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Abstract
Medical image super-resolution (SR) has emerged as an effective means to enhance the resolution of medical images. Nev-
ertheless, many existing methods still face the issue of insufficient representation of high-frequency features. To address this 
problem, we propose a Transformer-based hierarchical Encoder–Decoder Network (THEDNet). The THEDNet incorporates 
an advanced transformer to extract features at various hierarchical dimensions. Specifically, the Encoder and Decoder units 
are equipped with an Efficient Multi-scale Attention (EMA) module for capturing long-range interdependencies among 
features. By leveraging an enhanced transformer architecture, THEDNet can capture long-range feature interdependencies 
and create the final high-resolution images. Experiments are conducted on two medical CT image datasets, and comparative 
results verify the effectiveness of the proposed THEDNet.

Keywords  Super-resolution(SR) · Integration of attention mechanism · Transformer

1  Introduction

Medical images hold immense significance across multiple 
domains including radiology, oncology, and cardiology. 
They can offer indispensable diagnostic information for 
medical professionals. Notably, CT images provide valuable 
insights into the precise localization of lesions. However, 
the inherent limitations of the hardware equipment often 
result in lower image resolutions, which makes it difficult 
to visualize finer details. This limitation hampers the ability 
of doctors to assess and diagnose medical conditions accu-
rately. The super-resolution (SR) techniques can increase the 

resolution of medical images and thus provide more detailed 
information.

Currently, the mainstream SR methods include interpola-
tion algorithms Khaledyan et al. (2020), sparse representa-
tion algorithms Ayas and Ekinci (2020), and deep learning-
based algorithms Wang et al. (2020). The image SR method 
based on deep learning is the most popular method in the 
domain. This method usually reconstructs an image using a 
Convolutional Neural Network (CNN) or Generative Adver-
sarial Network (GAN). It can learn the complex structure 
and features of an image. Dong et al. (2015) proposed the 
Super-Resolution Convolutional Neural Network (SRCNN) 
and adopted the deep learning model for image super-res-
olution (SR). On this basis, Dong et al. (2016) proposed 
an augmented iterative model called Fast Super-Resolution 
Convolutional Neural Networks (FSRCNN). The FSRCNN 
integrated non-convolutional layers and employed smaller 
convolutional kernels and additional mapping layers. 
Ledig et al. Ledig et al. (2017) proposed Super-Resolution 
Using a Generative Adversarial Network (SRGAN). It lever-
aged perceptual and adversarial loss mechanisms to gener-
ate highly realistic HR images. Lim et al. (2017) employed 
residual networks from the SRGAN model and proposed 
enhanced deep residual networks for single image super-
resolution. Residual networks and attention mechanisms 
have been used for image SR recently. Zhang et al. (2018) 

Jianhao Sun and Xiangqin Zeng contributed equally to this work.

 *	 Mingliang Gao 
	 mlgao@sdut.edu.cn

	 Fengli Ba 
	 sdut_flba@163.com

1	 School of Electrical and Electronic Engineering, Shandong 
University of Technology, Zibo 255000, China

2	 Zibo Central Hospital, Zibo 255020, China
3	 Zhiyang Innovation Co., Ltd., Jinan 250101, China
4	 School of Electronic Engineering and Computer Science, 

Queen Mary University of London, London E1 4NS, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s13721-024-00469-y&domain=pdf
http://orcid.org/0000-0003-3368-6013


	 Network Modeling Analysis in Health Informatics and Bioinformatics           (2024) 13:34    34   Page 2 of 10

proposed the Residual Dense Network (RDN)by extract-
ing a large amount of feature information from low-resolu-
tion (LR) images. Li et al. (2019) proposed a super-resolu-
tion network with a feedback mechanism called Feedback 
Network for Image Super-Resolution (SRFBN). The close 
connection between the upsampling and downsampling lay-
ers enhanced high-dimension information. Chen et al. (2020) 
proposed a feedback-adaptive weighted dense network to 
extract more useful high-dimension features in medical 
images. Li Li et al. (2019) proposed a Gated Multiple Feed-
back Network (GMFN) by utilizing multi-scale information 
and augmentation with the attention mechanism.

Dosovitskiy  et al.  (2021) employed the Transformer 
model in image SR. The Transformer model incorporated 
an attention mechanism to capture global information in 
images. To improve the resolution and quality of the images 
more effectively, Lei et al. (2021) proposed the Transformer-
based Enhancement Network (TransENet). Nevertheless, 
the lack of high-frequency features and long-term feature 
interdependencies affect the quality of the generated images. 
To address this problem, we introduce the THEDNet. The 
THEDNet is designed in a transformer schema with a series 
of hierarchical Encode–Decoders. Meanwhile, an exter-
nal attention (EA) Guo et al. (2021) module and efficient 
multi-scale attention (EMA) Ouyang et al. (2023) module 
are built into each encoder and decoder module. Enhancing 
high-dimensional feature representation entails integrating 
external attention modules, hierarchical feature extraction, 
and cross-attention fusion. The EA module enhances feature 
extraction by leveraging external memory units. It refines the 
attention map to capture essential high-dimensional features 
more accurately. Hierarchical feature extraction is facilitated 
by attention-fused encoders and decoders that process fea-
tures at different levels. It can ensure the effective utilization 
of both low- and high-dimensional features. In the decoding 
process, the cross-attention mechanism integrates encoded 
low-dimensional features with high-dimensional representa-
tions. This improves the representation of high-dimensional 
features and thus enhances image detail recovery. The con-
tributions are summarized as follows: 

1.	 We proposed a Transformer-based hierarchical Encoder–
Decoder Network for medical image SR.

2.	 We designed an attention-fused encoder–decoder frame-
work to improve feature representation capability and 
exploit the long-term feature interdependencies.

3.	 We carried out experiments on two publicly accessible 
medical image datasets and the results verified the effi-
ciency of the proposed method.

2 � Related work

2.1 � CNN‑based image super‑resolution

CNNs have held a pivotal role in SR tasks, benefitting 
by their multifaceted capabilities. As a pioneering work, 
SRCNN Dong et al. (2015) used a sparse coding formula 
to map patches from LR to HR. Dong et al. (2016) pro-
posed the FSRCNN by optimizing the SR network struc-
ture and hyperparameter settings. Li  et al. (2019) built 
the Super-Resolution Feedback Network (SRFBN). They 
reconstructed high-resolution images by enriching the cor-
respondence between low and high-dimension representa-
tions. CNN has also played a crucial role in medical images 
SR. The medical image SR can be divided into two types, 
i.e., 2D medical image SR and 3D medical image SR. Gu et 
al. (2020) focused on specific areas through different infor-
mation channels in 2D medical CT images. Georgescu et 
al. (2020) proposed an end-to-end CNN model for 3D CT or 
MRI scan images SR. Ran et al. (2023) introduced a general 
CNN fusion framework termed GuidedNet. This framework 
leveraged the multi-scale information of high-resolution 
guidance images to fuse low-resolution images. Shang et al. 
(2024) combined CNNs with diffusion probabilistic models 
to predict low-frequency information and employed DPM to 
generate high-frequency details.

2.2 � Transformer‑based image super‑resolution

Transformer architecture has been gradually applied in 
image SR. Yang et al. (2020) proposed the texture trans-
former network for Image Super-Resolution. It utilized the 
transformer to learn the features between the LR and ref-
erence images. Subsequently, Yoo et al. (2022) introduced 
a model that combines CNN and transformer through an 
aggregation approach. Liu et al. (2021) built the shifted 
window transformer model to address the challenges posed 
by hierarchical feature maps and shifted window attention. 
Lei et al. (2021) introduced Transformer-based multistage 
Enhancement (TransENet) for image SR. It can exploit the 
synergy between different feature dimensions. Yan et al. 
(2021) presented a transformer-based MRI image SR model 
based on amalgamating features from multiple layers. Han et 
al. (2023) combined the CNN and swin transformer Liu et al. 
(2021) for medical image SR.

2.3 � Attention‑based super‑resolution

The attention mechanism intensified the focus on important 
areas to enhance the performance of the SR model. Zhang et 
al. (2018) introduced channel attention to applying distinct 
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weights to different channels for feature extraction. Shang et 
al. (2022) presented channel-space attention to enable infor-
mation exchange across various channel dimensions. Du et 
al.utilized the convolutional block attention module  et 
al. Wooet al. (2018) and self-augmented attention module 
to incorporate more multi-scale and layer features for gener-
ating HR images. Mei et al. (2020) constructed a cross-scale 
non-local attention module to unveil numerous cross-scale 
feature correlations in a single LR image. Lu et al. (2020) 
introduced a local residual dense attention module for medi-
cal image super-resolution models. This module enhanced 
the network’s learning ability while simplifying the training. 
Mehri et al. (2021) established a two-fold attention module 
to enhance the extraction of the channel and spatial attention 
mechanism information in adaptive residual blocks.

3 � Methodology

3.1 � Overview of THEDNet

The architecture of the proposed THEDNet is illustrated in 
Fig. 1.

It consists of four modules, i.e., , feature extraction 
module, attention fusion encoder module, attention fusion 
decoder module, and upsampling layer. AF-Encodern 
denotes the n −th attention fusion encoder, and AF-Decodern 
denotes the n −th attention fusion decoder. THEDNet incor-
porates a four-layer encoder and a single-layer decoder. 
Initially, a convolutional layer converts the LR image ILR 
into the feature space. The result will be directed to the 
feature extraction module. This module aims at capturing 

high-frequency details from distinct regions in medical 
images. Specifically, we assign three feature extraction mod-
ules for the low-dimensional stage.

where FEn denotes the n −th feature extraction module.
The residual block constitutes the primary element of 

the feature extraction module. The structure of the feature 
extraction module is illustrated in Fig. 2.

The input to the feature extraction module includes a 
series of feature maps generated by the convolutional layer, 
which encodes low-resolution (LR) image information. The 
output consists of feature maps that have been processed to 
contain more abstract and higher-level information. After 
extracting low-dimensional features, we use a sub-pixel 
layer to transform these features into a higher-dimensional 
space. Then, we use them as input for the improved trans-
former model. Three AF-Encoders are adopted to handle 
low-dimensional features. Meanwhile, An AF-Encoder 
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is utilized to extract HR features by a 1 × 1 convolution. 
Subsequently, the features are fed into three AF-Decoders 
for enhancement. The AF-Decoder integrates multi-scale 
high-dimensional and low-dimensional features. It utilizes 
the encoded low-dimensional features as the keys (K) and 
values (V) inputs and performs cross-attention computation 
with high-dimensional features (used as the queries, Q). The 
fusion of low-dimensional features with high-dimensional 
representations occurs at various stages. This fusion ena-
bles the high-dimensional features to exploit the information 
from low-dimensional features effectively. Consequently, 
this integration leads to enhanced image detail recovery. 
Finally, after the feature enhancement stage, a single con-
volutional layer is adopted to produce the SR image ISR.

3.2 � Attention fusion encoder–decoder architecture

We emphasize the integration of attention modules within 
the network. This integration is aimed at substantially 
enhancing the feature extraction capability and expressive-
ness. As shown in Fig. 1, the low-latitude feature encoder 
module integrates three AF-Encoders, while a singular 
AF-Encoder constitutes the high-latitude counterpart. 
We employ a combination of four AF-Encoders and three 
AF-Decoders. Furthermore, we effectively capture long-
range dependencies using the self-attention mechanism. 
As depicted in Fig. 3, AF-Encoder3 and AF-Decoder3 are 

employed as examples to illustrate their specific interactions. 
It provides a detailed account of the systematic transforma-
tion from input features to output data.

AF-Encoder: We transform the features of 3D images 
into 1D feature sequences. The initial step involves creating 
a 3D feature map. It is expressed as f ∈ ℝ

H×W×C , where H, 
W, and C represent the map’s height, width, and channel 
dimensions, respectively. Subsequently, the feature map f 
is partitioned into patches of size PH × PW , where PH and 
PW denote the height and width of the patches, respectively. 
Each patch is transformed into a vector, fpi ∈ ℝ

PH×PW×C , and 
arranged into a sequential series:

where N represents the total number of patches. The result-
ing sequence fseq is introduced as the input to the model. 
Each module does not incorporate positional embeddings. 
The network input can be represented as:

where W ∈ ℝ
(PH×PW×C)×D represents the linear projection 

matrix, and D represents the dimension.

(2)fseq = {fpi}
N
i=1

,

(3)N =

(
H ×W

PH × PW

)
,

(4)m0 = [fp1W, fp2W,… , fp2W],

Norm EA EMA MHA Norm EA MLPInput from FE3

Norm EA EMA MHA Norm EA MLP
Output tokens of

AF-Encoder4
Norm MHA

KAE3 VAE3

Attention Fusion Encoder3

Attention Fusion Decoder3

EA External Attention Module EMA Effcient Multi-Scale Attention Module

mi-1 mi' mi

ni-1 ni' ni'' ni
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The architecture of the encoder expands upon the original 
Transformer structure Vaswani et al. (2017). It incorporates 
External Attention (EA) via Two Linear Layers and the 
EMA module with cross-spatial learning. This augmenta-
tion integrates a multi-head self-attention (MHA) mecha-
nism with EMA and EA. This structure is reinforced by 
the multilayer perceptron (MLP). EA computes attention 
between input pixels and external memory units using the 
following formula:

Amap is the attention matrix. We utilize Mk and Mv as K and 
V, respectively, which improves network performance.

EMA enhances efficiency and semantic information dis-
tribution by partitioning the channel dimension into sub-
features for parallel processing. It employs three parallel 
pathways to extract attention-weight descriptors. Two path-
ways capture long-range dependencies along one dimen-
sion while preserving positional information in the other. 
A 1x1 convolution then generates channel attention maps. 
Two-dimensional global average pooling is applied to both 
branches to encode global spatial information. The global 
pooling operation is formulated as:

where xc denotes the input features at c − th channel and 
(p,q) is the pixel index in the feature map. The third pathway 
utilizes a 3 × 3 convolution to capture multi-scale features 
and expand the feature space. To optimize the learning effi-
ciency of crucial input data features, layer normalization 
(LN) Ba et al. (2016) precedes each module. And it incor-
porates a local residual structure. Figure 3 illustrates the 
architectures of the AF-Encoder3 and AF-Decoder3 . The 
overall computational process within the AF-Encoder is 
formulated as:

In the MLP, one of the two layers utilizes the GeLU Hendry-
cks and Gimpel (2023) activation function. The AF-Encoder 
module converts local features extracted from different 
image stages into a digital format. It can efficiently extract 
essential information. Then, the AF-Decoder amalgamates 
the embedded representations and combines them to gener-
ate image features with augmented dimensions.

AF-Decoder: In contrast to the previously mentioned 
encoder, the AF-Decoder incorporates a Multi-Scale Atten-
tion (MSA) module. This component facilitates the output 

(5)
Amap = Norm

(
fMT

k

)
,

f out = AmapMv.

(6)AvgPoolc =
1
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features from the AF-Encoder and the input features of the 
AF-Decoder. It merges the K and V from the Encoder’s out-
put with the Q from the previous Decoder layer’s output. 
Subsequently, it projects K, V, and Q into a new feature 
space and employs multiple sets of Scaled Dot-Product 
Attention to capture correlations from various aspects. 
Finally, it combines the attention outcomes and produces the 
final result. MSA serves as the cornerstone for AF-Decoder 
functionality. The extensive computational framework of the 
AF-Decoder is formulated as:

where fDi is the output of the decoder and fEi is the output of 
the encoder. Ld denotes the number of layers in the decoder.

Multistage reinforcement: THEDNet employs multiple 
encoders and decoders to enhance multistage features. Spe-
cifically, the input features for the three low-dimensional 
feature encoders are derived from FEi(i = 1,2,3). The AF-
Encoder4 module supplies the upsampled high-dimensional 
feature encoding. This feature serves as Q in the AF-
Decoder. The features are encoded as K and V by the AF-
Encoderi(i = 1,2,3). The fusion process takes place in the 
hybrid input multi-head self-attention (MHSA) module of 
the decoder. It is denoted as:

where SA(⋅) denotes the dot-product attention function. dk 
represents the feature dimension in the decoders and j 
denotes the number of heads in the MSA module. Addition-
ally, WQ

j
 , WK

j
 , WV

j
 , and WO represent projection matrices. The 

subscripts of the Q/K/V variables are determined by the 
numbering of the AF-Encoder.

3.3 � Loss function

The L1 loss function is introduced to evaluate the difference 
between LR and SR images. It induces the model to gener-
ate images with a relatively smooth appearance and demon-
strates resilience to outliers. Based on the given ILR image 
and the corresponding SR image ISR , the loss function is 
denoted as:

(8)
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where i denotes the i − th image and n is the total number 
of training datasets.

4 � Experiments results and analysis

4.1 � Dataset

We performed the experiments on two medical Low-Dose 
CT (LDCT) image datasets McCollough et al. (2020) and 
QIN-LUNG dataset Kalpathy-Cramer et al. (2015). The 
LDCT dataset encompasses CT scans acquired from 299 
clinical patients. We derived two datasets from LDCT 
images using variations in X-ray dosage and windowing 
techniques. The LDCT-A and LDCT-B. LDCT-A consists 
of full-dose images, while LDCT-B consists of quarter-
dose images. LDCT-A is based on a bone window (win-
dow width of 1500, window level of 450), and LDCT-B is 
based on a mediastinum window (window width of 300, 
window level of 40). LDCT-A comprises 1822 images for 
training and 450 for testing. LDCT-B includes 892 training 
images and 240 testing images. Additionally, the QIN-
LUNG dataset consists of CT scans from 47 lung cancer 
patients. It utilizes 328 images for training and 150 for 
testing.

4.2 � Experimental settings

We investigate the SR of medical images at three scale fac-
tors: ×2 , ×3 , and ×4 . The original images in each dataset are 
utilized as high-resolution (HR) images. We use the bicubic 
downsampling method to create corresponding LR images. 
We extracted 48 × 48 blocks from the LR images in the train-
ing phase. Additionally, corresponding reference blocks 
were randomly extracted from the HR dataset. We incorpo-
rate random rotations of 90◦ ×n (n=1, 2, 3) and horizontal 
mirroring to expand the training sample set. Additionally, 
we integrated the inverse projection technique fromGlasner 
et al. (2009); Shocher et al. (2018) into the network. This 
mitigates the influence of block effects on generating the 
final HR image results. To enhance the training of the sub-
stantial dataset, we employ the Adam Kingma and Ba (2014) 
optimizer. Parameters for the Adam optimizer are specified 
as �1 = 0.9 , �2 = 0.99 , and � = 10−8 . The initial learning 
rate is 10−8 , and we utilize a batch size of 16 throughout the 
training phase. We employed PyTorch and conducted the 
experiments on two parallel NVIDIA 3080Ti GPUs.

(10)L(�) =
1

n

n∑
i=1

|||I
i
SR

− Ii
LR

|||
4.3 � Evaluation metrics

The objective results are evaluated using two metrics, 
namely peak signal-to-noise ratio (PSNR) and structural 
similarity index measure (SSIM)Wang et al. (2004). The 
PSNR gauges image reconstruction quality by analyzing the 
ratio of peak signal power to noise power. Higher PSNR 
values correlate with lower levels of distortion Sara et al. 
(2019). The SSIM assesses the similarity between two 
images by comparing brightness, contrast, and structure. 
SSIM values closer to 1 indicate a higher degree of resem-
blance between the images Thung and Raveendran (2009); 
Li et al. (2024). They are calculated as:

where L represents the maximum pixel, and N denotes the 
number of all pixels in ILR and IHR.

where x and y represent two images. �x,y symbolizes the 
covariance between x and y. � and � represent the average 
value and variance. k1 , k2 denotes constant relaxation terms.

4.4 � Comparative analysis

To evaluate the effectiveness of the proposed THEDNet, 
we conducted comparative experiments with SRCNN Dong 
et al. (2015), FSRCNN Dong et al. (2016), SRGAN Ledig 
et al. (2017), RDN Zhang et al. (2018), SRFBNN Li et al. 
(2019), GMFN Li et al. (2019), and TransENet Lei et al. 
(2021) methodologies. Objective evaluations were con-
ducted on the LDCT-A, LDCT-B, and QIN-LUNG test sets 
for three scale factors: ×2 , ×3 , and ×4.

Table 1 presents a comparative analysis of PSNR and 
SSIM scores among the LDCT-A, LDCT-B, and QIN-LUNG 
datasets. The experimental results indicate that THEDNet 
performs best in PSNR on the LDCT-B and QIN-LUNG 
datasets across different scale factors. On the LDCT-A data-
set, THEDNet ranks first in PSNR for ×3 and ×4 scale fac-
tors, and second place for the ×2 scaling factor. Specifically, 
we compare the proposed THEDNet with SRCNN at the ×2 
scale factor. The average improvement of PSNR and SSIM 
values for THEDNet is 4.36 dB and 0.0025, respectively. 
Similarly, compared with the FSRCNN, the PSNR and SSIM 
values have increased by 4.01 dB and 0.0023 dB, respec-
tively. Compared with the baseline, TransEnet, the PSNR 
and SSIM values are improved by 3.09 dB and 0.0010, 

(11)PSNR(x, y) = 10 ⋅ log 10 ×
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respectively. In LDCT-B test sets across different scale fac-
tors, THEDNet performs best regarding PSNR and SSIM. 
Moreover, compared with SRFBN which utilizes feedback 
mechanisms, the PSNR scores demonstrated incremental 
improvements of 0.79 dB, 0.39 dB, and 0.06 dB. The SSIM 
scores improved by 0.0112, 0.0192, and 0.0199, respectively. 
On the QIN-LUNG test set, THEDNet surpassed the com-
petitors in PSNR metrics. Compared with GMFN, which 
employs a many-to-many feedback connection mechanism, 
THEDNet improves the PSNR by 2.42 dB, 3.31 dB, and 
2.61 dB for scale factors ×2 , ×3 , and ×4 , respectively. Com-
pared to TransENet, THEDNet improves PSNR by 22.68%, 
24.91%, and 21.49% for ×2 , ×3 , and ×4 scale factors.

To demonstrate the effect of the proposed model visually, 
we provide a subjective comparison of ablation experiments. 
We chose the ×4 scale factor for testing on three datasets, 
LDCT-A, LDCT-B, and QIN-LUNG. Comparative results 
are shown in Fig. 4.

Figure 4a–c display the SR results obtained for distinct 
anatomical regions: left kidney, spleen, and lung. Specifi-
cally, Fig 4a indicates that the left kidney scans generated 
by SRFBN, GMFN, and THEDNet exhibit clearer details 
than those displayed by FSRCNN and SRGAN. Each bone 
exhibits distinct contours, and its clarity allows for more 

accurate observation of bone morphology and structure. This 
aids doctors in identifying potential abnormalities or inju-
ries. Figure 4b illustrates the contrast of details in the spleen 
region in the upper abdominal soft tissue window. THEDNet 
can distinctly exhibit details of the spleen and the associated 
blood vessels. Simultaneously, it can also present a clearer 
structure of the ribs. Figure 4c showcases the qualitative 
results of the QIN-LUNG dataset. This CT lung window 
scan image enhances lung structure and detail. The texture 
and anatomical structure of lung tissue are more prominently 
visible in the image. This provides robust support for the 
detection of pulmonary lesions. It shows that THEDNet can 
capture details in the esophagus and the upper part of the 
thoracic vertebrae. Compared to other methods, the THED-
Net outperforms other competitors in enhancing the depth 
and hierarchy perception of the image.

4.5 � Ablation study

To demonstrate the effectiveness of EA and EMA, we per-
formed ablation experiments on test set QIN-LUNG at a 
scale factor of ×4 . Table 2 displays the quantitative evalu-
ation results. The baseline model indicates the absence 
of integration of both EMA and EA attention modules. 

Table 1   Comparative results 
on the LDCT-A, LDCT-B, and 
QIN-LUNG datasets. (The best 
result is highlighted in bold.)

Algorithm Scale LDCT-A LDCT-B QIN-LUNG

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

SRCNN Dong et al. (2015) ×2 43.79 0.9822 33.82 0.9488 34.20 0.9352
FSRCNN Dong et al. (2016) ×2 44.14 0.9837 34.39 0.9502 35.65 0.9362
SRGAN Ledig et al. (2017) ×2 39.80 0.9652 32.92 0.9463 27.55 0.8426
RDN Zhang et al. (2018) ×2 44.53 0.9841 35.05 0.9508 37.15 0.9401
SRFBN Li et al. (2019) ×2 47.32 0.9878 35.41 0.9523 38.49 0.9800
GMFN Li et al. (2019) ×2 48.66 0.9886 35.42 0.9529 38.58 0.9802
TransENet Lei et al. (2021) ×2 45.06 0.9824 33.02 0.9412 33.42 0.9188
Ours ×2 48.15 0.9847 36.20 0.9635 41.00 0.9625
SRCNN Dong et al. (2015) ×3 39.12 0.9633 29.86 0.8072 31.85 0.8578
FSRCNN Dong et al. (2016) ×3 38.87 0.9623 30.19 0.8116 32.28 0.8612
SRGAN Ledig et al. (2017) ×3 – – – – – –
RDN Zhang et al. (2018) ×3 44.70 0.9668 31.79 0.8853 33.24 0.8911
SRFBN Li et al. (2019) ×3 44.16 0.9804 31.75 0.8843 34.55 0.9512
GMFN Li et al. (2019) ×3 44.80 0.9630 31.84 0.8856 34.55 0.9516
TransENet Lei et al. (2021) ×3 42.07 0.9705 29.64 0.8622 30.31 0.8729
Ours ×3 46.03 0.9428 32.14 0.9035 37.86 0.9406
SRCNN Dong et al. (2015) ×4 36.63 0.9465 28.46 0.8337 27.48 0.8381
FSRCNN Dong et al. (2016) ×4 37.06 0.9363 28.49 0.8215 27.55 0.8668
SRGAN Ledig et al. (2017) ×4 35.99 0.9308 27.92 0.8306 24.44 0.8097
RDN Zhang et al. (2018) ×4 40.78 0.9546 29.83 0.8346 30.43 0.8462
SRFBN Li et al. (2019) ×4 41.05 0.9714 30.06 0.8398 31.78 0.9226
GMFN Li et al. (2019) ×4 42.55 0.9748 30.02 0.8386 31.70 0.9237
TransENet Lei et al. (2021) ×4 40.01 0.9602 28.09 0.8072 28.24 0.8359
Ours ×4 44.62 0.9216 30.12 0.8597 34.31 0.8995
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The separate introduction of the EMA module for fusion 
marginally enhances PSNR and SSIM. The EA module 
introduced separately for fusion reduces PSNR and SSIM. 
Notably, the simultaneous integration of EMA and EA 

modules leads to a significant improvement in PSNR 
and SSIM. This affirms the effectiveness of the proposed 
method in integrating MHA, EMA, and EA.

SRCNN FSRCNN SRGAN RDN

SRFBN TRANSENETGMFN Ours

SRCNN FSRCNN SRGAN RDN

SRFBN TRANSENETGMFN Ours

SRCNN FSRCNN SRGAN RDN

SRFBN TRANSENETGMFN Ours

(a) CT image from LDCT-A dataset

(b) CT image from LDCT-B dataset

(c) CT image from QIN-LUNG dataset

Fig. 4   Comparative analysis of CT image SR at ×4 scale factor against alternative methods
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We conducted a series of ablation studies to investigate 
the influence of the number of encoder and decoder layers 
on model performance. In Table 3, we present a compari-
son of the experimental results obtained on the QIN-LUNG 
data set with different numbers of layers. The scale factor 
is ×4 . It can be observed that the model performs optimally 
when the number of encoder layers is 1 and the number of 
decoder layers is 4. It indicates that extracting features with 
high dimensions should be the focus of feature processing.

5 � Conclusion

This work presents a Transformer-based hierarchical 
Encoder–Decoder with Attention Fusion Enhancement Net-
work (THEDNet) for CT image super-resolution. THEDNet 
utilizes the Transformer architecture to enrich high-dimen-
sional feature representations of the upsampling layer. This 
approach emphasizes attention fusion in both encoder and 
decoder by integrating external attention (EA) and efficient 
multi-scale attention (EMA). This aids in capturing long-
distance interdependencies among features. We conducted 
comparative experiments on two publicly available medical 
image datasets. Ablation studies prove that the EA and EMA 
modules can improve the model’s performance in PSNR and 
SSIM. Meanwhile, comparative results on QIN-LUNG and 
LDCT datasets verify that the THEDNet is comparable to 
the SOTA competitors.
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