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Optimizing Nighttime Infrared and Visible Image
Fusion for Long-haul Tactile Internet

Wenhao Song, Mingliang Gao, Qilei Li, Xiangyu Guo, Zenghui Wang, Gwanggil Jeon

Abstract—In the domain of infrared and visible image fusion,
the majority of existing methods are designed for infrared and
visible images with normal illumination conditions. However,
these methods may not effectively address the challenges pre-
sented by long-haul transmission scenarios in the Tactile Internet.
To meet the requirements of nighttime infrared and visible
image fusion in long-haul network architectures for the tactile
internet, an illumination component adjusting network (ICANet)
is built. Firstly, an illumination adjustment denoising subnet-
work (IADSubNet) is designed to enhance the illumination com-
ponent of nighttime visible images and simultaneously eliminate
noise. Secondly, a local-global perception fusion subnetwork
(LGPFSubNet) is built to dynamically extract and fuse both
global and local information of the source images. Furthermore,
we leverage a mutual consistency loss to generate fused images
that are both visually appealing and rich in information. This
ensures the fidelity and consistency of the fused images during
long-distance transmission. Comprehensive experimental results
demonstrate that the proposed method outperforms state-of-
the-art (SOTA) methods quantitatively and qualitatively, and
prove that it has potential for high performance in the long-
haul transmission scenarios of tactile Internet. Meanwhile, the
fused images generated by the ICANet significantly enhance
object detection tasks. It is a critical aspect for many tactile
internet applications dependent on real-time and accurate object
recognition.

Index Terms—Long-haul tactile internet, Deep learning, Image
fusion, Transformer, Retinex theory.

I. INTRODUCTION

THe rapid advancement in infrared and visible imaging
technology has opened up significant opportunities for

applications across diverse fields. Infrared (IR) images excel
in detecting and capturing thermal radiation information from
targets, and they provide advantages in complex imaging
conditions. In contrast, visible (VIS) images offer higher
resolution, richer color information, and more detailed mor-
phological features. However, the IR image is marred by issues
such as texture blurring and an absence of color information.
In addition, the VIS image often underperforms in low-light or
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nocturnal environments due to inadequate illumination. Under
such circumstances, VIS images exhibit significant noise,
diminished contrast, and limited visibility of objects.

In recent years, research has increasingly focused on ad-
vancing and refining infrared and visible image fusion (IVF)
methods [1]–[3]. These methods aim to address the limitations
of individual images and to enhance their utility in downstream
computer vision tasks, such as object detection [4], [5]. The
IVF methods can be broadly classified into two primary
categories, namely traditional methods and deep learning-
based methods. Traditional methods [6] typically treat IVF
as a problem of feature representation. Deep learning-based
methods can be broadly classified into three main categories
according to their model architectures, namely convolutional
neural network (CNN) based methods [7], auto-encoder (AE)
based methods [8], and generative adversarial network (GAN)
based methods [9].

Although deep learning has shown remarkable success in
image fusion tasks, most existing approaches struggle in night-
time or low-light conditions. This necessitates the reliance
on infrared information in many image fusion frameworks
to counteract the deterioration of visual details in visible
images caused by poor lighting. However, this dependence
hinders their generalizability and negatively impacts overall
fusion performance. On the other hand, convolutional neural
networks are constrained by fixed-size local receptive fields
and weight sharing during feature extraction. This limitation
can lead to a loss of both texture details and global contextual
information in the fused images. Furthermore, the information
importance within the image can vary across different scenes.
Nevertheless, existing methods often rely on fixed weights
or simplistic weighting strategies to fuse the features, and
they fail to adequately address the problem of balancing
information from different modalities. This shortcoming can
ultimately lead to information loss and suboptimal fusion
outcomes.

To tackle these challenges, we propose a method that
decomposes the image fusion task under extreme conditions
into two sub-problems, namely image enhancement and image
fusion. The proposed method effectively integrates both tasks
while mitigating noise and artifacts, thereby ensuring compat-
ibility between image enhancement and image fusion. Specif-
ically, a Retinex-based illumination-adjustment and denoising
subnetwork (IADSubNet) is designed. This subnetwork is
used to decompose the mixed features at the feature level,
simultaneously generating enhanced source images. Notably,
IADSubNet possesses the ability to fine-tune the weights. This
capability allows for control of the degree of enhancement for
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images under varying illumination conditions. Subsequently,
a local-global perceptive fusion subnetwork (LGPFSubNet) is
constructed. It comprises the local feature extraction module,
the global feature extraction module, and the lightweight
adaptive feature fusion module. This subnetwork serves fea-
ture extraction, fusion, and reconstruction. The local feature
extraction module employs a CNN, while the global feature
extraction module utilizes a Transformer architecture with
self-attention mechanisms for comprehensive global feature
extraction. Combining the advantages of local and global fea-
ture extraction enables the model to comprehend information
from diverse dimensions and levels. The lightweight adaptive
feature fusion module effectively fuses information from both
images by dynamically combining their feature representa-
tions. Furthermore, the lightweight adaptive feature fusion
module employs a lightweight design to ensure computational
efficiency and real-time performance. We further introduced
mutual consistency loss in both IADSubNet and LGPFSubNet.
This loss function ensures that the generated images through
the proposed method exhibit smoother variations and consis-
tent structures. In summary, this study mainly contributes as
follows,

• A joint network is proposed to enhance the visual percep-
tion of infrared and visible images in extreme conditions.
This network effectively leverages the complementary
information from the source image.

• An IADSubNet is built to enhance the degraded illumi-
nation component and the unique features of both the
infrared and visible images. Additionally, an LGPFSub-
Net is developed to effectively utilize both local and
global features and dynamically fuse the complementary
information.

• A mutual consistency loss is introduced to mitigate color
distortion and structural inconsistencies and improve the
quality of the fused image.

II. RELATED WORK

A. Traditional IVF methods
Traditional IVF methods primarily focus on extracting the

intrinsic features of both images for feature representation and
applying specific fusion rules to combine them [10]. For exam-
ple, Li et al. [11] introduced a multi-scale transformation and
norm optimization technique to enhance the quality of fused
images. Sparse representation-based fusion methods have also
been widely explored. Wang et al. [12] introduced an image
fusion method based on sparse representation and geometric
dictionary learning. This approach exploits the sparsity inher-
ent in image representations to preserve information during
fusion. Ma et al. [13] proposed a multi-scale IVF method
that relies on visual saliency maps and weighted least squares
optimization. This method retains specific scale information
through a multi-scale decomposition method. Nevertheless,
they often face challenges in capturing differences between
modalities and preserving fine details in complex scenes [14].

B. Deep learning-based methods
CNN-based methods can automatically extract image fea-

tures, fuse multi-modal features, and reconstruct images

through an end-to-end network with carefully designed loss
functions. Tang et al. [15] integrated the image fusion and
semantic segmentation tasks and incorporated a semantic loss
to enhance the image fusion task performance. Su et al. [16]
proposed an image fusion method that enhances detection
performance through task-driven image fusion. This method
utilizes information from both infrared and visible images
to improve the results of tasks such as object detection and
tracking. PIAFusion [17] introduces an illumination-aware
network to achieve more robust and effective image fusion
results under extreme illumination conditions.

Numerous image fusion methods based on auto-
encoders (AE) have been proposed due to their flexibility and
interpretability. Most methods employ auto-encoders to extract
features from the source images and reconstruct images. The
feature fusion process mainly depends on manually designed
fusion rules [18], [19]. Li et al. [20] adopted an auto-encoder
for feature extraction and fusion and incorporated dense
connections within the encoder to extract deep features. They
then proposed NestFuse [21] and RFN-Nest [8]. Specifically,
NestFuse [21] introduces nested connections in the network
to extract multi-scale features from source images. Zhao et
al. [22] proposed a model-based infrared and visible image
fusion method (AUIF) that improves the efficiency and
performance of image fusion while preserving accuracy based
on the physical model.

GANs can estimate probability distributions in an unsuper-
vised fashion and enforce network constraints at a distribu-
tional level via adversarial loss. Therefore, they are suitable
for unsupervised tasks such as image fusion [14]. Fusion-
GAN [23] incorporates GAN into the image fusion process
and eliminates the need for manually designing complex
fusion rules. Nevertheless, using a single discriminator can
result in imbalanced fusion outcomes. To address this issue,
Ma et al. [9] introduced a Dual Discriminator Conditional
Generative Adversarial Network (GAN), which discriminates
the structural differences between the fused image and the two
source images individually.

C. Retinex-based low-light image enhancement

The Retinex theory is employed to explain and simulate
the perception of brightness and color in the human visual
system. It considers that the perceived brightness of each
pixel in an image can be expressed as the multiplication of
two components, namely the reflectance component and the
illumination component. The reflectance component conveys
the surface properties and color information of the object, and
the illumination component represents the impact of ambient
illumination, which is denoted as,

I = R⊙ L, (1)

where I is the input low-light image. R and L denote
the reflectance, and illumination components of the image,
respectively. The ⊙ represents element-wise multiplication.

Many methods have been proposed to enhance low-light
images based on the Retinex theory, which decomposes an
image into reflectance and illumination components. They
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then modify the estimated illumination to recover the image
quality. With the development of deep learning, researchers
have attempted to utilize convolutional neural networks to es-
timate reflectance and illumination maps [24]. Lore et al. [25]
proposed the LLNet, which utilized stacked sparse denois-
ing autoencoders to enhance and denoise low-light images.
Jiang et al. [26] proposed a generative adversarial network-
based approach to create an unpaired mapping between low-
light and normal-light images. This method addresses the issue
of data dependency in low-light enhancement methods.

III. PROPOSED METHOD

A. Overview
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Fig. 1. Architecture of the proposed method. The sub-figure (b) provides a
detailed description of the lightweight adaptive feature fusion module. Sub-
figure (c) and (d) present the architecture of the local feature extraction and
reconstruction modules, respectively.

To address the incompatibility between image enhancement
and fusion, we propose a novel framework consisting of two
specialized subnetworks: the illumination-adjustment denois-
ing subnetwork (IADSubNet) and the local-global perceptive
fusion subnetwork (LGPFSubNet). The framework of the
network is shown in Fig. 1. These subnetworks collaborate
to maximize compatibility between the two tasks, leading
to improved fusion outcomes. Specifically, the visible image
is initially transformed into the YCbCr color space [27].
Subsequently, the Y channel of the visible image and the
infrared image are concatenated along the channel dimension
and fed into IADSubNet. This subnetwork decomposes and
enhances the input, and it generates enhanced infrared and
visible images as outputs, which is defined as,{

Îir, Îvi

}
= IADSubNet(IYvi, Iir), (2)

where Iir and IYvi denote the infrared and the Y channel of the
visible image respectively. The enhanced infrared and visible
images are represented as Îir and Îvi, respectively.

The enhanced infrared and visible images are then fed into
LGPFSubNet, which performs feature extraction, fusion, and

image reconstruction to produce the fused image IYf . The
process can be formulated as,

IYf = LGPFSubNet(Îir, Îvi), (3)

Finally, to obtain the fused color image If , we concatenate IYf ,
Cb, and Cr along the channel dimension, and then convert
them from the Y CbCr domain to the RGB domain. This
process can be expressed as,

If = H
(
concat

(
IYf , ICb

vi , I
Cr
vi

))
, (4)

where H(·) represents the conversion of the image from the
Y CbCr colour space to the RGB colour space. ICb

vi and ICr
vi

indicates the Cb and Cr channels of the visible images.

B. Illumination-adjustment denoising subnetwork

The architecture of the illumination-adjustment denoising
subnetwork is illustrated in Fig. 2. This subnetwork is designed
based on the robust Retinex model [28]. Specifically, the
mixed features of infrared and visible are first decomposed
into four components, namely enhanced infrared features Îir,
reflectance R, illumination L, and noise N as follows:

concat
(
IYvi, Iir

)
= R⊙ L+N + Îir. (5)
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Fig. 2. Architecture of the illumination-adjustment denoising subnetwork.

The IADSubNet is a fully convolutional neural network that
employs identical convolutional layers to create four branches.
It comprises three 3 × 3 convolutional layers and a 1 × 1
convolutional layer. All layers except the last one use LReLU
activation. The last layer of the noise branch differs from the
others. To effectively handle additive noise, the noise branch
employs a tanh layer as its final layer and keeps noise values
within the range [−1, 1]. The other branches utilize sigmoid
layers.

In the reconstruction stage, the illumination component
is adjusted using a Gamma transformation, which can be
represented as,

L̂ = Lγ , (6)

where γ is the adjustable parameter in the gamma trans-
formation. The final restoration result combines the adjusted
illumination and noise-free reflectance,

ÎYvi = R⊙ L̂. (7)
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Fig. 3. Architecture of the global feature extraction module.

C. Local-global perceptive fusion subnetwork

The architecture of the local-global perception subnetwork
is depicted in Fig. 1. It consists of four modules i.e., the
local feature extraction module, the global feature extraction
module, the lightweight adaptive feature fusion module, and
the reconstruction module. The local feature extraction module
consists of 3× 3 convolutional layers with LReLU activation
functions.

The specific architecture of the global feature extraction
module is illustrated in Fig. 3. This module combines multi-
layer perception and self-attention mechanisms to extract
global image features. The multi-layer perception effectively
stacks multiple 3 × 3 convolutional layers with GELU non-
linear activation functions to extract high-level feature repre-
sentations from the input image. These convolutional layers
effectively capture both local and global features of the input
image. It allows the model to comprehend information from
various dimensions and levels within the image.

The self-attention mechanism enables the model to learn
informative feature representations by attending to the rela-
tionships between different spatial locations within the input
image. Thereby, it can enhance the ability of the model to
capture long-range dependencies. To reduce computational
complexity while emphasizing crucial features, a 1×1 convo-
lutional layer is employed to reduce the input dimension. The
self-attention mechanism process involves splitting the input
into query (Q), key (K), and value (V) components, followed
by computing attention weights that measure the relevance
of each key to each query. These weights are then used to
aggregate the corresponding values and generate an attention
representation. Finally, the projection layer uses the 1 × 1
convolutional maps of the features to generate the output with
the original dimension. The input image passes through self-
attention and multilayer perceptron layers, and the original
input is added to get the final output. This residual connection
helps preserve the input information and mitigate the vanishing
gradients issue.

The architecture of the lightweight adaptive feature fusion
module is shown in Fig. 1. This module has a lightweight
architecture with a convolutional layer, batch normalization,
and LReLU activation function. The lightweight adaptive
feature fusion module initially concatenates information from
two input feature maps. Subsequently, it uses a 1 × 1 con-
volutional layer to transform the input features into a lower-
dimensional space. This transformation is followed by batch

normalization to standardize the channel-wise activations, and
the application of the LReLU activation function to introduce
non-linearity. Furthermore, a Sigmoid function is utilized to
scale the features within the range [0, 1], and generates channel
weights that represent the relevance of each input feature map.
This enables the model to selectively emphasize or suppress
information from different input sources during the fusion
process. Finally, it concatenates the fused local and global
features along the channel dimension and feeds them into the
reconstruction module. The reconstruction module consists of
3× 3 and 1× 1 convolutional layers and a sigmoid function,
which produce the fused image.

D. Loss function
1) Illumination-adjustment denoising loss: To update the

weights of the IADSubNet, it is necessary to employ a loss
function that ensures the network generates more accurate
components. Consequently, we have designed a loss function
LIAD consisting of five parts. It can be formulated as,

LIAD = λ1Lir
recon + λ2Lvi

recon + λ3Lillu
smooth

+λ4Lmc + λ5Lnoise ,
(8)

where Lir
recon and Lvi

recon are the reconstruction losses for
infrared and visible images, respectively. Lillu

smooth and Lmc

represent the illumination smoothness loss and the mutual con-
sistency loss, respectively. Lnoise denote the noise estimation
loss λ1, λ2, λ3, λ4, λ5 stands for the corresponding balance
weight factors.

We introduce the infrared and visible image reconstruction
losses to preserve high-fidelity information from the original
images in the IADSubNet. The reconstruction losses are
defined as follows,

Lir
recon =

∥∥∥Iir − Îir

∥∥∥
1
, (9)

Lvi
recon =

∥∥IYvi − (R⊙ L+N)
∥∥
1
, (10)

where ∥ · ∥1 denote the l1-norm.
We further incorporate illumination smoothness and mutual

consistency losses to generate consistent and seamless illu-
mination components. These losses are inspired by DIVFu-
sion [29] and formulated as follows,

Lillu
smooth =

∥∥∥∥∥ ∇L

max
(∣∣∇IYvi, ε

∣∣)
∥∥∥∥∥
1

, (11)

Lmc = ∥∇L⊙ exp(−c⊙∇L)∥1, (12)

where ∇ denotes the gradient operation, and ε is a positive
constant. We apply the maximum operation to constrain the
minimum value of the denominator to be ε (0.01 in this work).
The parameter c (set as 10 in this work) plays a crucial role
in shaping the mutual consistency loss function. By setting c,
we use the mutual consistency loss to enhance the medium-
gradient parts of the images.

When enhancing low-light scenes, the noise concealed
within the shadowed areas may also be amplified. To sup-
press the amplified noise more accurately, we adopt a noise
estimation loss, which is formulated as,

Lnoise = ∥L⊙N∥2, (13)
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where ∥ · ∥2 denotes the l2-norm. The noise estimation loss
uses the illumination component as a weight to constrain the
noise component. It facilitates the model in separating the
noise component more effectively.

2) Local-global perceptive fusion loss: To improve the
fusion performance, we employ three loss functions namely,
texture loss, pixel loss, and mutual consistency loss. The local-
global perceptive fusion loss is represented as,

LLGP = α1Ledge + α2Lpix + α3Lfmc , (14)

where Ledge represents the edge loss, which helps the fused
image retain more edge detail information. Lpix is the pixel
loss that aims to preserve prominent target information from
the infrared image. Lfmc represents the mutual consistency
loss that enhances the gradient consistency and visual quality
of the fused image.

The edge loss is utilized to preserve the distinctive texture
details of the enhanced infrared and visible images. It can be
formulated as follows,

Ledge =
∥∥∥∇IYf −max

(
∇Îir,∇Îvi

)∥∥∥
1
. (15)

Similarly, pixel loss is a pixel-level constraint that measures
the difference between the fused image and the source image.
It can be represented as follows,

Lpix = ∥IYf − Îir∥1. (16)

The fused images often suffer from inconsistent gradient
distributions, resulting in discontinuous edges or blurry details.
To address this issue, we use a mutual consistency loss func-
tion on the fused image that minimizes the overall consistency
of gradients within the fused image, thereby preserving critical
details while mitigating high-gradient regions. This function
enhances the visual quality of the fused image and is defined
as,

Lfmc = ∥∇IYf ⊙ exp(−c⊙∇IYf )∥1, (17)

where c is a parameter set to 10.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental configurations

The MSRS [17] dataset is used to evaluate the performance
of the ICANet. We also use the LLVIP [30] and Road-
Scene [31] datasets to illustrate the generalization ability of
our method. The illumination-adjustment denoising and Local-
global perceptive fusion subnetworks are trained on the MSRS
dataset. To evaluate the effectiveness of ICANet, a total of 185
image pairs from the MSRS datasets are utilized. In addition,
50 image pairs from the LLVIP dataset and 40 image pairs
from the RoadScene dataset were selected to evaluate the
generalization of the ICANet.

In this work, we compare our method with nine SOTA
methods, including CSF [18], CUFD [32], IFCNN [33],
PIAFusion [17], FusionGAN [23], U2Fusion [34], UMF-
CMGR [35], SDNet [36], and RFN-Nest [8]. To evaluate the
fusion performance quantitatively, five metrics are employed
as objective measures. These metrics encompass entropy (EN),

spatial frequency (SF), average gradient (AG), standard devi-
ation (SD), and visual information fidelity (VIF). A fusion
method with higher values in EN, SF, AG, SD, and VIF has
superior fusion performance.

B. Training details

The IADSubNet and LGPFSubNet are trained on the MSRS
dataset. To enrich the training data, we cropped the images into
multiple pairs of image patches. All images are preprocessed
by normalization and scaling to the range [0, 1] before being
fed into the subnetworks.

We adopted a two-stage training approach, where each sub-
network is trained separately. In the first stage, the IADSubNet
is trained with a batch size of 128, and the learning rate
is initialized as 0.0001. The training epoch is set as 100.
Subsequently, the output images from the IADSubNet are
utilized as the input for LGPFSubNet. In the second stage,
a batch size of 64 is set, and the learning rate is adjusted
to 0.001. The LGPFSubNet training epoch is set to 30. We
employed the Adam optimizer to update the parameters in
both subnetworks. The hyperparameters in the loss functions
Eq. (8) λ1, λ2, λ3, λ4, and λ5 are set to 1000, 2000, 7, 9
and 1, respectively. The α1, α2, and α3 in the Eq. (14) are
seated as 200, 0.1, and 1.1, respectively. The γ in Eq. (6) is set
to 0.4. Both subnetworks are implemented using the PyTorch
framework and trained on the NVIDIA GeForce RTX 3090 Ti
GPU.

C. Fusion performance analysis

To comprehensively evaluate the performance of ICANet,
we conducted a comparative analysis with nine SOTA methods
on the MSRS dataset.

1) Qualitative evaluation: The qualitative evaluation mea-
sures the level of satisfaction that humans have with an
image. A superior low-light fusion algorithm should extract
and enhance valuable information from the source images, and
produce a scene with high contrast and well-illuminated details
for images degraded by low-light conditions. We selected a
pair of typical infrared and visible images to demonstrate
the fusion performance of different algorithms on the MSRS
dataset visually in Fig. 4. It shows that the results of PIAFusion
and UMF-CMGR preserve some details from the visible
image, but they have an overall dark appearance and are
not visually pleasing. Additionally, other comparative methods
suffer from significant loss of details from the visible image.
In contrast, the proposed fusion method enhances the texture
information from the visible image and leads to a brighter
scene and a high-contrast fused image. The ICANet also
balances the intensity information from the infrared image and
the texture information from the visible image effectively.

2) Quantitative evaluation: To further validate the effec-
tiveness of ICANet, we selected 182 pairs of images from
the MSRS dataset for quantitative comparisons. As illustrated
in Table I, the results demonstrate that the ICANet outper-
forms other methods in all five metrics. The highest EN
metric indicates that the results of the ICANet with higher
information content and better visual effects. The highest SF
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(a) Infared image (b) Visible image (c) CSF (d) CUFD (e) FusionGAN (f) IFCNN

(g) PIAFusion (h) RFN-Nest (i) SDNet (j) U2Fusion (k) UMF-CMGR (l) Ours

Fig. 4. Visualized results of different methods on the MSRS dataset.

and AG metrics indicate that ICANet preserves more texture
information. The highest SD metric suggests that the fusion
results of the proposed method have a higher contrast. The
synergistic effect of image enhancement and fusion in ICANet
leads to higher VIF metrics than other SOTA methods. In
summary, the ICANet can effectively extract valuable informa-
tion in low-light scenes. It leverages IADSubNet to enhance
the illumination component and reduce noise, which is then
integrated into the fused image. Consequently, the proposed
method exhibits clear advantages over other SOTA methods.

TABLE I
QUANTITATIVE COMPARISONS ON 182 PAIRS OF IMAGES FROM THE
MSRS DATASET. THE DISPLAYED VALUES REPRESENT THE MEAN ±
STANDARD DEVIATION. (THE BEST, SECOND-BEST, AND THIRD-BEST
RESULTS ARE MARKED IN RED, BLUE, AND GREEN, RESPECTIVELY.

EN ↑ SF ↑ AG ↑ SD ↑ VIF ↑
CSF [18] 5.104±0.613 5.180±1.122 1.480±0.397 20.411±6.406 0.617±0.091
CUFD [32] 5.209±0.567 6.668±1.219 1.808±0.413 24.227±7.807 0.571±0.085
IFCNN [33] 5.281±0.506 9.075±1.883 2.631±0.691 22.830±7.025 0.683±0.050
PIAFusion [17] 5.960±0.600 9.240±1.680 2.831±0.662 34.998±9.840 1.063±0.074
FusionGAN [23] 5.270±0.424 3.715±0.754 1.198±0.269 15.713±4.371 0.493±0.114
U2Fusion [34] 4.518±0.675 6.442±1.464 1.609±0.502 19.599±6.445 0.493±0.055
UMF-CMGR [35] 5.060±0.328 5.405±1.200 1.534±0.357 15.297±5.175 0.336±0.071
SDNet [36] 4.833±0.441 6.443±1.258 1.899±0.446 14.021±4.363 0.433±0.073
RFN-Nest [8] 5.573±0.563 4.678±1.133 1.386±0.364 23.169±6.751 0.667±0.128
Ours 6.853±0.416 11.478±1.553 3.908±0.639 42.153±8.159 1.101±0.830

D. Generalization evaluation

1) Generalization evaluation on the LLVIP dataset: Fig. 5
illustrates a pair of typical infrared and visible images captured
under nighttime conditions. The fusion results of the proposed
method reveal a bright scene with salient objects, uncovering
the hidden details in dark areas. In the red box, the ICANet
leverages salient information from the infrared image and
improves the visibility of the targets by enhancing the contrast.
In the green box, only the ICANet preserves crucial scene
details, while other methods fail to provide information for
this region. This observation indicates that ICANet improves
the fusion performance by extracting information in the dark
regions through IADSubNet.

(a) Infared image (b) Visible image (c) CSF (d) CUFD (e) FusionGAN (f) IFCNN

(g) PIAFusion (h) RFN-Nest (i) SDNet (j) U2Fusion (k) UMF-CMGR (l) Ours

Fig. 5. Visualized results of different methods on the LLVIP dataset.

Table II presents the results of quantitative experiments on
the LLVIP dataset. We compare the performance of ICANet
with nine SOTA methods. The results demonstrate that ICANet
achieves the highest scores in EN, SF, AG, and VIF metrics.
For the SD metric, the ICANet ranks second, only behind
the PIAFusion. This high ranking indicates that the proposed
fusion method maintains visual similarity with the source
images, and highlights its potential for accurate and reliable
fusion results.

TABLE II
QUANTITATIVE COMPARISONS ON 50 PAIRS OF IMAGES FROM THE LLVIP
DATASET. THE DISPLAYED VALUES REPRESENT THE MEAN ± STANDARD
DEVIATION. (THE BEST, SECOND-BEST, AND THIRD-BEST RESULTS ARE

MARKED IN RED, BLUE, AND GREEN, RESPECTIVELY.)

EN ↑ SF ↑ AG ↑ SD ↑ VIF ↑
CSF [18] 6.698±0.383 8.21±4.129 2.575±1.534 32.502±9.808 0.695±0.113
CUFD [32] 6.681±0.313 7.234±3.39 2.03±1.246 33.846±4.771 0.627±0.141
IFCNN [33] 6.734±0.466 14.408±8.599 4.184±2.906 34.84±12.336 0.762±0.084
PIAFusion [17] 7.178±0.327 14.685±8.537 4.312±2.906 44.701±10.499 0.952±0.109
FusionGAN [23] 6.308±0.312 6.921±3.059 1.947±1.042 24.822±4.483 0.476±0.079
U2Fusion [34] 6.360±0.581 11.047±6.177 3.289±2.243 31.219±11.383 0.674±0.091
UMF-CMGR [35] 6.462±0.501 9.916±6.569 2.504±1.895 29.38±10.066 0.521±0.070
SDNet [36] 6.680±0.338 12.098±7.258 3.439±2.361 31.802±6.250 0.635±0.078
RFN-Nest [8] 6.820±0.331 6.321±2.917 2.158±1.155 34.646±8.666 0.669±0.131
Ours 7.303±0.289 19.149±8.883 6.068±3.232 43.982±8.504 1.076±0.302

2) Generalization evaluation on the RoadScene dataset:
We further employed the RoadScene dataset to validate the
generalization ability of ICANet with qualitative and quantita-
tive experiments. The RoadScene dataset consists of grayscale
images, and the infrared and visible images are mostly ac-
quired under normal lighting conditions. Therefore, the full
potential of the ICANet cannot be fully utilized. However,
the ICANet still demonstrates comparable performance to
SOTA methods. As shown in Fig. 6, this example illustrates
a representative pair of images from the RoadScene dataset.
The fusion results of CSF, CUFD, FusionGAN, RFN-Nest,
and UMF-CMGR exhibit noticeable blurriness and significant
loss of scene information. IFCNN, PIAFusion, SDNet, and
U2Fusion preserve more texture information, but have low
scene contrast and poor information balancing from the in-
frared and visible images. In contrast, the ICANet not only
achieves superior scene contrast but also retains rich texture
details.

(a) Infared image (b) Visible image (c) CSF (d) CUFD (e) FusionGAN (f) IFCNN

(g) PIAFusion (h) RFN-Nest (i) SDNet (j) U2Fusion (k) UMF-CMGR (l) Ours

Fig. 6. Visualized results of different methods on the RoadScene dataset.

Table III summarizes the numerical results on the Road-
Scene dataset. The ICANet outperforms other methods in
terms of AG and SF. This demonstrates that the fusion results
of the ICANet exhibit high contrast. The ICANet also achieves
the second-best performance on EN and SD, which indicates
that the fused images of the ICANet contain richer detailed
information. However, the ICANet shows suboptimal perfor-
mance on the VIF metric. The challenge arises from the fact

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2024.3367667

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Dalian University of Technology. Downloaded on February 21,2024 at 02:11:21 UTC from IEEE Xplore.  Restrictions apply. 



7

that the proposed method targets the adjustment of the image’s
illumination level to achieve a brighter scene, which might not
be well-suited for grayscale images in the RoadScene dataset.
Consequently, the method encounters difficulty in fine-tuning
the image to closely align with human visual perception.

TABLE III
QUANTITATIVE COMPARISONS ON 40 PAIRS OF IMAGES FROM THE

ROADSCENE DATASET. THE DISPLAYED VALUES REPRESENT THE MEAN ±
STANDARD DEVIATION. (THE BEST, SECOND-BEST, AND THIRD-BEST
RESULTS ARE MARKED IN RED, BLUE, AND GREEN, RESPECTIVELY.)

EN ↑ SF ↑ AG ↑ SD ↑ VIF ↑
CSF [18] 7.351±0.273 12.493±3.145 5.098±1.456 45.574±9.127 0.572±0.103
CUFD [32] 7.299±0.220 13.949±2.759 5.442±1.219 48.318±7.507 0.587±0.105
IFCNN [33] 7.202±0.287 15.991±4.167 6.373±1.735 40.518±8.371 0.568±0.109
PIAFusion [17] 6.949±0.227 12.262±2.967 4.410±1.263 42.007±5.609 0.663±0.094
FusionGAN [23] 7.017±0.252 8.126±1.455 3.205±0.648 37.486±6.243 0.364±0.058
U2Fusion [34] 7.140±0.303 14.705±3.648 6.004±1.611 38.666±8.520 0.537±0.104
UMF-CMGR [35] 6.995±0.349 10.461±2.923 4.089±1.229 35.583±8.655 0.584±0.108
SDNet [36] 7.294±0.247 15.112±3.624 6.119±1.631 43.505±8.096 0.577±0.103
RFN-Nest [8] 7.297±0.255 7.639±1.703 3.310±0.888 44.122±8.749 0.500±0.091
Ours 7.327±0.255 19.279±5.265 6.408±2.210 46.381±6.690 0.533±0.091

E. Application to object detection

This section validates the effectiveness of the ICANet for
downstream object detection tasks using the fusion images
generated by the proposed method. For the object detection
task, the Yolov5 [37] is used to evaluate the performance of
the source images and our fused images.

As shown in Fig. 7, the visible images have difficulties
in capturing adequate information in low-light environments,
which hinders the detection of pedestrians. In contrast, infrared
images can capture thermal information. It helps emphasize
prominent targets like pedestrians. However, infrared images
lack detailed information about objects such as vehicles. This
results in reduced detection accuracy for such objects. The
proposed model effectively integrates meaningful information
from the source images, thereby improving the detection
accuracy of pedestrians and vehicles. Table IV presents the
quantitative metrics for the object detection task. Table IV
shows that the fused images produced by the proposed method
achieve the best precision, mAP@0.50, and mAP@[0.5 :
0.95] values. The proposed method also achieves the second-
highest recall.
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Fig. 7. Visual results of object detection on the MSRS dataset.

TABLE IV
OBJECT DETECTION QUALITATIVE EVALUATION OF INFRARED, VISIBLE,

AND FUSED IMAGES ON THE MSRS DATASET. THE BEST AND
SECOND-BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE,

RESPECTIVELY.

Precision ↑ Recall ↑ mAP@0.50 ↑ mAP@[0.5:0.95] ↑
Infrared 0.88 0.686 0.812 0.569
Visible 0.913 0.765 0.804 0.533
Ours 0.929 0.747 0.875 0.604

Fig. 8. Visual results of ablation study on the MSRS dataset.

F. Ablation study

To evaluate the effectiveness of each component in the
ICANet, we conduct an ablation evaluation on the four
key components, i.e., mutual consistency loss, illumination-
adjustment denoising subnetwork, global feature extraction
module, and lightweight adaptive feature fusion module. We
present the quantitative results summarized in Table V and
list the qualitative results in Fig. 8. Qualitative and quanti-
tative experiments indicate that the removal of Lfmc from
the proposed method results in increased noise and reduced
smoothness in the fused image. Moreover, the EN, SF, AG,
and SD indicators exhibit a decline. When the IADSubNet
is removed, the visual results turn out to be obvious degra-
dation. Removing IADSubNet results in considerable visual
degradation and darkened imagery. For the validity of the
experiment, we replaced the GFE module with the local feature
extraction module. When the global feature extraction module
is replaced from the method, the fusion results lose a lot
of detailed information, and in the quantitative experiments,
the EN, SF, SD, and VIF indicators decrease significantly.
The LAF module achieves a dynamic fusion of local and
global information. The absence of the LAF module resulted
in ghosting and color distortion issues, highlighting its role in
balancing local and global information for dynamic fusion.

TABLE V
QUANTITATIVE EVALUATION RESULTS OF ABLATION STUDY. THE BEST,
SECOND-BEST, AND THIRD-BEST RESULTS ARE MARKED IN RED, BLUE,

AND GREEN, RESPECTIVELY. ”W/O” DENOTES ”WITHOUT”.

EN ↑ SF ↑ AG ↑ SD ↑ VIF ↑

W/O Lfmc 6.830±0.424 11.134±1.521 3.792±0.657 41.543±7.788 1.127±0.19
W/O IADSubNet 6.000±0.516 8.864±1.703 2.681±0.628 32.635±8.68 0.996±0.088
W/O GFE 6.835±0.429 11.385±1.608 3.923±0.649 41.642±8.161 1.084±0.195
W/O LAF 6.857±0.403 11.186±1.44 3.889±0.629 42.329±8.099 1.135±0.201
Ours 6.853±0.416 11.478±1.553 3.908±0.639 42.153±8.159 1.101±0.83

V. CONCLUSION

In this study, we proposed the illumination component
adjusting network (ICANet) for infrared and visible image
fusion. This network achieves the integration of image en-
hancement and image fusion tasks. Specifically, we initially
constructed the IADSubNet to isolate and enhance the illumi-
nation, reflection, and noise components, thereby augmenting
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the scene information in images. Subsequently, we designed
the LGPFSubNet for image fusion, which integrates local and
global information through specialized extraction modules.
A lightweight feature fusion module is then employed to
dynamically fuse the features of the infrared and visible
images. To enhance the fused image quality, we implemented
mutual consistency loss. Experimental results demonstrate that
the ICANet outperforms the SOTA methods in terms of perfor-
mance qualitative and quantitative evaluations. Furthermore,
the application of ICANet in object detection tasks underscores
its effectiveness.

As part of future work, we intend to develop an adaptive
illumination adjustment module tailored for fusing images
with varying degradation levels. Additionally, we will explore
methods to integrate semantic information into the fusion
process. This investigation entails combining infrared images
and visible images with semantic segmentation masks to
augment the efficacy of downstream tasks, including object
detection and tracking.
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