT [10],
GOTURN [24], HDT [42], MDNet [40], SiameseFC [2],
STCT [51], RSST [64] MCCT [53] and CFWCR [23].
The performance evaluation in terms of success rate and
precision are shown in Fig. 10 and the corresponding
tracking speed is shown in Table 2, respectively. Figure 10
depicts that the proposed ASTR-CF outperforms most of
the deep learning-based trackers and only MDNet [40]
(the winner of VOT2015) ranks higher than the ASTR-
CF tracker both in terms of success rate and precision. It
is worth mentioning that, with only hand-crafted features,
ASTR-CF tracker outperforms DeepSTRCF [30], which
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VisDrone2018-SOT-test-dev: Fast Motion (6)
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VisDrone2018-SOT-test-dev: Fast Motion (6)
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VisDrone2018-SOT-test-dev: Illumination Variation (14)
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Fig. 9 Evaluation of different trackers with 4 challenging attributes (i.e., IV, FM, ARC and OV), on VisDrone2018-SOT-test-dev benchmark in
terms of success rate and precision
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Fig. 10 Performance evaluation between ASTR-CF and 19 deep trackers on UAVDT in terms of success rate and precision

is the deep version of our baseline STRCF [30] in terms
of both success rate and precision. For the success rate,
the proposed tracker (44.8%) is still higher than that of
DeepSTRCF [30] (44.5%), and our precision surpasses
DeepSTRCF [30] by 3.5%. Table 2 shows that the proposed
ASTR-CF performs the best in tracking speed. Especially,
the speed of the ASTR-CF tracker (62.11fps) is more than
60 times faster than MDNet [40] (0.96fps). It is worth
mentioning that some deep learning-based trackers above
(e.g. UDT+, CFNet) can run in real-time on GPU. However,
on a UAV mobile device solely with CPU, they can hardly
satisfy the real-time needs.

4.3.5 Overall performance evaluation

As aforementioned, both accuracy and speed are signif-
icant for UAV-based tracking. Thus, we make an over-
all performance evaluation of hand-crafted trackers on
UAV123@10fps [38], DTB70 [31] and VisDrone2018-
SOT-test-dev [56]. The comparative results of top-5 trackers
are depicted in Table 3. One can see that the proposed
ASTR-CF performs the best in terms of both success rate

and precision. This is attributed to the fact that the proposed
model can effectively estimate an object-aware spatial reg-
ularization and context-aware temporal regularization in an
adaptive modality simultaneously. The adaptive temporal
regularization enables the learned filters be more robust to
occlusion while adapting well to large appearance varia-
tion. Meanwhile, the learned filters focus on the reliable
features of the target, and they can alleviate the effects
of unexpected noises within the object region by introduc-
ing adaptive spatial regularization. Meanwhile, the proposed
tracker achieves the second fast speed (55.00fps) which
is slightly slower than AutoTrack [33] (55.96fps). How-
ever, it is two times faster than the baseline STRCF [30]
(25.00fps). This is thanks to the adaptive temporal regu-
larization, which can reduce meaningless and detrimental
training on contaminated samples.

4.4 Qualitative evaluations

The Qualitative results of the ASTR-CF tracker with 9
hand-crafted trackers and 9 deep-learning based trackers
are depicted in Fig. 11 and Fig. 12, respectively. The

Table 2 Comparison of
ASTR-CF and 19 deep trackers
on UAVDT benchmark in
terms of speed. The top-3
results are shown in red, green,
and blue fonts, respectively

Tracker CPU/GPU FPS Tracker CPU/GPU FPS

RSST GPU 1.63 ASRCF GPU 23.01

IBCCF GPU 4.21 ADNet GPU 7.55

C-COT GPU 0.93 ECO GPU 16.50

HDT GPU 9.02 MCPF GPU 3.63

MDNet GPU 0.96 PTAV GPU 26.56

SiameseFC GPU 37.87 STCT GPU 1.85

GOTURN GPU 16.50 CFWCR GPU 14.27

DeepSTRCF GPU 3.76 UDT+ GPU 47.93

CFNet GPU 41.05 CREST GPU 4.34

MCCT GPU 3.16 Ours CPU 62.11
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Table 3 The average accuracy and speed of the top-5 trackers on UAV123@10fps, DTB70 and VisDrone2018-SOT-test-dev. The top-3 results are
shown in red, green, and blue fonts, respectively

STRCF LADCF-HC ECO-HC AutoTrack Ours

Success rate 0.467 0.473 0.475 0.492 0.495

Precision 0.657 0.663 0.660 0.703 0.706

00.5569.5590.3417.2300.52SPF

targets in these sequences undergo deformation (e.g.,
BMX4 and SnowBoarding6), partial occlusion (e.g.,
group2 2, group2 3, uav0000074 11915 s, S0305, S0309,
S1401 and S1701), illumination variation (e.g., group2 3,
uav0000074 11915 s, S0305 and S1401), rotation (e.g.,

BMX4 and ManRunning1), camera motion (e.g., BMX4,
ManRunning1, group2 2, group2 3 and S0309), small
object(e.g., S1401) etc. As shown in the plots, the pro-
posed tracker achieves satisfying performance with fixed
parameters for all these sequences.

Ours

UDT+

LADCF-HC

DeepSTRCF

ARCF

ECO

Auto Track

MCCT

Fig. 11 Qualitative comparison of ASTR-CF tracker with the state-
of-the-art hand-crafted trackers on 6 sequences from UAV123@10fps,
DTB70 and VisDrone2018-SOT-test-dev benchmarks (i.e., from
top to bottom and from left to right, group2 2, group2 3,

uav0000074 11915 s, BMX4, ManRunning1 and SnowBoarding6.)
The indices of the frames are shown in the top-left of each figure.
(Note: Zoom in for a better view.)
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UDT+ HDT MCPF

DeepSTRCF

MDNet

GOTURN 

SiameseFC

Fig. 12 Qualitative comparison of the ASTR-CF tracker with the state-of-the-art deep learning-based trackers on 4 sequences from UAVDT
benchmark (i.e., from top to bottom, S0305, S0309, S1401 and S1701). The indices of the frames are shown in the top-left of each figure. (Note:
Zoom in for a better view)

4.5 Ablation study

The proposed ASTR-CF model combines ASR (adaptive
spatial regularization) and ATR (adaptive temporal regular-
ization) simultaneously. In this section, we demonstrate how
much ASR or ATR module contributes to the overall track-
ing performance through the ablation experiments. More
specifically, the proposed tracker is compared to its counter-
part with different modules enabled. The overall evaluation
is presented in Table 4. It shows that after the ASR module
and ATR module being added to the baseline (STRCF [30]),
the performance is improved gradually. e.g., the final tracker
improves the baseline method by 4.7% and 6.6% in terms of
success rate and precision criterion, respectively, on DTB70
benchmark.

4.6 Failure cases

In some challenging sequences, the proposed ASTR-CF
model fails in tracking the target. Fig. 13 shows some
failure examples. In the sequences of bird1 and car2 s
(from UAV123@10fps [38]), the targets undergo out-of-
view situation and full occlusion. Even with the adaptive
spatial-temporal regularized, the ASTR-CF can not handle
such severe appearance variation of targets. For instance, in
the car2 s sequence, the appearance of the target is greatly
perturbed by full occlusion, which generates a disordered
response map and yields the tracking failure. Besides
the aforementioned reasons, the lack of enough motion
information is another important factor for the tracking
failures, as shown in Fig. 13.

Table 4 Ablation analysis of ASTR-CF on DTB70, UAV123@10fps and VisDrone2018 UAV tracking benchmarks

Benchmarks DTB70 UAV123@10fps VisDrone2018

Metrics Success rate Precision Success rate Precision Success rate Precision

Baseline 0.437 0.649 0.457 0.627 0.567 0.778

Baseline+ATR 0.476 0.701 0.474 0.668 0.568 0.782

Baseline+ASR 0.480 0.704 0.470 0.670 0.570 0.786

Ours 0.484 0.715 0.479 0.678 0.574 0.789
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Fig. 13 Failure cases of the ASTR-CF (bird1 and car2 s from up to bottom). The results of ASTR-CF are shown in green and the ground truth
boxes are denoted in red

5 Conclusion

In this work, a novel Adaptive Spatio-Temporal Regularized
Correlation Filters (ASTR-CF) model is proposed to
alleviate the boundary effect and filter degradation for
UAV-based tracking. An alternating direction method of
multipliers (ADMM) algorithm is developed to optimize
the ASTR-CF model efficiently. Comparative experiments
on 4 UAV tracking benchmarks with more than 30 state-
of-the-art trackers are carried out to validate the accuracy
and efficiency of the proposed tracker. Experimental results
demonstrate that the proposed ASTR-CF outperforms most
state-of-the-art trackers, with a speed of exceeded 50fps
running on a single CPU.
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