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ABSTRACT. Crowd counting aims to derive information about crowd density by quantifying the
number of individuals in an image or video. It offers crucial insights applicable to
various domains, e.g., secure, efficient decision-making, and management. However,
scale variation and irregular shapes of heads pose intricate challenges. To address
these challenges, we propose a scale-deformation awareness network (SDANet).
Specifically, a scale awareness module is introduced to address the scale variation.
It can capture long-distance dependencies and preserve precise spatial information
by readjusting weights in height and width directions. Concurrently, a deformation
awareness module is introduced to solve the challenge of head deformation. It
adjusts the sampling position of the convolution kernel through deformable convo-
lution and learning offset. Experimental results on four crowd-counting datasets
prove the superiority of SDANet in accuracy, efficiency, and robustness.
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1 Introduction
Crowd counting constitutes a crucial and pragmatic pursuit to precisely ascertain the count of
pedestrians within a static image or video sequence. Crowd counting plays crucial roles in vari-
ous domains, such as urban security,1 activity management,2–4 and transportation planning.5

With the emergence of increasingly outstanding models, there is an increasing diversity of
methods for crowd counting. In the early stages, the predominant crowd-counting approaches
were based on detection6,7 and regression methods.8–11 These methods demonstrated satisfactory
counting performance in scenes with sparse crowds. However, they may lose accuracy when
confronted with challenges such as massive quantities and scale variations. With the advent
of deep learning,12,13 convolutional neural networks (CNNs) have become widely utilized in
crowd counting. In densely populated and complex scenes, CNNs excel at capturing intricate
spatial relationships within the crowd through feature learning in images. This serves to enhance
the accuracy of counting.

Although the current deep learning-based methods have effectively improved counting accu-
racy, these methods still struggle to achieve high-precision counting when facing challenges,
such as large-scale scenarios and deformations. Two primary challenges encountered in crowd
counting are depicted in Fig. 1. Figure 1(a) illustrates a standard convolution operation

*Address all correspondence to Mingliang Gao, mlgao@sdut.edu.cn

1017-9909/2024/$28.00 © 2024 SPIE and IS&T

Journal of Electronic Imaging 043002-1 Jul∕Aug 2024 • Vol. 33(4)

https://orcid.org/0009-0000-0501-7678
https://orcid.org/0000-0002-9675-9016
https://orcid.org/0000-0002-1374-1882
https://orcid.org/0000-0001-7273-7499
https://doi.org/10.1117/1.JEI.33.4.043002
https://doi.org/10.1117/1.JEI.33.4.043002
https://doi.org/10.1117/1.JEI.33.4.043002
https://doi.org/10.1117/1.JEI.33.4.043002
https://doi.org/10.1117/1.JEI.33.4.043002
https://doi.org/10.1117/1.JEI.33.4.043002
mailto:mlgao@sdut.edu.cn
mailto:mlgao@sdut.edu.cn
mailto:mlgao@sdut.edu.cn


performed by a fixed-shape (usually rectangular) filter on an input image. In the convolution
process, the weight value of the filter does not change. However, for some scenes, such as images
with a large variety of object shapes, traditional convolution may not be well adapted to the
irregular shape of the object. Thus it can lead to inaccurate localization and counting. To over-
come this limitation, we recommend using deformable convolution. As depicted in Fig. 1(a),
deformable convolution autonomously adjusts the convolution sampling positions to accommo-
date the varying sizes of deformed heads. This convolutional approach substantially enhances
counting efficiency.

Moreover, the consistent scale variation has presented a noteworthy challenge in crowd
counting, especially in dense crowd scenes. Figure 1(b) illustrates the scale variations challenge
in crowd counting. Multiscale feature aggregation stands out as an effective strategy to address
this challenge. Guo et al.14 introduced a multiscale aggregation module utilizing convolutions
with different dilation rates to capture features across multiple scales. Cao et al.15 proposed
a scale-aggregation network, where an encoder employs a scale aggregation module to extract
features across multiple scales. Furthermore, some works16,17 introduced attention modules to
deal with scale variations. Zhai et al.18 proposed a crowd-split attention network to jointly capture
spatial and channel dimension information, thereby preserving scale information effectively.
Despite the efficacy of these approaches in addressing scale variations, the intensity of scale
variation becomes more pronounced in dense crowd scenarios. Models need to capture and
understand spatial information in images more effectively. This facilitates better adaptation
to various scales of targets and scenes.

To address the problem of scale variation and irregular head shapes, we propose a scale-
deformation awareness network (SDANet). The main architecture of the network has two mod-
ules. First, a scale awareness (SA) module bifurcates the channel attention into two ID feature
coding processes. This approach aggregates horizontal and vertical features to capture distant
dependencies and preserve precise location information. Additionally, we propose the DA mod-
ule to address head deformation challenges in crowd scenes. We utilize deformable convolution
to adjust the shape of the convolution kernel dynamically. This correction is applied specifically
to the features in the deformation part. The contributions of this paper are summarized as follows.

(1) An SA module is built to address the challenge of scale variations by preserving accurate
spatial information.

(2) A DA module is introduced to tackle the issue of head deformation in complex scenes.
(3) The precision and resilience of SDANet are demonstrated via various experimental results

across various datasets. Meanwhile, the ablation experiments have further substantiated
the effectiveness of the proposed method.

(a)

(b)

Fig. 1 Challenges of head deformation and scale variations in crowd counting. (a) Exemplars of
standard convolution and deformable convolution in crowd counting. (b) Exemplars of scale
variations in crowd counting.
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2 Related Work

2.1 Head Deformation
The challenge of handling deformed heads poses a formidable obstacle for conventional CNNs.
Head deformations can hinder the accurate extraction of facial features in crowd images. This
problem consequently impacts the counting precision of the network. To address this issue, Luo
et al.19 introduced the concept of an effectively receptive field. This concept enables the network
to respond appropriately to distinct regions of varying sizes within the input image. Jia et al.20

proposed a dynamic filter network, where filters adjust dynamically based on various inputs to
accommodate local spatial transformations. Although the filters employed here demonstrate
adaptability to spatial variations, their deformation capabilities are constrained. In response,
Yu and Koltun21 proposed an expansive convolution. This convolution preserves resolution while
accommodating different-sized receptive fields based on the expansion factor.

With the advent of expansive convolutions, deformable convolutions have gradually found
applications in object detection.22,23 This architecture is built upon the notion of enhancing spatial
sampling positions and learning spatial offsets at each location without prior knowledge.

The above methods provide diverse technologies for tackling head deformation issues.
Nevertheless, these methods fall short of attaining outstanding deformation performance.
When confronted with irregular head shapes, they often fail to achieve superior counting efficacy.
To overcome this issue, we propose the DA module. This module integrates the deformable
convolution method to dynamically adapt the convolution kernel shape, thereby enhancing its
compatibility with deformable regions.

2.2 Scale Variation
Scale variation is a challenging factor in image processing tasks, such as image quality assess-
ment, and image fusion. Inspired by the perception of the human visual system combined with
multiscale features, Zhou and Chen24 utilized pyramid feature learning to construct a DNN with
layered multiscale features to predict distorted image quality. Sun et al.25 proposed multiscale
network (MCnet) to achieve high-quality image fusion. The MCnet could process the image
feature fusion of different scales from coarse to fine and adaptively provide information on differ-
ent scales and images.

Scale variation is also a challenging factor in crowd-counting tasks. To address this issue,
recent crowd-counting models often adopted the multiscale pyramid structure. For example, Guo
et al.26 proposed the ghost attention pyramid network, which features a pyramid fusion module
and establishes a four-branch architecture to obtain features across different scales. Zhao et al.27

introduced a multiscale residual feature attention network. The key innovation of this network
lies in optimizing losses for each scale to enable the network to adapt to scale variations.
Additionally, attention mechanisms have been introduced to address large-scale variations in
crowd counting. Guo et al.28 proposed a multiscale perception attention fusion module. This
module captures visual granularity information at different scales of the crowd region to generate
high-quality density maps. To tackle the large-scale variations in complex crowds, Guo et al.10

introduced a bottleneck spatial attention module and a multispectral channel attention module
and combined the two attention modules. This approach effectively allocates spatial attention to
different scales of crowd regions.

Although the above methods achieved excellent counting performance, they failed to rec-
oncile global and local relationships while addressing spatial information at different scales.
To address this challenge, we propose an SA module that can capture relationships between the
global and local aspects while perceiving information about the image scale.

3 Methodology

3.1 Overview
The overall structure of the proposed SDANet is depicted in Fig. 2. We adopted focal inverse
distance transform map (FIDTM)29 as the baseline framework. The FIDTM adopts a local
maximum detection strategy by adaptive threshold and max pooling to achieve more accurate
counting. Overall, the SDANet comprises four components, namely the front-end network,
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SA module, DA module, and back-end network. Specifically, the high-resolution network
(HRNet)30 serves as the front-end network. An SA module is utilized to mitigate the influence
of address scale variations. A DA module handles irregular head shapes during counting. Finally,
a back-end network incorporating a series of transposed convolutions is equipped to output the
estimated density map.

3.2 Scale Awareness Module
The schematic of the SA module is delineated in Fig. 3. The SA module is an attention module,
which generates weights through dual dimension-pooling and convolution to extract multiscale
features. This module accommodates input in the form of any intermediate feature tensor,
denoted as G ¼ ½g1; g2; : : : ; gC� ∈ RC×H×W , and yields an enriched representation of equivalent
dimensions, denoted as R ¼ ½r1; r2; : : : ; rC�. Existing global average pooling is based on channel
dimension. Nonetheless, in crowd counting, the precise localization of human heads necessitates
effectively preserving positional information inherent in feature images. Consequently, global
pooling is dissected along two directions, and each channel is individually encoded. This process
ensures the preservation of spatial information. The formulation governing the vertical and hori-
zontal directions is denoted as

EQ-TARGET;temp:intralink-;e001;114;405xhcðhÞ ¼
1

W

X
0≤i<W

fcðh; iÞ; (1)

EQ-TARGET;temp:intralink-;e002;114;351xwc ðwÞ ¼
1

H

X
0≤j<H

fcðj; wÞ; (2)

where fcðh; iÞ and fcðj; wÞ represent the spatial information encoding of the c channel along
the horizontal and vertical directions, respectively.

These two transformations aggregate spatial features in vertical and horizontal directions,
respectively. They enable attention blocks to capture long-range dependencies in one spatial
direction while preserving accurate location information in the other spatial direction. These
two transformations are concatenated and used as inputs to the shared convolution transform
function. It is formulated as

SA
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Fig. 2 Architecture of the SDANet for crowd counting.
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Fig. 3 Architecture of the SA module.
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EQ-TARGET;temp:intralink-;e003;117;736z ¼ δðF1ð½gh; gw�ÞÞ; (3)

where δ denotes the nonlinear activation function, F1 represents 1 × 1 convolutional transfor-
mation function, and z represents the intermediate feature tensor encoding spatial information
along two spatial directions. The spatial dimension’s feature tensor is partitioned into two disjoint
tensors, nh ∈ RC∕r×H and nw ∈ RC∕r×W , with r denoting the reduction ratio of the control block’s
size. Subsequently, two 1×1 convolution operations are applied to preserve the same final output
as the input:

EQ-TARGET;temp:intralink-;e004;117;641qh ¼ σðFhðnhÞÞ; (4)

EQ-TARGET;temp:intralink-;e005;117;605qw ¼ σðFwðnwÞÞ; (5)

where σ symbolizes the sigmoid function, Fh and Fw represent 1 × 1 convolutional transforma-
tions along the horizontal and vertical directions, respectively. Subsequently, the acquired qh and
qw serve as attention weights. Finally, the result of the attention obtained is as follows:

EQ-TARGET;temp:intralink-;e006;117;560ocði; jÞ ¼ fcði; jÞ × qhcðiÞ × qwc ðjÞ; (6)

where qh and qw represent attention weights in horizontal and vertical directions, respectively.

3.3 Deformation Awareness Module
The structure of the DA module is depicted in Fig. 4. The DA module incorporates deformable
convolution and attention mechanisms to capture long-range dependencies. In the case of con-
ventional 2D convolution, the process is essentially executed in two steps. Initially, the input
feature map undergoes sampling using a regular grid denoted as P. Subsequently, the weighted
sample values are aggregated. The grid P defines the size and extent of the receptive field. For
each position r0 on the input feature map z, it can be denoted as

EQ-TARGET;temp:intralink-;e007;117;427zðr0Þ ¼
X
rn∈P

wðrnÞ · xðr0 þ rnÞ: (7)

In deformable convolution, the regular grid P is replaced by an offset fΔrnjn ¼ 1; : : : ; Ng.
The above position zðr0Þ can be expressed as

EQ-TARGET;temp:intralink-;e008;117;365zðr0Þ ¼
X
rn∈P

wðrnÞ · xðr0 þ rn þ ΔrnÞ: (8)

Moreover, deformable convolution is sampled at the offset position rn þ Δrn when sampling
is performed. As the offset Δrn is typically fractional, Eq. (8) is implemented via bilinear inter-
polation as
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Fig. 4 Architecture of the DA module.
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EQ-TARGET;temp:intralink-;e009;114;736xðrÞ ¼
X
k

Fðk; rÞ · xðkÞ; (9)

where r represents an arbitrary position in the feature map. The function F represents bilinear
interpolation.

As depicted in Fig. 4, the offset is derived through offset convolution. Subsequently, the
obtained offset is employed in the 3 × 3 convolution operation to accomplish the convolutional
deformation. The attention acquired through convolution and softmax is multiplied to yield an
offset feature map. Finally, the conclusive output is attained via the residual connection.

3.4 Ground Truth Generation
The FIDTM29 is employed to derive ground truth values. This approach facilitates a more
accurate head annotation and density representation. The formulation for the generation of the
distance transform graph is denoted as follows:

EQ-TARGET;temp:intralink-;e010;114;576Pðx; yÞ ¼ min
ðx 0;y 0Þ∈B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x 0Þ2 þ ðy − y 0Þ2

q
; (10)

where B represents all header comments, and ðx; yÞ represents arbitrary pixel. Then this method
uses the inverse function to control the distance change and generates the inverse distance trans-
form map:

EQ-TARGET;temp:intralink-;e011;114;504I ¼ 1

Pðx; yÞðα×Pðx;yÞþβÞ þ C
; (11)

where α and β are set to 0.02 and 0.75, respectively. C is a nonzero constant.

3.5 Loss Function
The mean squared error (MSE) loss function is employed to minimize the disparity between the
predicted and actual values. It is formulated as follows:

EQ-TARGET;temp:intralink-;e012;114;407LMSE ¼ 1

N

XN
i¼1

kyi − ŷik22; (12)

where N denotes the total number of crowd in the image, yi represents the predicted value, and
ŷi represents the ground true value.

4 Experiments

4.1 Datasets
The performance of the proposed method was assessed using five datasets. ShanghaiTech8 data-
set is bifurcated into two parts, denoted as part A and part B, comprising a cumulative total of
1198 images. Specifically, part A encompasses 300 images in the training set and 182 images in
the test set, whereas part B incorporates 400 images for the training set and 316 images for
the test set. UCF_CC_5031 dataset contains 50 grayscale crowded images with a count range
of 96 to 4633. UCF-QNRF32 dataset contains 1535 images, including many high-resolution
in diverse scenarios. The minimum and maximum counts are 49 and 12,865, respectively.
JHU-Crowd++33 dataset comprises a total of 4822 images. It is categorized into three sets: a
training set with 2722 images, a test set with 1600 images, and a validation set with 500 images.
This dataset encapsulates diverse scenarios, with the counting number from 0 to 25,791.

4.2 Implementation Details
The training process commences with random cropping and horizontal flipping. In ShanghaiTech
datasets, the image cropping size is configured as 256 × 256. Conversely, for the UCF_CC_50,
UCF-QNRF, and JHU-Crowd++ datasets, the cropping size is set to 512 × 512. During the train-
ing phase, the batch size for ShanghaiTech is defined as 8, and the other three datasets adopt a
batch size of 4. To optimize the experimental execution and achieve superior results, we set the
decay rate to 0.995 and the learning rate to 1 × 10−4. The evaluation was executed in PyTorch
framework equipped with two NVIDIA GTX 3090 GPUs.
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4.3 Evaluation Protocols
In assessing the experiment’s performance, we employ the mean absolute error (MAE) and
the root-mean-square error (RMSE). They are formulated as follows:

EQ-TARGET;temp:intralink-;e013;117;700MAE ¼ 1

N

XN
i¼1

jyi − ŷij; (13)

EQ-TARGET;temp:intralink-;e014;117;647RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

jyi − ŷij2
vuut ; (14)

where N represents the number of test images. yi and ŷi represent the predicted and ground truth
values for the i’th image, respectively.

To evaluate the efficiency of the models, we adopt the indicator of parameters, FLOPs,34,35

inferring time, and frames per second (FPS).

4.4 Comparison on Crowd Counting

4.4.1 Comparison of crowd counting accuracy

We compared the obtained results with those achieved by competitive models. The detailed com-
parison results are presented in Table 1. On the part A dataset, SDANet scores 54.9 and 90.4 in
MAE and RMSE surpass all the competitors. Compared with PESSNet,5 the MAE and RMSE of
SDANet decreased by 2.4 and 5.5, respectively. On the part B dataset, SDANet scores 7.1 and
12.0 in MAE and RMSE, only inferior to the PESSNet method. The MAE and RMSE are
increased by 0.7 and 2.1, respectively.

On the UCF-QNRF dataset, the proposed SDANet achieves competitive scores of 107.3 and
195.5 in MAE and RMSE. The proposed SDANet scored 5.1% higher in MAE and 14.0% higher
in RMSE compared to the first-placed SFCN.4 The reason is that SFCN adopts dilation to enlarge
the receptive field, to capture a larger range crowd. However, the SA module cannot be aware
of large receptive fields. The results on the UCF-QNRF dataset are inferior to SFCN’s results.

Table 1 Objective results on crowd counting datasets.

Method

Part A Part B UCF_CC_50 UCF-QNRF JHU++

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCNN8 110.2 173.2 26.4 41.3 377.6 509.1 277.0 426.0 188.9 483.4

Switch-CNN36 90.4 135.0 21.6 33.4 318.1 439.2 — — — —

A-CCNN37 85.4 124.6 19.2 31.5 — — 367.3 — 171.2 453.1

SFCN4 64.8 107.5 7.6 13.0 214.2 318.2 102.0 171.4 77.5 297.6

RAZ38 65.1 106.7 8.4 14.1 — — 116.0 195.0 — —

DA2Net3 74.1 128.4 7.9 13.2 169.5 237.0 111.7 204.3 — —

PESSNet5 57.3 95.9 6.4 9.9 — — — — 70.91 256.33

TEDNet39 64.2 109.1 8.2 12.8 249.4 354.5 113.0 188.0 75.0 299.9

LSC-CNN40 66.4 117.0 8.1 12.7 — — 120.5 218.2 112.7 454.4

MUD-iKNN41 68.0 117.7 13.4 21.4 237.7 305.7 104.0 172.0 — —

DUBNet42 64.6 106.8 7.7 12.5 243.8 329.3 105.6 180.5 133.5 416.5

SUA-fully43 66.9 125.6 12.3 17.9 — — 119.2 213.3 — —

PCCNet34 73.5 124.0 11.0 19.0 240.0 315.5 148.7 247.3 — —

CG-DRCN44 64.0 98.4 8.5 14.4 — — 112.2 176.3 71.0 278.6

SDANet (ours) 54.9 90.4 7.1 12.0 104.1 154.4 107.3 195.5 71.8 287.0

The best results are highlighted in bold.
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But the score shows SDANet is still competitive against a high-density and large-scale variations
crowd. On the UCF_CC_50 dataset, SDANet scores the best results of 104.1 and 154.4 in MAE
and RMSE, respectively. Compared with SFCN,4 it improves the MAE and RMSE by 51.4% and
51.5%, respectively.

On the JHU-Crowd++ dataset, the SDANet scores 71.8 and 287 in MAE and RMSE, respec-
tively. Although the results are not optimal compared with the CG-DRCN and PESSNet,
the proposed method is still competitive. It is worth mentioning that the CG-DRCN44 model
was presented alongside the JHU-Crowd++ dataset, including images captured under extreme
weather conditions. It incorporates uncertainty-guided residual estimation conditioned on image-
level labels to integrate weather data into training. Furthermore, additional image-level labels in
the dataset refine the uncertainty-based confidence weighting model, limiting it to specific tags
for enhanced accuracy in difficult weather. The CG-DRCN method is superior to the SDANet on
the JHU-Crowd++ but inferior to SDANet on other datasets.

Figure 5 illustrates the visualized results generated by SDANet across various datasets.
It proves that the estimated map and counting number are closely approximated to the ground

Est: 153.0

GT: 172.0 Est: 172.0

GT: 418.0 Est: 417.0

GT: 2033.0 Est: 2028.0

GT: 679.0 Est: 680.0

Part A

Part B

UCF_CC_50

UCF_QNRF

JHU-Cr owd++

: 153.0GT

Fig. 5 Visualization result of the proposed SDANet on different datasets. The sequence from left to
right: input image, the corresponding ground truth, and the predicted density map. The sequence
from top to bottom: visual results of the Shanghai part A, Shanghai part B, UCF_CC_50, UCF-
QNRF, and JHU-Crowd++ datasets.
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truth values. The proposed SDANet is a density map-based model. It works by converting the
image into a density map and then estimating the number of people by integrating the density
map. However, the predicted crowd distribution is still not entirely aligned with that in the real
world, which is unavoidable in crowd counting tasks. The task of crowd location belongs to a
high-level crowd analysis task, i.e., crowd localization.45,46 Compared with crowd localization,
crowd counting tasks are primarily concerned with capturing the overall characteristics of a
group rather than accurately identifying spatial location information. Especially in dense crowd
regions, the density map cannot accurately reflect the sample location due to the severe occlu-
sion. Therefore, there is a deviation between the predicted crowd density distribution and the
actual spatial location.

We made a comparative analysis with SOTA models, i.e., SA2Net,47 GGANet,48 and
SCPNet46 in Shanghai part A. Figure 6 shows the subjective results of SDANet with different
models. The images encompass scale variation and head deformation issues. It proves that the
proposed SDANet achieves accurate counting, and it is competitive in dense crowd counting.

4.4.2 Comparison of crowd counting efficiency

To evaluate the efficiency, we compared the SDANet with FIDTM,29 GGANet,48 SCPNet,46 and
SA2Net47 on an RTX 3090 GPU. The input size is set to 576 × 768. The complexity analysis
results are shown in Table 2. It shows that the results obtained by the proposed SDANet are

Table 2 Comparison results of different models in Params,
FLOPs, inferring time, and FPS on Shanghai part A.

Methods Params (M) FLOPs (G) Time (ms) FPS

FIDTM29 66.6 240.3 62.3 16.1

GGANet48 66.9 240.3 30.2 33.1

SCPNet46 75.4 449.0 97.6 10.2

SA2Net47 79.2 589.7 117.7 8.5

SDANet (ours) 68.5 254.2 38.0 26.3

The best results are highlighted in bold.

GT: 153.0 Est: 153.0

GT: 218.0 Est: 222.0

Est: 151.0

Est: 232.0

GT: 181.0 Est: 177.0Est: 190.0

GT: 251.0 Est: 252.0Est: 261.0

GT: 269.0 Est: 265.0Est: 280.0

Est: 147.0

Est: 223.0

Est: 181.0

Est: 251.0

Est: 262.0

Est: 151.0

Est: 220.0

Est: 173.0

Est: 262.0

Est: 258.0

(a) (b) (c) (d) (e) (f)

Fig. 6 Subjective results of different models on Shanghai part A datasets: (a) test images,
(b) ground truth, (c) SA2Net, (d) GGANet, (e) SCPNet, and (f) SDANet (ours).
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competitive. The SDANet has 68.5 M parameters and 254.2 M in FLOPs. Specifically, compared
to FIDTM,29 the proposed method reduces the inferring time by 39% and increase the FPS by
63.3%, with a minimal increase of 2.8% and 5.7% in Params and FLOPs. Although the proposed
method increases the number of parameters and the amount of computation compared with
FIDTM, it improves the inference time and FPS and reduces the complexity.

4.5 Ablation Studies
We conducted ablation experiments on the Shanghai part A dataset to assess the practical utility
of the SA and DA modules. The comparative results are delineated in Table 3. “baseline +
SA + module(·)” represents the basic network that adopts HRNet with SA module, and adds
n module(s) to the HRNet.

We investigate the influence of the SA and DAmodules on counting performance. As shown
in Table 3, adding both SA and DA modules helps to enhance MAE and RMSE. Specifically,
adding the SA module to the baseline achieved 1.1% and 0.9% improvements in MAE and
RMSE, respectively. The addition of the DA module improves the MAE by 6.6%. Then the
SA module and one DA module are connected in series. Counting performance has been further
improved, and MAE and RMSE have been improved by 4.5% and 5.5%, respectively. When the
number of DA is 2, the performance is further improved with MAE and RMSE being 54.9 and
90.4, respectively. However, when the number of DA increases to 3, the performance decreases.
Thus the configuration of “baseline + SA + DA(2)” is the optimal model.

5 Failure Cases
As mentioned in Sec. 4.4.1, the proposed SDANet ranks third place on JHU-Crowd++, which is
characterized by weather changes. The result demonstrates that the SDANet is hard to deal with
this challenge. The subjective results of images with bad weather are shown in Fig. 7. It proves
that there is a gap between the estimation and ground truth. In the case of weather changes,
the environmental background may become more complex which increases the background
interference. Moreover, the physical features of the crowd may be blurred or partially obscured,
making it more difficult for the SDANet to detect and distinguish the crowd accurately.
Considering that the proposed SDANet addresses the scale variation and head deformation, the
counting performance is not optimal in scenarios with bad weather. Crowd counting under harsh
weather will be our further research direction.

6 Conclusion and Perspective
This paper builds an SDANet to address the challenges of scale variations and head deformation.
The SDANet consists of two key modules, i.e., the SA module and the DA module. The SA
module decomposes channel attention into two spatial directions to capture long-distance
dependencies and preserve precise spatial information. It effectively mitigates the impact of
scale variations on counting accuracy during the feature extraction stage. Simultaneously, the
DA module adapts the deformable convolution to resolve the issue of head deformation.

Table 3 Objective ablation studies on the DA and SA modules.

Methods MAE RMSE

Baseline 62.1 108.8

Baseline + SA 61.4 108.7

Baseline + DA 57.9 108.8

Baseline + SA + DA(1) 59.3 102.8

Baseline + SA + DA(2) 54.9 90.4

Baseline + SA + DA(3) 57.6 94.7

The best results are highlighted in bold.
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Experimental results on four benchmark datasets verify the superiority of the proposed model.
In future work, we intend to improve the proposed counting model in scenarios with bad weather
by introducing image enhancement modules.

Code and Data Availability
The code is available at https://github.com/sdutwjy/SDANet
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