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A B S T R A C T

Infrared and visible image fusion aims to combine data from various source images to generate a high-quality
image. Nevertheless, numerous fusion methods often prioritize visual quality above semantic information.
To address this problem, we present a Semantic Feature Interactive Learning Network (SFINet) for full-time
infrared and visible images. The SFINet encompasses an image fusion network and an image segmentation
network through a Semantic Feature Interaction (SFI) module. The image fusion network employs Multi-scale
Feature Extraction (MFE) modules to capture global and local information at multiple scales. Meanwhile, it
performs an adaptive fusion of complementary information using a Dual Attention Feature Fusion (DAFF)
module. The image segmentation network guides the image fusion network using the SFI module for semantic
feature interaction. Comparative results prove that the proposed method is superior to state-of-the-art (SOTA)
models in image fusion and semantic segmentation tasks. The code is available at https://github.com/
songwenhao123/SFINet.
1. Introduction

A single image taken by the same device falls short of fully reflecting
the scene due to technical and environmental factors (Karim et al.,
2023). Although infrared (IR) sensors excel at revealing salient targets
by detecting thermal radiation, they suffer from low texture and high
noise. On the other hand, visible (VIS) sensors can capture rich textures
and structures via reflected light, yet they are vulnerable to environ-
mental factors like illumination and occlusion. Infrared and visible
image fusion (IVIF) is a technique that capitalizes on the strengths of
source images. It can yield a fused image that highlights important
targets and displays detailed information.

Recently, IVIF has attracted significant interest from the academic
community, and many image fusion methods have been proposed.
The IVIF methods are broadly divided into traditional methods (Zou
& Yang, 2023) and deep learning (DL)-based methods (Song, Zhai
et al., 2024). Traditional methods decompose an image into a feature
space and then fuse the features based on manually crafted fusion
rules. Finally, the fused image is generated by reconstructing the fused
features (Ma, Ma et al., 2019). Nevertheless, handcrafted fusion rules

∗ Corresponding author.
E-mail addresses: 18110403087@stumail.sdut.edu.cn (W. Song), q.li@qmul.ac.uk (Q. Li), mlgao@sdut.edu.cn (M. Gao), abdellah.chehri@rmc-cmr.ca

(A. Chehri), gjeon@inu.ac.kr (G. Jeon).
1 The two authors contributed equally to this work.

often fall short of meeting the requirements of downstream tasks and
exhibit significant limitations (Zhang, Xu et al., 2021). The evolution of
deep learning has consequently spurred considerable interest in image
fusion. Three categories of DL-based image fusion methods are auto-
encoder (AE)-based method (Jian et al., 2020), convolutional neural
network (CNN)-based method (Song, Gao et al., 2024), and generative
adversarial network (GAN)-based method (Gao et al., 2023). AE-based
methods utilize auto-encoders for feature extraction and image recon-
struction, which apply manually designed fusion rules to integrate the
features. CNN-based methods combine feature extraction, fusion, and
image reconstruction through intricately designed networks and loss
functions. GAN-based methods achieve an unsupervised image fusion
by building an adversarial between the generator and the discriminator.

IVIF has its way of assisting semantic segmentation tasks. The bene-
fit of image fusion for the segmentation network is illustrated in Fig. 1.
It shows that the IR image enables the network to identify prominent
targets like persons and cars but overlooks crucial information like
roadblocks. Although the segmentation result of cars and roadblocks
based on the VIS image is fair, the effect of person segmentation is
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Fig. 1. Sematic segmentation results based on IR image, VIS image, and fused image.
unsatisfactory. In comparison, the segmentation result based on the
fused image is close to the ground truth, with the persons, cars, and
roadblocks being well segmented.

The existing semantic segmentation task-driven IVIF models can
be divided into semantic loss-driven networks, e.g., SeAFusion (Tang,
Yuan, Ma, 2022) and SuperFusion (Tang, Deng et al., 2022), and
semantic feature-driven networks, e.g., PSFusion (Tang, Zhang et al.,
2023). The architectures of the state-of-the-art semantic segmentation-
driven image fusion models and the proposed model are depicted in
Fig. 2. For the semantic loss-driven networks, the fused image gener-
ated by the fusion network is input into the segmentation network to
obtain semantic representation, and the semantic loss guidance directs
the fusion network to focus on more semantic information.

Since semantic segmentation networks cannot achieve the interac-
tion of semantic features, the fusion networks only focus on pixel-level
features and cannot extract deep semantic-level information. Therefore,
the semantic feature-driven networks were proposed. For the semantic
feature-driven networks, the shallow features and deep features are
first extracted through the feature extraction backbone network. The
shallow features are input into the fusion network, while the deep
features are fed into the segmentation network. Then, some features
from the segmentation network are fed back to the fusion network to
compensate for the semantic features. Although the fusion network can
be guided by the semantic segmentation network, the parameters and
the complexity of the model are increased.

In this paper, we designed a Semantic Feature Interactive Learning
Network (SFINet) considering the advantages of semantic loss-driven
models and semantic feature-driven models. Specifically, a Semantic
Feature Interaction (SFI) module is built to compensate for the semantic
feature, and a Multi-scale Feature Extraction (MFE) module is intro-
duced to extract semantic information and multi-scale information from
the source image. Meanwhile, a Dual Attention Feature Fusion (DAFF)
module is developed to combine to learn the correlations between
different modal features jointly. Overall, the contributions of this work
can be summarized as follows.

• We formulate a comprehensive framework that simultaneously
handles cross-modality image fusion and semantic segmentation.
The proposed framework demonstrates outstanding performance
due to the tailored semantic feature interaction module.

• We derive a multi-scale feature extraction module that captures
information at hierarchical levels, which effectively balances
high-frequency local details and low-frequency global context and
prompts the learning of discriminative representation.

• We design a dual-attention feature fusion module to explore
the correlation among multimodal features to ensure unbiased
information fusion among different modalities, which enhances
the versatility and superiority of the features for both fusion and
segmentation tasks.
2 
• We propose a semantic feature interaction module to augment the
semantic information of fused features. This is achieved through
facilitating interactions between features from the segmentation
network and those from the fusion network.

The rest of the paper is structured as follows. Section 2 introduces
recent works related to the proposed method. Section 3 describes the
proposed SFINet in detail. Section 4 presents the experimental results
and the ablation studies. Section 5 concludes this work.

2. Related work

2.1. Traditional image fusion methods

Traditional IVIF methods rely on two key steps, namely, feature ex-
traction and fusion. These methods can be divided into four categories,
i.e., multi-scale transform methods (Zhou et al., 2016), sparse represen-
tation methods (Zhang et al., 2018), subspace-based methods (Mitchell,
2010), and hybrid methods (Gan et al., 2015). Multi-scale transform
methods break down the source images into different scales and then
combine them by taking into account specific measurements of activ-
ity levels. For example, Yan et al. (2015) proposed an IVIF method
that utilizes spectral graph wavelet transform and a bilateral filter.
Sparse representation methods employ an overcompleted dictionary to
represent images as sparse coefficients and then fuse them based on
specific sparsity criteria. For instance, Wu et al. (2020) developed a
method based on convolutional sparse representation, which can pre-
serve spatial consistency and distinct features from infrared and visible
images. Subspace-based methods reduce the dimensionality of images
and capture their intrinsic structures. For instance, Fu et al. (2016)
introduced a technique based on joint convolutional sparse representa-
tion, which can preserve spatial consistency and distinct features from
the source images. Hybrid methods integrate the strengths of the above
approaches to attain enhanced fusion performance. For instance, Gan
et al. (2015) employed multi-scale decomposition and guided filters for
IVIF. This method improves visual quality and reduces artifacts in the
fused image by incorporating saliency maps and weighting maps.

2.2. DL-based image fusion methods

Deep learning has demonstrated exceptional performance across
diverse vision tasks and has been widely applied in image fusion
tasks. The primary strength of deep learning lies in its capacity to
autonomously learn features from data and eliminate the need for
handcrafted rules or transformations. The DL-based image fusion meth-
ods can be categorized into Auto-encoder (AE)-based fusion image
methods, CNN-based fusion image methods, and GAN-based fusion

image methods.
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Fig. 2. Architectures of the existing advanced semantic segmentation-driven image fusion models.
2.2.1. AE-based image fusion methods
AE-based methods leverage an auto-encoder to extract the feature

and reconstruct the fused image. This architecture comprises an en-
coder and a decoder. The encoder maps the source image to a latent
feature space while the decoder reconstructs the output image from the
latent features. For example, Li and Wu (2018) proposed an AE-based
IVIF method. This approach incorporates a fusion layer and the dense
block to extract and integrate features from the source images. Addi-
tionally, a decoder reconstructs the fused image. Xu, Zhang et al. (2021)
employed an encoder to evaluate the importance of feature maps and
fuse them according to classification saliency maps. This unsupervised
method eliminates the need for hand-crafted fusion rules. Xu, Wang
et al. (2021) utilized disentangled representation to decompose the
source images into scene-related and sensor-related components. The
fusion is performed on these components using different strategies and
a pre-trained generator.

2.2.2. CNN-based image fusion methods
CNN-based fusion methods implicitly perform feature extraction,

fusion, and image reconstruction with the complex network and loss
function. Li, Cen et al. (2021) developed a meta-learning-based method
that can fuse source images of different resolutions and produce a
high-resolution fused image. Additionally, it utilizes a multi-task loss
function to bolster feature learning of the fused image. Long et al.
(2021) solved the image fusion task as a structure and intensity pro-
portional maintenance problem and adopted two loss functions to
enhance the feature extraction and fusion. Tang, Xiang et al. (2023)
presented a darkness-free IVIF method to produce high-quality fused
images with realistic color and contrast in night scenes. Ma et al.
(2022) proposed a unified image fusion framework, termed Swin-
Fusion. It integrates complementary and global information through
attention-guided cross-domain modules while utilizing self-attention
mechanisms and cross-domain attention mechanisms to extract specific
and complementary features.

2.2.3. GAN-based image fusion methods
GAN-based methods leverage generative adversarial networks to

perform unsupervised image fusion. This network comprises a gener-
ator and a discriminator. The generator aims to produce fused images
3 
from latent features, while the discriminator strives to distinguish fused
images from source images. The generator produces images that match
the source image distribution through adversarial training with the dis-
criminator. FusionGAN (Ma, Yu et al., 2019) improves the fused image’s
texture by establishing a generative adversarial framework between
the fused and visible images. Zhang, Yuan et al. (2021) preserved the
contrast of thermal targets and the texture of source images by using
a full-scale skip-connected generator, two Markovian discriminators,
and a joint gradient loss. Rao et al. (2023) extracted compact and
robust features from multimodal images in various adverse conditions
and learned an adaptive equilibrium point for fusion with a quality
assessment module.

2.3. Task-driven image fusion methods

Most existing fusion methods unilaterally focus on the visual quality
but ignore the semantic information of the fused image (Tang, Zhang
et al., 2023). To address this problem, Tang, Yuan, Ma (2022) cascaded
the fusion network with the semantic segmentation network to super-
vise the fusion network so as to focus on the semantic information
in the image. Sun et al. (2022) proposed a detection-driven image
fusion network termed DetFusion. This network utilizes the target
detection network to guide multimodal image fusion. Tang, Deng et al.
(2022) proposed an image registration and fusion network termed
SuperFusion. This model introduced a semantic segmentation network
that prompted the network to uprate other high-level visual tasks.
Tang, Zhang et al. (2023) embed a semantic segmentation network into
the image fusion network to progressively inject semantic information
into the fusion process. Wang et al. (2023) proposed an interactive
enhancement paradigm for the joint infrared and visible image fusion
and salient object detection tasks.

3. Proposed method

3.1. Overview

The structure of the SFINet for IVIF is shown in Fig. 3. The pro-
cess covers four modules: (1) multi-scale feature extraction, (2) dual
attention feature fusion, (3) semantic feature interaction, and (4) image
reconstruction.
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Fig. 3. Architecture of the proposed SFINet for infrared and visible image fusion.
Given a pair of infrared image 𝐼𝑖𝑟 ∈ R1×𝐻×𝑊 and visible image 𝐼𝑣𝑖𝑠 ∈
R3×𝐻×𝑊 , we designed a MFE module to extract the complementary
information from the two modal images. The process is denoted as,
{

𝐹𝑖𝑟, 𝐹𝑣𝑖𝑠
}

=
{

MFE(𝐼𝑖𝑟),MFE(𝐼𝑣𝑖𝑠)
}

, (1)

where 𝐹𝑖𝑟 and 𝐹𝑣𝑖𝑠 are features of infrared and visible images. The
MFE module employs a densely connected structure, and it is composed
of dilated convolutions with different dilation rates. Therefore, it can
extract low-frequency global information from the source image. The
residual branch uses a gradient operator and convolutional layers to
extract high-frequency local information from the image.

Furthermore, the 𝐹𝑖𝑟 and the 𝐹𝑣𝑖𝑠 are fused by a DAFF module. It
consists of spatial attention and self-attention units, which are used to
explore the correlation between features and establish a close connec-
tion. The fused feature 𝐹𝑓 is formulated as,

𝐹𝑓 = DAFF(𝐹𝑖𝑟, 𝐹𝑣𝑖𝑠). (2)

Finally, to enhance the semantic information of the features and
reconstruct them into a fused image, the 𝐹𝑓 and the output features
of the segmentation network (BANet) (Peng et al., 2021) interact
through the SFI module. Moreover, during testing and the first round
of iterative training (𝑖 = 1), the visible image is used as the input of the
segmentation network. This process is formulated as,

⎧

⎪

⎨

⎪

⎩

𝐼 𝑖𝑓 = SFI
(

𝐹 𝑖
𝑓 , 𝑁𝑠

(

𝐼𝑣𝑖𝑠
)

)

, 𝑖 = 1

𝐼 𝑖𝑓 = SFI
(

𝐹 𝑖
𝑓 , 𝑁𝑠

(

𝐼 𝑖−1𝑓

))

, 𝑖 > 1,
(3)

where 𝑖 is the number of iterations during training. 𝑁𝑠 represents the
segmentation network. 𝐼𝑓 denotes the fused image.

3.2. Network architecture

3.2.1. Multi-scale feature extraction module
To extract multi-scale features of the source image, Li et al. (2020)

designed a nest connection architecture network (NestFuse). This net-
work employs a nest connection encoder model to extract multi-scale
features. However, the nest connection encoder lacks attention to de-
tailed features, which affects the balance between local details and the
global context. By contrast, this paper constructs two MFE modules
to process the infrared and visible images, respectively. This module
employs densely connected dilated convolutions with varying dilation
rates to extract multi-scale and low-frequency global features. Simul-
taneously, it enhances high-frequency local information through the
residual gradient branch.

As shown in Fig. 4, the MFE module combines residual learning
and dense connection structures. Additionally, a gradient operator is
employed to extract detailed information from the images. The MFE
4 
module consists of two main branches, namely the main branch and
the residual branch. The main branch contains five 3 × 3 dilated
convolution units, with dilation rates 𝑟 = (1, 2, 3, 5, 7), and a 1 × 1
convolution layer. The residual branch comprises a gradient operator
and a 1 × 1 convolution layer. The input feature 𝐹 𝑖𝑛

𝑀𝐹𝐸 is fed to these
two branches separately. The main branch extracts the multi-scale local
and global features, and the residual branch extracts the edge details.
Finally, the outputs of the main and residual branches are combined to
output feature 𝐹 𝑜𝑢𝑡

𝑀𝐹𝐸 .

3.2.2. Dual attention feature fusion module
The aforementioned NestFuse (Li et al., 2020) comprises spatial

attention (SA) and channel attention (CA) modules to integrate the
complementary features of source images. However, the features in the
two attention modules are processed separately. This may lead to detail
loss and information imbalance. In this work, we proposed the DAFF
module by replacing the CA module to channel self-attention (CSA)
module to focus on the global features and integrating the SA and CSA
branches to fuse the feature adaptively. The DAFF module can learn
the correlations between different modal features synchronously.

The DAFF module is illustrated in Fig. 5. The input of the DAFF
module is the infrared feature 𝐹𝑖𝑟 and the visible feature 𝐹𝑣𝑖𝑠. To
achieve feature fusion, element-wise multiplication and element-wise
addition are performed on the two features, respectively. Element-wise
multiplication can extract the common information of the 𝐹𝑖𝑟 and 𝐹𝑣𝑖𝑠,
while element-wise addition can fuse the whole information of the 𝐹𝑖𝑟
and 𝐹𝑣𝑖𝑠. Then, the spatial attention is applied to the element-wise
addition features 𝐹𝑠𝑢𝑚 to generate feature 𝐹𝑠𝑎 that highlights salient
objects and detailed information. Finally, we input the product of 𝐹𝑠𝑎
and the element-wise multiplication features 𝐹𝑚𝑢𝑙 elements into channel
self-attention to enhance the features and generate the output of the
DAFF module. It enables the DAFF module to adjust the weights of
each channel adaptively. In summary, the process of the DAFF module
is formulated as follows:

𝐹𝑓 = CSA
(

SA(𝐹𝑖𝑟 ⊗ 𝐹𝑣𝑖𝑠)⊗ CBR(𝐹𝑖𝑟 ⊕ 𝐹𝑣𝑖𝑠)
)

, (4)

where SA(⋅) and CSA(⋅) denote the spatial attention and channel self-
attention, respectively. CBR is the operation composed by Convolu-
tional layer, BatchNorm layer, and ReLU activation. ⊗ and ⊕ are
element-wise multiplication and element-wise summation, respectively.

3.2.3. Semantic feature interaction module
In the PSFusion (Tang, Zhang et al., 2023), the semantic information

is injected into the fusion network by a progressive semantic injection
module (PSIM). To focus on the crucial features of the fused and seman-
tic features, we proposed the SFI module by incorporating sequential
CA and SA modules. The architecture of the SFI module is shown in
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Fig. 4. Architecture of the MFE module.
Fig. 5. Architecture of the DAFF module.
t

ig. 6. The fusion features 𝐹𝑓 and the semantic features 𝐹𝑠 are first
oncatenated and then fed into a 1 × 1 convolution layer to generate
he interacted features 𝐹𝑖𝑛𝑡𝑒𝑟. Then, an element-wise multiplication is
dopted to eliminate redundant information. Next, an element-wise
ddition operation is performed to aggregate the features. After that,
sequential CA and SA module are adopted to enhance the features.

inally, the residual connection is used to preserve the original infor-
ation and generate the fused image 𝐼𝑓 . The process of the SFI module

s formulated as,

𝑖𝑛𝑡𝑒𝑟 = Conv1×1
(

Cat
(

𝐹𝑓 , 𝐹𝑠
))

, (5)

𝐹𝑖𝑛𝑡𝑒𝑟2 = 𝐹𝑖𝑛𝑡𝑒𝑟 ⊗ 𝐹𝑓 + 𝐹𝑖𝑛𝑡𝑒𝑟 ⊗ 𝐹𝑠, (6)

( ( ( ( ))))
𝐼𝑓 = 𝐶𝑜𝑛𝑣1×1 𝐹𝑓 + BN 𝐶𝑜𝑛𝑣3×3 SA CA(𝐹𝑖𝑛𝑡𝑒𝑟2) , (7) n

5 
where 𝐶𝑎𝑡(⋅) denotes the channel concatenation. ⊗ represents element-
wise multiplication. 𝐵𝑁(⋅) denotes a BatchNorm layer.

3.3. Loss function

The total loss function total consists of the image fusion loss 𝑓 and
the segmentation loss 𝑠:

total = 𝑓 + 𝛼𝑠, (8)

where 𝛼 is the weight to dynamically regulate the relative significance
of image fusion loss and segmentation loss, so as to avoid over-fitting.
The parameter 𝛼 gradually increases according to the joint adaptive
raining strategy of the low-level and high-level as the segmentation

etwork adapts to the fusion model during the training process (Tang,
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Fig. 6. Architecture of the SFI module.
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Yuan, Ma, 2022). It is formulated as:

𝛼 = 𝜃 × (𝑚 − 1), (9)

where 𝑚 is the 𝑚th iteration. 𝜃 is a constant for the balance between se-
mantic loss and content loss. Specifically, as the segmentation network
increasingly fits the fusion model with more epochs, we progressively
increase the semantic loss. This adjustment enables the semantic loss to
guide the training of the fusion network more accurately as the training
process.

The image fusion loss function comprises three loss functions, i.e.,
pixel loss 𝑝𝑖𝑥, gradient loss 𝑔𝑟𝑎, and structural loss 𝑠𝑠𝑖𝑚. The image
fusion loss is formulated as,

𝑓 = 𝜆1𝑝𝑖𝑥 + 𝜆2𝑔𝑟𝑎 + 𝜆3𝑠𝑠𝑖𝑚, (10)

where 𝜆1, 𝜆2, and 𝜆3 are dynamic factors that adjust the weights of the
fusion loss function.

The pixel loss function aims to preserve as much information as
possible from the source images in the fused image while minimizing
distortion and artifacts. It is formulated as,

pix =
1

𝐻𝑊
(‖‖
‖

𝐼𝑓 − 𝐼𝑖𝑟
‖

‖

‖

2

𝐹
+ ‖

‖

‖

𝐼𝑓 − 𝐼𝑣𝑖𝑠
‖

‖

‖

2

𝐹
), (11)

where 𝐻 and 𝑊 are the height and width of the image, respectively.
‖ ⋅ ‖𝐹 denotes the Frobenius norm of the matrix.

The gradient loss enables the fused image to preserve the edge
features of the input image and enhances the contrast and clarity of
the fused image. It is defined as,

gra = ‖∇𝐼𝑓 − max
{

∇𝐼𝑖𝑟,∇𝐼𝑣𝑖𝑠
}

‖2, (12)

here ‖ ⋅ ‖2 stands for the 𝓁2-norm of the matrix. ∇ is the gradient
peration, and 𝑚𝑎𝑥{⋅, ⋅} is maximum operator.

The Structural Similarity Index (SSIM) (Wang et al., 2004) is a
idely adopted metric for measuring image distortion. It compares the

imilarity of images based on luminance, contrast, and structure as-
ects. To retain the essential features of source images, we constructed
structural loss function employing the SSIM. This ensures that the

used image is structurally consistent with the source images. It is
ormulated as,

ssim = 1 − SSIM
(

𝐼𝑓 ,max
{

𝐼𝑖𝑟, 𝐼𝑣𝑖𝑠
})

, (13)

here SSIM(⋅) represents structural similarity index.
The segmentation loss function is composed of the main segmen-

ation loss 𝑚𝑎𝑖𝑛 and the auxiliary segmentation loss 𝑎𝑢𝑥. These two
osses are expressed as,

𝑚𝑎𝑖𝑛 = −
∑

𝑐𝑙𝑎𝑠𝑠
𝐺 log(𝑆), (14)

𝑎𝑢𝑥 = −
∑

𝐺 log(�̂�), (15)

𝑐𝑙𝑎𝑠𝑠

6 
here 𝑆 denotes the predicted main segmentation label. �̂� is the
predicted auxiliary segmentation label. 𝐺 represents the ground truth
label. The segmentation loss function is formulated as follows,

𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = 𝑚𝑎𝑖𝑛 + 𝛽𝑎𝑢𝑥, (16)

here 𝛽 is a loss weight that balances the main and auxiliary segmen-
ation loss.

. Experimental analysis

.1. Benchmarks and implementation details

Three public datasets, namely MSRS (Tang, Yuan, Zhang et al.,
022), M3FD (Liu et al., 2022), and TNO (Toet, 2017) are adopted
or qualitative and quantitative evaluation. The training set consists of
083 pairs of images from the MSRS dataset. Additionally, we collect
61 pairs, 300 pairs, and 40 pairs of images from these three datasets as
est sets. These images are normalized to [0, 1]. The image segmentation

and fusion networks are conducted on the MSRS dataset. The MSRS
dataset contains semantic labels for nine types of objects, including
background, car, person, bike, curve, car stop, guardrail, color cone,
and bump. The fusion network is trained with the initial learning rate
of 0.001, a batch size of 4 samples. The Adam is adopted to optimize
the fusion network under the guidance of the total loss. The initial
learning rate for the segmentation network is set to 0.01. The method
for updating the learning rate is to multiply the initial learning rate
by a factor (1 − 𝑒𝑝𝑜𝑐ℎ

𝑚𝑎𝑥𝑒𝑝𝑜𝑐ℎ
)𝛾 . The power 𝛾 of this factor is set to 0.9. The

weight factors 𝛽, 𝜃, 𝜆1, 𝜆2, and 𝜆3 are specified as 0.75, 1, 1, 100, and
10, respectively. The experiments are performed on an NVIDIA GeForce
RTX 3090 Ti GPU with the PyTorch framework.

To determine the maximum number of iterations 𝑖𝑚𝑎𝑥, the conver-
gence curves of image fusion loss and segmentation loss are drawn
and depicted in Fig. 7. One can see that the loss function gradually
decreases along with the increases of 𝑖. It indicates that the network
is continuously optimizing and achieving better fusion results. Mean-
while, it shows that as the number of iterations 𝑖 reached a certain
value, the model parameters converged. In this work, we set the value
of 𝑖𝑚𝑎𝑥 to 4 by analyzing the trend of the loss function to ensure the
model learns the optimal parameters.

4.2. Evaluation metrics

To evaluate the quality of the fused images, six quantitative indica-
tors are employed, i.e., Entropy (EN), Spatial Frequency (SF), Standard
Deviation (SD), Average Gradient (AG), Overall Cross Entropy (OCE),
and Edge Intensity (EI). EN indicates the amount of information and
uncertainty in the fused image. SF reflects the amount of detail and
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Fig. 7. Convergence curves of image fusion loss and segmentation loss.
contrasts in the fused image. SD represents the dispersion and vari-
ation of the pixel values in the fused image. AG denotes the rate of
change and sharpness of the pixel values in the fused image. OCE is
used to evaluate the amount of information retained from the original
images. EI is to assess the clarity and sharpness of edges in the fused
image. Higher values of EN, SF, SD, AG, OCE, and EI indicate better
performance.

Additionally, Intersection over Union (IoU) and mean Intersection
over Union (mIoU) are utilized to assess the contribution of the fused
images to semantic segmentation tasks. IoU measures the overlap be-
tween the predicted segmentation and the ground truth. mIoU provides
an average measure over multiple classes to comprehensively evaluate
segmentation accuracy. Higher values of IoU and mIoU indicate more
accuracy in semantic segmentation tasks.

4.3. Performance analysis

To assess the effectiveness of the proposed SFINet, we conducted
comparative experiments with nine state-of-the-art (SOTA) methods.
The competitors include CDDFuse (Zhao, Bai et al., 2023), NestFuse (Li
et al., 2020), PSFusion (Tang, Zhang et al., 2023), RFN-Nest (Li, Wu
et al., 2021), SeAFusion (Tang, Yuan, Ma, 2022), SuperFusion (Tang,
Deng et al., 2022), UMF-CMGR (Di et al., 2022), and YDTR (Tang, He
et al., 2022).

4.3.1. Qualitative evaluation
To evaluate the effectiveness of SFINet in seamlessly integrating full-

time images and concurrently merging complementary information to
enhance visual quality, we selected a daytime case and a nighttime
case for qualitative evaluation. The qualitative evaluation results are
illustrated in Fig. 8. In the case of daytime, the VIS image contains
more information, and infrared images can complement the signifi-
cant information in VIS images. Therefore, an excellent fusion method
should incorporate rich detailed information from VIS images and the
prominent targets from IR images. Also, it is observed that RFN-Nest,
UMF-CMGR, and YDTR perform poorly in preserving edge details.
Meanwhile, the salient information of RFN-Nest is weakened. PSFusion
is severely disturbed by irrelevant information from the IR image. In
contrast, the proposed SFINet can effectively preserve both the detailed
information of the VIS image and the salient information of the IR
image.

In the nighttime scene, the reduction of visual information poses a
challenge. Fig. 8 shows that the proposed model not only preserves the
salient information inside the red box in the image but also displays
the target information of persons in the distance. This is attributed
to the proposed MFE module. It can effectively preserve the multi-
scale information in the source image. Furthermore, we enlarged a
dark area with a green box, where the proposed method can clearly
show the details of a car. This can be attributable to the fact that the
DFF module can adaptively integrate complementary information from
the source images. Meanwhile, the SFI module also contributes rich

semantic information.
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4.3.2. Quantitative evaluation
The quantitative results on the MSRS dataset are shown in Table 1.

It shows that the proposed SFINet ranks first in EN and SD. It indicates
that SFINet excels in gradient information preservation, contrast, and
effective information retention. Meanwhile, the SFINet ranks second
only behind PSFusion in SF, AG, and EI and ranks third-best in OCE.
It proves that the proposed SFINet can produce fusion images with
excellent visual effects and effectively retain valuable information from
the source images.

4.4. Generalization evaluation

4.4.1. Generalization evaluation on the M3FD dataset
To evaluate the generalization ability of the SFINet, we conducted

experiments on the M3FD dataset. The M3FD dataset consists of im-
ages captured in various scenarios. The images have diverse levels
of brightness, contrast, and noise. Therefore, an effective fusion ap-
proach necessitates adaptability to different conditions and preserves
the complementary information from both source images. Fig. 9 dis-
plays the qualitative results on the M3FD dataset. It shows that only
SFINet can retain good visual contrast in the fused images, and other
methods cannot eliminate the blurring issue in visible images. On the
other hand, CDDFuse, RFN-Nest, PSFusion, SeAFusion, SuperFusion,
SwinFusion, UMF-CMGR, and YDTR cannot clearly retain the structure
of the buildings. In contrast, the SFINet can effectively utilize the
complementary information of the source image to generate a fused
image with high contrast and rich details. This can benefit the proposed
three modules, i.e., MFE, DAFF, and SFI modules, that are responsible
for extracting multi-scale features, learning the correlation between
source images, and enhancing semantic information.

The quantitative results of the proposed method with nine SOTA
methods on 300 pairs of images from the M3FD dataset are displayed
in Table 2. It indicates that the proposed SFINet achieved superior per-
formance in terms of SD. This demonstrates that the SFINet effectively
utilizes the complementary information in the source images, resulting
in less distortion during the fusion process. Moreover, the SFINet is
generally inferior to PSFusion in EN, SF, AG, and EI, while maintaining
an average level in OCE. There are two reasons for the result. On the
one hand, the proposed method eliminates redundant information in
the source images during the fusion process, thereby leading to some
inconsistencies between the fused image and the source images. On
the other hand, compared to SFINet, PSFusion has more parameters to
enhance the network’s generalization ability.

4.4.2. Generalization evaluation on the TNO dataset
The qualitative comparison of different methods on the TNO dataset

is presented in Fig. 10. The red boxes highlight significant shortcomings
in preserving salient targets for NestFuse, RFN-Nest, SuperFusion, UMF-
CMGR, and YDTR. Furthermore, other image fusion methods lead to
substantial spectral interference in background segments and erase
intricate background information. In contrast, SFINet can effectively
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Fig. 8. Qualitative comparison of the proposed SFINet with different methods on the MSRS dataset.
Fig. 9. Qualitative comparison of the proposed SFINet with different methods on the M3FD dataset.
Table 1
Quantitative results of the proposed method with nine SOTA methods on 361 pairs of images from the MSRS dataset. The best, second-best,
and third-best methods are marked in red, blue, and green, respectively.
Methods EN ↑ SF ↑ SD ↑ AG ↑ OCE ↑ EI ↑

CDDFuse (Zhao, Bai et al., 2023) 6.699 0.045 8.436 3.744 0.990 39.808
NestFuse (Li et al., 2020) 6.501 0.038 8.217 3.118 1.015 33.210
PSFusion (Tang, Zhang et al., 2023) 6.779 0.052 8.385 4.446 0.908 47.082
RFN-Nest (Li, Wu et al., 2021) 6.175 0.024 7.786 2.143 1.009 23.285
SeAFusion (Tang, Yuan, Ma, 2022) 6.652 0.044 8.377 3.697 1.148 39.551
SuperFusion (Tang, Deng et al., 2022) 6.587 0.042 8.335 3.394 1.041 36.227
SwinFusion (Ma et al., 2022) 6.619 0.043 8.409 3.546 1.052 37.770
UMF-CMGR (Di et al., 2022) 5.600 0.028 6.181 2.161 3.380 22.454
YDTR (Tang, He et al., 2022) 5.645 0.029 6.828 2.201 1.140 23.165

SFINet (Ours) 6.785 0.045 8.824 3.827 1.440 40.914
Table 2
Quantitative results of the proposed method with nine SOTA methods on 300 pairs of images from the M3FD dataset. The best, second-best,
and third-best methods are marked in red, blue, and green, respectively.
Methods EN ↑ SF ↑ SD ↑ AG ↑ OCE ↑ EI ↑

CDDFuse (Zhao, Bai et al., 2023) 6.904 0.058 9.972 4.863 1.644 50.141
NestFuse (Li et al., 2020) 6.804 0.044 9.608 3.751 1.805 38.857
PSFusion (Tang, Zhang et al., 2023) 7.399 0.081 9.776 6.917 1.487 71.355
RFN-Nest (Li, Wu et al., 2021) 6.862 0.030 9.230 2.870 1.651 30.686
SeAFusion (Tang, Yuan, Ma, 2022) 6.846 0.055 9.863 4.782 1.743 49.684
SuperFusion (Tang, Deng et al., 2022) 6.692 0.044 9.846 3.782 1.538 38.863
SwinFusion (Ma et al., 2022) 6.799 0.053 9.858 4.599 1.655 47.564
UMF-CMGR (Di et al., 2022) 6.702 0.034 9.146 2.944 1.751 30.469
YDTR (Tang, He et al., 2022) 6.547 0.040 9.194 3.306 1.589 34.130

SFINet (Ours) 6.997 0.069 9.975 6.138 1.541 63.924
8 
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Fig. 10. Qualitative comparison of the proposed SFINet with different methods on the TNO dataset.
Table 3
Quantitative results of the proposed method with nine SOTA methods on 40 pairs of images from the TNO dataset. The best, second-best, and
third-best models are marked in red, blue, and green, respectively.
Methods EN ↑ SF ↑ SD ↑ AG ↑ OCE ↑ EI ↑

CDDFuse (Zhao, Bai et al., 2023) 7.077 0.049 9.395 4.715 1.698 45.721
NestFuse (Li et al., 2020) 7.011 0.039 9.364 3.835 1.604 37.910
PSFusion (Tang, Zhang et al., 2023) 7.326 0.052 9.596 5.377 1.078 54.092
RFN-Nest (Li, Wu et al., 2021) 6.991 0.023 9.379 2.682 1.701 28.644
SeAFusion (Tang, Yuan, Ma, 2022) 7.136 0.048 9.562 5.011 1.507 50.495
SuperFusion (Tang, Deng et al., 2022) 6.754 0.036 9.095 3.582 1.278 34.691
SwinFusion (Ma et al., 2022) 6.899 0.042 9.356 4.205 1.294 41.250
UMF-CMGR (Di et al., 2022) 6.559 0.032 8.723 2.988 1.445 29.372
YDTR (Tang, He et al., 2022) 6.432 0.030 8.829 2.788 1.076 27.297

SFINet (Ours) 7.251 0.051 9.758 5.443 1.640 55.509
retain the texture details of the visible image and successfully maintain
the clarity of salient targets.

The quantitative comparison results on the TNO dataset are dis-
played in Table 3. It shows that the proposed model ranks first in SD,
AG, and EI metrics. This achievement demonstrates that the SFINet
can present rich texture details and salient object information in the
fusion images while ensuring the visual quality of the fused image. In
EN and SF, the proposed method ranks second only behind PSFusion.
In addition, the SFINet is inferior to RFN-Nest and CDDFuse, but the
overall level is still above average.

4.5. Segmentation comparison and analysis

In this section, we constructed comprehensive experiments to verify
the contribution of the SFINet to the semantic segmentation task. In
particular, the experiments are conducted on image-level and feature-
level fusion segmentation tasks on the MSRS dataset.

4.5.1. Image-level fusion segmentation comparison
We utilized the pre-trained Segformer (Xie et al., 2021) as the

segmentation model to test the contribution of the SFINet and image-
level fusion competitors to the semantic segmentation task. Fig. 11
shows the qualitative results of the segmentation task in two cases.
In the daytime case, Segformer fails to capture the content of the
‘‘person’’ on the left in the results of CDDFuse, PSFusion, and RFN-
Nest, and the segmentation of the ‘‘person’’ was inaccurate in the results
of SwinFusion and UMF-CMGR. In the nighttime case, except for the
visible image and the results of RFN-Nest, SeAFusion, and SFINet, other
methods suffer from the semantic content loss of ‘‘curve’’. The results
of the CDDFuse, NestFuse, PSFusion, SuperFusion and SwinFusion also
exhibited the issue of losing ‘‘person’’ semantic content. The SFINet
can accurately segment the objects of interest, e.g., cars, persons, and
curves, in both daytime and nighttime.

The quantitative semantic segmentation results on the MSRS dataset
are shown in Table 4. The results show that the SFINet ranks first in
classes of ‘‘Car’’, ‘‘Person’’, ‘‘Bike’’, ‘‘Car stop’’, ‘‘Color cone’’, and second
best in ‘‘Unlabelled’’, and ‘‘Curve’’ in terms of IoU. Meanwhile, the
9 
SFINet performs best in terms of mIoU. These findings demonstrate the
effectiveness of fused images in enhancing segmentation performance.

4.5.2. Feature-level fusion segmentation comparison
To comprehensively verify the contribution of the proposed method

to the semantic segmentation task, we compared the SFINet with six
SOTA feature-level fusion segmentation methods using the trained
BANet (Peng et al., 2021) by SFINet as the segmentation network.
The competitors include MFNet (Ha et al., 2017), GMNet (Zhou et al.,
2021), EGFNet (Zhou et al., 2022), MDRNet (Zhao, Liu et al., 2023),
LASNet (Li et al., 2022) and RTFNet (Sun et al., 2019). Fig. 12 shows
the visualization of semantic segmentation results on the MSRS dataset.
The proposed method can continuously achieve high-precision classifi-
cation of objects in different scenes. By contrast, the other models fail
to classify the obstacles and cars in daytime scenes and the person in
nighttime scenes.

Table 5 displays the qualitative semantic segmentation results of
different competitors on the MSRS dataset. The results prove that
SFINet outperforms the competitors in IoU across all categories and
mIoU. Specifically, compared to the second-best model, LASNet, the
mIoU is improved by 29.93% in mIoU. It proves that the proposed
method can effectively maintain and enhance visual quality while fully
utilizing the information from different modality images.

4.6. Computational complexity analysis

To verify the efficiency of the proposed method, we examined the
running times and the parameters of all methods on MSRS, M3FD,
and TNO datasets. As shown in Table 6, the proposed SFINet has
fewer parameters than the PSFusion. Meanwhile, the running time is
competitive compared with other SOTA models.

4.7. Ablation studies

Ablation studies were conducted on the MSRS dataset to assess the
effectiveness of each module in SFINet. The parameters and dataset
settings are consistent for all the ablation experiments.
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Fig. 11. Qualitative semantic segmentation comparisons of the SFINet and nine competitors in two cases on the MSRS dataset.
Fig. 12. Qualitative semantic segmentation comparisons of the SFINet and six feature-level fusion segmentation methods in two cases on the MSRS dataset.
Table 4
Quantitative semantic segmentation results of various methods on the MSRS dataset. The segmentation model utilizes the Segformer pre-trained on the MSRS dataset. The best
and second-best methods are marked in red and blue, respectively.

Methods IoU ↑ mIoU ↑

Unlabelled Car Person Bike Curve Car stop Guardrail Color cone Bump

Infrared 96.00 56.76 70.62 32.32 34.93 22.40 0. 15.09 37.10 40.58
Visible 97.91 87.50 38.14 70.49 51.72 73.16 86.46 64.18 79.28 72.10
CDDFuse (Zhao, Bai et al., 2023) 98.51 89.32 72.44 72.01 60.18 77.20 87.59 64.17 79.77 77.91
NestFuse (Li et al., 2020) 98.53 89.98 73.21 72.61 59.96 75.64 86.66 64.33 80.17 77.90
PSFusion (Tang, Zhang et al., 2023) 98.54 89.55 73.81 72.86 60.59 77.55 85.59 65.00 80.19 78.22
RFN-Nest (Li, Wu et al., 2021) 98.64 89.96 72.44 72.78 61.53 77.83 85.42 62.54 79.38 77.82
SeAFusion (Tang, Yuan, Ma, 2022) 98.53 89.58 73.05 72.73 59.96 76.83 87.00 64.62 80.01 78.03
SuperFusion (Tang, Deng et al., 2022) 98.52 89.74 73.29 72.78 59.53 75.38 86.96 64.08 79.64 77.77
SwinFusion (Ma et al., 2022) 98.50 89.60 72.26 72.18 59.56 76.31 87.40 64.36 79.95 77.79
UMF-CMGR (Di et al., 2022) 98.28 87.79 71.61 68.72 50.10 74.62 76.65 60.13 74.52 73.60
YDTR (Tang, He et al., 2022) 98.36 88.65 71.89 71.51 51.77 71.59 85.68 59.94 77.17 75.17

SFINet (Ours) 98.60 90.28 75.19 73.10 61.49 77.89 85.51 65.82 79.73 78.62
10 
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Table 5
Quantitative semantic segmentation results of the proposed method and six SOTA multimodal segmentation methods on the MSRS dataset. Red represents the best results, and
blue represents the second-best results.

Methods IoU ↑ mIoU ↑

Unlabelled Car Person Bike Curve Car stop Guardrail Color cone Bump

MFNet (Ha et al., 2017) 96.56 70.05 54.39 47.17 21.74 37.09 40.78 22.91 24.79 46.16
GMNet (Zhou et al., 2021) 96.30 70.47 58.93 33.17 6.98 36.38 20.68 18.33 41.22 42.5
EGFNet (Zhou et al., 2022) 97.69 84.91 61.78 60.22 39.67 0.59 0. 1.28 1.33 38.61
MDRNet (Zhao, Liu et al., 2023) 94.42 49.55 58.52 41.1 31.7 38.26 20.42 38.17 19.48 43.51
LASNet (Li et al., 2022) 96.94 80.59 47.97 51.32 42.96 51.07 33.91 47.74 53.91 56.27
RTFNet (Sun et al., 2019) 97.35 83.53 71.91 49.82 33.12 48.41 0. 26.59 23.58 48.26

SFINet (Ours) 98.37 89.18 72.01 69.55 58.16 70.98 67.03 63.13 69.61 73.11
Table 6
Parameter and running times comparisons of all methods on the MSRS, M3FD, and TNO datasets.
Methods Parameter (M) Time (s)

MSRS M3FD TNO

CDDFuse (Zhao, Bai et al., 2023) 1.787 0.566 1.409 1.041
NestFuse (Li et al., 2020) 2.733 0.518 1.050 0.435
PSFusion (Tang, Zhang et al., 2023) 45.909 0.177 0.324 0.154
RFN-Nest (Li, Wu et al., 2021) 7.524 0.176 0.308 0.164
SeAFusion (Tang, Yuan, Ma, 2022) 13.061 0.147 0.241 0.112
SuperFusion (Tang, Deng et al., 2022) 1.962 0.110 0.332 0.107
SwinFusion (Ma et al., 2022) 0.974 1.000 2.294 0.924
UMF-CMGR (Di et al., 2022) 0.629 0.221 0.322 0.348
YDTR (Tang, He et al., 2022) 0.218 0.215 0.450 0.173

SFINet (Ours) 13.107 0.172 0.314 0.143
Table 7
Quantitative ablation results of the proposed model on the MSRS dataset. The optimal results are marked in red.

Models MFE DAFF SFI EN ↑ SF ↑ SD ↑ AG ↑ OCE ↑ EI ↑

M1 ✗ ✓ ✓ 6.7229 0.0441 8.4147 3.6503 2.2828 39.0884
M2 ✓ ✓ ✗ 6.7248 0.0445 8.4826 3.8005 1.8870 40.6333
M3 ✓ ✗ ✓ 6.6449 0.0443 8.3770 3.7467 1.1695 39.9445
M4 ✓ ✗ ✓ 6.6505 0.0442 8.3772 3.7380 1.1751 39.8157
M5 ✓ ✗ ✓ 6.6313 0.0439 8.3687 3.6583 1.1093 39.0801

SFINet ✓ ✓ ✓ 6.7851 0.0453 8.8242 3.8279 1.4395 40.9143
4.7.1. Analysis of the specific modules
We replaced each module with convolutional layers of the same

depth. The results of the quantitative ablation are displayed in Table 7.
The results prove that replacing the MFE module (termed M1) led to
a notable deterioration in EN, SF, SD, AG, and EI metrics. This verifies
the critical role of the MFE module in extracting multi-scale features
from the source image. Similarly, when the SFI module was replaced
(termed M2), the values of EN, SF, SD, AG, and EI decreased. It proves
the essential role of the SFI module in enhancing semantic information
and the visual quality of the fused image. It is worth mentioning that
the OCE indicator increases after the MFE module and SFI module
are replaced. This is because convolutional layers excel at extracting
local detail information, and increasing the number of convolutional
layers enhances the feature representation ability of the model. The
configurations that replace the DAFF module with three traditional
fusion strategies, namely summation (termed M3), average (termed
M4), and L1-norm (termed M5), also perform worse than the proposed
SFINet. It proves that the DAFF module is practical for learning the
correlation between the source images and achieving adaptive feature
fusion.

4.7.2. Analysis of the segmentation network
To validate the contribution of the segmentation network to the

fusion task, we conducted comprehensive experiments. These included
removing the segmentation network, employing Segformer (Xie et al.,
2021) as the segmentation network, and utilizing BANet (Peng et al.,
2021) as the segmentation network.

Table 8 presents the quantitative comparison results employing the
different segmentation models. When the semantic segmentation net-
work is removed (𝑤∕𝑜), the EN, SF, SD, AG, and EI metrics decline. This
11 
indicates that the semantic segmentation network plays a critical role in
enhancing image fusion. By providing additional semantic information,
it significantly improves the fused image in terms of detail retention
and information preservation. By including the auxiliary segmentation
models, our method demonstrated outstanding performance in EN and
SD metrics. It can preserve image information and improve edge clarity.
Among the two segmentation variants, BANet offers a well-balanced
performance that enhances semantic information while retaining image
details. Additionally, BANet has only 12.894M. which makes BANet
more suitable for use in resource-constrained environments. It is worth
noticing that our framework is scalable to use various segmentation
models.

5. Conclusion and future work

This work proposes a semantic feature interactive learning net-
work (SFINet) for full-time infrared and visible image fusion. The
SFINet consists of an image fusion network and an image segmentation
network. The image fusion network incorporates the MFE and DAFF
modules to effectively extract and integrate multi-scale local and global
information from source images. Additionally, an SFI module is built to
interact with the semantic features from the image segmentation net-
work and fused features from the image fusion network. Comparative
experiments on three datasets demonstrate that the SFINet outperforms
the SOTA methods subjectively and objectively. The evaluation experi-
ments on segmentation performance further highlight the effectiveness
of the SFINet in enhancing the performance of segmentation tasks.
Although SFINet has significant performance improvements in infrared
and visible image fusion, the complexity increases during the interac-
tion between the fusion model and the segmentation model. It hinders
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Table 8
Quantitative ablation results of the segmentation model on the MSRS dataset. ‘‘𝑤∕𝑜’’ means removing the segmentation model. The optimal results are marked in red.

Segmentation model EN ↑ SF ↑ SD ↑ AG ↑ OCE ↑ EI ↑ Time (s) Parameter (M)

𝑤∕𝑜 6.715 0.044 8.461 3.743 1.578 39.932 0.158 –
Segformer (Xie et al., 2021) 6.755 0.090 8.430 4.545 1.222 45.881 0.196 44.605
BANet (Peng et al., 2021) 6.785 0.045 8.824 3.827 1.440 40.914 0.172 12.894
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the model from being applied to embedded systems or mobile devices.
Thus, future research is expected to focus on model compression and
optimization.
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