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Abstract
Computed tomography (CT) and magnetic resonance imaging (MRI) image fusion is a popular technique for integrating 
information from two different modalities of medical images. This technique can improve image quality and diagnostic 
efficacy. To effectively extract and balance complementary information in the source images, we propose an end-to-end 
multimodal feature interaction network (MFINet) to fuse CT and MRI images. The MIFNet consists of a shallow feature 
extractor, a feature interaction (FI), and an image reconstruction. In the FI, we design a deep feature extraction module, 
which consists of a series of gated feature enhancement units (GFEUs) and convolutional layers. To extract key features 
from images, we introduce a gated normalization block in the GFEU, which can achieve feature selection. Comprehensive 
experiments demonstrate that the proposed end-to-end fusion network outperforms existing state-of-the-art methods in both 
qualitative and quantitative assessments.
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1  Introduction

Medical imaging can provide rich information about human 
tissues and structures. Therefore, medical imaging is widely 
used in diagnosis, treatment planning, and surgical naviga-
tion (Azam et al. 2022). Computed tomography (CT) and 
magnetic resonance imaging (MRI) are two widely used 
imaging modalities in medical diagnosis. CT images can 
capture the dense structures of the human body, such as 
bones and organs, with high spatial resolution and contrast. 
MRI images can reveal soft tissue information, such as 
brain tissues and tumors, with high contrast and sensitivity 
(Li et al. 2023). However, single-modality medical images 
have the limitation of insufficient information, which cannot 
meet the needs of medical diagnosis (Zhang et al. 2023). To 
address this limitation, image fusion technology integrates 

the complementary information from both modalities and 
enhances the image quality (Jian et al. 2020).

In recent years, the research on image fusion has made 
significant progress, with the emergence of various fusion 
methods. The different fusion methods broadly categorized 
into traditional methods (Huang et al. 2018; Faragallah et al. 
2022; Anu and Khanaa 2023) and deep learning-based meth-
ods (Song et al. 2023; Zhai et al. 2023; Gao et al. 2023). 
Traditional image fusion methods extract features from 
source images using different decomposition methods. Then, 
the decomposed images are fused according to manually 
designed fusion rules, and the fusion results are finally gen-
erated. In most deep learning-based methods, features of 
different modality images are extracted by neural networks, 
and the fusion image is directly generated by the end-to-end 
model, which avoids the need for manual design of fusion 
rules. Nonetheless, the absence of ground truth presents a 
significant challenge in training an end-to-end model to effi-
ciently extract and combine the complementary features of 
the source images.

To address this problem, we proposed a modal interac-
tion network (MFINet) to fuse the CT and MRI images. The 
MFINet is composed of a shallow feature extractor (SFE), 
a feature interactor (FI), and an image reconstructor (IR). 
As for FI, we designed a deep feature extraction mod-
ule  (DFEM), which is constructed by a series of gated 
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feature enhancement units (GFEU). To efficaciously extract 
crucial features from images, a Gated Normalization Block 
(GNB) is introduced in the GFEU that allows for feature 
selection. The contributions of this work can be summarized 
as follows,

–	 A multimodal feature interaction fusion network is intro-
duced for CT and MRI image fusion. The framework 
achieves end-to-end image fusion by fully extracting the 
complementary information of the two modalities.

–	 We design a feature extractor to extract and interact fea-
tures from two modalities. The feature extractor consists 
of deep feature extraction and channel attention modules.

–	 Extensive experimental results demonstrate that the 
proposed method outperforms state-of-the-art (SOTA) 
methods in both qualitative and quantitative evaluations.

The remainder of this paper is structured as follows: Sect. 2 
introduces the prior work. Section 3 provides details of 
MIFNet. Section 4 presents the experimental results and 
analysis. Section 5 concludes the paper.

2 � Related work

Medical image fusion has gained widespread attention due 
to its practicality. Based on the fusion approaches, image 
fusion methods can be categorized into two main types, 
namely traditional methods and deep learning-based meth-
ods (Haribabu et al. 2023).

2.1 � Traditional medical image fusion methods

Traditional methods typically use different mathemati-
cal transformations to decompose images to extract image 
features, e.g., Curvelet Transform (CVT) (Ali et al. 2010), 
Non-Subsampled Contourlet Transform (NSCT) (Zhu et al. 
2019), Non-Subsampled Shearlet Transform (NSST) (Gana-
sala and Prasad 2018), and Daubechies complex Wavelet 
Transform (Singh and Khare 2014). Then, the features are 
fused using manually designed fusion strategies. Finally, the 
image is reconstructed using an inverse transformation. For 
example, Bhavana and Krishnappa (2015) designed a fusion 
method based on the Discrete Wavelet Transform (DWT) 
for combining medical images. Du et al. (2016) introduced 
a technique utilizing a union Laplacian pyramid and multi-
ple features to fuse salient details from source images with 
enhanced accuracy. Maqsood and Javed (2020) introduced 
a multi-modal medical image fusion method. It utilizes two-
scale decomposition and sparse representation to enhance 
detail visibility and improve clinical diagnosis accuracy.

2.2 � Deep learning‑based medical image fusion 
method

Most deep learning-based methods employ CNNs to learn 
image fusion strategies. These methods exhibit enhanced 
learning abilities and can automatically learn the opti-
mal fusion strategy from data. For instance, Xu et  al. 
(2020b) introduced FusionDN, an unsupervised and uni-
fied densely connected network. This network fuses source 
images utilizing data-driven weights, which are reflective 
of their feature quality and information content. Ma et al. 
(2020) developed a dual-discriminator architecture, termed 
DDcGAN. It fuses source images by simultaneously pre-
serving thermal signatures and texture details. Xu et al. 
(2020a) presented U2Fusion, a unsupervised end-to-end 
image fusion network. U2Fusion employs feature extrac-
tion and information measurement techniques to assess 
the significance of source images, thereby producing a 
composite image that maintains adaptive similarity with 
the source images.

3 � Proposed method

3.1 � Overview

The overall framework of MFINet is shown in Fig. 1. 
Given CT Ict ∈ ℝ

1×H×W  and MRI Imri ∈ ℝ
1×H×W  images 

as input. These images are independently fed into the SFE 
based on the Restormer block (Zamir et al. 2022) for map-
ping the images to a feature space and extracting shal-
low information. Subsequently, the shallow information 
is input to the FI, which extracts deep semantic features 
through the interaction of three pairs of DFEMs. The final 
stage involves the IR module, which processes the outputs 
of the feature extractor to produce the final fused image.

3.2 � Network architecture

The architecture of the deep feature extraction mod-
ule (DFEM) is depicted in Fig. 2. This module adopts a 
residual dense connection structure to enhance feature 
reuse and gradient flow, thereby improving the capac-
ity of the model for feature representation. In addition, 
to enhance the information transmission between the 
DFEMs, we adopt a channel attention mechanism. This 
technique assigns different weights to different feature 
channels based on their importance. It enables the feature 
extractor to focus on the most informative and salient fea-
tures from the source images and suppress the irrelevant or 
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redundant ones. Channel attention also enhances the fea-
ture representation ability of the feature extractor, thereby 
improving the fusion performance. The DEF module com-
prises three 1 × 1 convolution layers and three GFEUs.

In Fig. 3, the GFEU is depicted as consisting of three 
parts, namely gated normalization blocks (GNBs), a feature 
enhancement block (FEB) based on convolutional block 
attention module (Woo et al. 2018), and 1 × 1 convolution 
layers. The gated normalization block is used to extract 
important features. The feature enhancement block is used 
to refine and enhance these features across both channel and 
spatial dimensions. Specifically, the GFEU adopts a multi-
branch structure, with each branch employing a different 

number of GNBs to extract features at different levels. 
Therefore, the GFEU can selectively enhance or reduce fea-
tures at various levels. This allows the GFEU to balance the 
features of source images. Then, the feature enhancement 
block refines and enhances these features separately in both 
the channel and spatial dimensions.

To further improve the generalization ability of the net-
work and the efficiency of feature utilization, we introduce 
GNB in the GFEU. The comprehensive framework of GNB 
is depicted in Fig. 4. The normalization operation of GNB 
is non-parametric. To achieve the trainability of GNB, three 
learnable parameters � , � , and � are introduced in channel 
normalization and gate adaptation to adjust the weights of 
each channel. Finally, the gate adaptation operator is used to 
adjust the input feature channels according to the normaliza-
tion output.

3.3 � Loss function

The total loss function comprises three loss functions i.e., 
pixel loss Lpix , gradient loss Lgra , and structural loss Lssim . 
The total loss can be formulated as,

where �1 , �2 , and �3 serve as weights to regulate the relative 
significance of each loss term.

(1)L = �1Lssim + �2Lgra + �3Lpix,

Fig. 1   The framework of MFINet for CT and MRI image fusion

Fig. 2   Architecture of the deep feature extraction module  (DFEM). 
The GFEU means the gated feature enhancement unit

Fig. 3   Architecture of the gated feature enhancement unit (GFEU)

Fig. 4   Architecture of the gated normalization block (GNB)
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The pixel loss function is critical for preserving infor-
mation fidelity in image fusion. It enforces a close match 
between the intensity distributions of the fused image and 
the source images. This strategy effectively retains the rich 
dense information in the CT image while preserving the soft 
tissue information in the MRI image. The pixel loss function 
is defined as,

where ‖ ⋅ ‖F denotes the Frobenius norm of the matrix. If  
denotes the fused image. H and W are the height and width 
of the image, respectively.

The gradient loss is a commonly used loss function in 
image fusion. Its purpose is to constrain the fused image to 
retain the important detail information of the source images.

where ‖ ⋅ ‖2 is the �2-norm of the matrix. ∇ represents the 
gradient operation, and max{, } denotes maximum selection.

The structural loss constrains the fused image in bright-
ness, contrast, and structure by introducing the structural 
similarity index measurement (SSIM) (Wang et al. 2004). 
This constraint mechanism guarantees that the fused image 
maintains structural similarities with the source images. The 
structural loss is formulated as,

where SSIM(⋅) means the structural similarity measurement.

4 � Experimental results and analysis

4.1 � Datasets and implementation details

In this work, a total of 184 pairs of CT and MRI images 
were obtained from the Harvard Medical School Whole 
Brain Atlas database.1 These image pairs are from differ-
ent patients with various brain diseases, and they cover dif-
ferent regions and angles of the brain. These images were 
partitioned into training (160 pairs) and test (24 pairs) sets 
randomly. We resized the image size to 256 × 256.

The proposed model was optimized using the Adam opti-
mizer with an initial learning rate of 0.0002, decaying by 5% 
every 5 epochs for a total of 100 epochs. The weight factors 
�1 , �2 , and �3 were specified as 10, 100, and 1, respectively. 

(2)Lpix =
1

HW

(
‖‖‖If − Ict

‖‖‖
2

F
+
‖‖‖If − Imri

‖‖‖
2

F

)
,

(3)Lgra = ‖∇If −max
�
∇Ict,∇Imri

�
‖2,

(4)LSSIM = 1 − SSIM
(
If , max

{
Ict, Imri

})
,

The experiments were executed using the PyTorch frame-
work on an NVIDIA GeForce RTX 3090 Ti GPU.

4.2 � Compared methods and quantitative 
evaluation metrics

To assess the efficacy of the proposed method, we conducted 
performance comparisons with nine SOTA approaches, i.e., 
CSF (Xu et al. 2021), DensFuse (Li and Wu 2019), Fusion-
GAN (Ma et al. 2019), PMGI (Zhang et al. 2020), RFN-Nest 
(Li et al. 2021), SDNet (Zhang and Ma 2021), STDFusion-
Net (Ma et al. 2021), U2Fusion (Xu et al. 2020a) and UMF-
CMGR (Di et al. 2022).

We employed four metrics to quantitatively assess the per-
formance of the method, namely mutual information (MI), 
spatial frequency (SF), visual information fidelity (VIF), and 
Qabf  . The MI metric evaluates the information transfer from 
the source image to the fused image by measuring their cor-
relation. The SF captures the variations in different scales 
and frequencies in the fused image. It reflects the sharp-
ness, clarity, and fine details of the fused image. The VIF 
quantifies the fidelity of the fused image based on human 
visual perception. The Qabf  estimates the amount of edge 
information transferred from the source image to the fused 
image, indicating the integration of edge information in the 
fused image. Higher values for all four metrics indicate bet-
ter model performance.

4.3 � Qualitative evaluation

Figure 5 displays the qualitative fusion results of two typi-
cal CT and MRI image pairs on different methods. Notably, 
STDFusionNet and the proposed method both preserve the 
dense structures, while the dense structures in other meth-
ods are greatly weakened. Furthermore, the results obtained 
through STDFusionNet exhibit a noticeable blurring of soft 
tissue details derived from the MRI image. Thus, the pro-
posed method outperforms other methods by preserving 
the dense structures from the CT images and enhancing the 
detailed information from the MRI. Figure 5 presents two 
examples in the first and second rows. In the first row, our 
method preserves more details from the MRI image even 
when the CT image has less information. In the second row, 
our method retains both the dense structures and the texture 
information from the source images. Other methods reduce 
the information from the CT image and blur the information 
from the MRI image.

4.4 � Quantitative evaluation

We conducted quantitative experiments on 24 pairs of CT 
and MRI images to demonstrate the effectiveness of the pro-
posed method. Table 1 shows that our method outperformed 

1  [Online]. Available online: http://​www.​med.​harva​rd.​edu/​aanlib/​
home.​html.

http://www.med.harvard.edu/aanlib/home.html
http://www.med.harvard.edu/aanlib/home.html
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other methods on four evaluation metrics i.e., MI, SF, VIF, 
and Qabf  . The highest MI suggests that our method trans-
ferred the information of the source images to the fusion 
image effectively. The highest SF and VIF imply that our 

fusion image was clear, detailed, and visually pleasing. The 
highest Qabf  means that our method preserved more edge 
detail information in the fusion results.

5 � Conclusion

We propose an end-to-end CT and MRI image fusion net-
work, termed MFINet. MFINet maps the source images to 
the feature space using an SFE module. Then, the FI consist-
ing of three pairs of DFEMs is employed to extract seman-
tic features. Finally, the MFINet generates the fused image 
employing the IR. Furthermore, the DFEM contains a GFEU 
that enhances the prominent features and detailed informa-
tion of the source image. The GFEU adopts the GNBs to 
highlight important features and suppress useless features. 
Extensive experiments show that the MFINet surpasses other 
SOTA methods in both subjective and objective evaluations.

Acknowledgements  This work is supported by the National Natural 
Science Foundation of China (no. 62101310).

Fig. 5   Qualitative comparison of the proposed method with nine SOTA methods on two typical image pairs from the CT and MRI image pairs

Table 1   Quantitative comparison results of the MIFNet with nine 
SOTA methods on the CT and MRI image fusion

The best results are highlighted in bold

Method MI↑ SF↑ VIF↑ Qabf ↑

CSF (Xu et al. 2021) 2.732 18.314 0.368 0.345
DenseFuse (Li and Wu 2019) 3.362 18.526 0.404 0.329
FusionGAN (Ma et al. 2019) 2.363 12.297 0.227 0.116
PMGI (Zhang et al. 2020) 2.656 17.577 0.389 0.304
RFN-Nest (Li et al. 2021) 2.605 12.406 0.330 0.209
SDNet (Zhang and Ma 2021) 2.562 26.746 0.357 0.480
STDFusionNet (Ma et al. 2021) 3.254 25.969 0.479 0.458
U2Fusion (Xu et al. 2020a) 2.585 23.313 0.337 0.458
UMF-CMGR (Di et al. 2022) 2.690 28.893 0.353 0.431
Ours 4.600 29.536 0.544 0.536
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