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Abstract

Image fusion plays a significant role in computer vision since numerous applications

benefit from the fusion results. The existing image fusion methods are incapable of per-

ceiving the most discriminative regions under varying illumination circumstances and

thus fail to emphasize the salient targets and ignore the abundant texture details of

the infrared and visible images. To address this problem, a multiscale aggregation and

illumination-aware attention network (MAIANet) is proposed for infrared and visible

image fusion. Specifically, the MAIANet consists of four modules, namely multiscale

feature extraction module, lightweight channel attention module, image reconstruc-

tion module, and illumination-aware module. The multiscale feature extraction module

attempts to extract multiscale features in the images. The role of the lightweight

channel attention module is to assign different weights to each channel so as to focus

on the essential regions in the infrared and visible images. An illumination-aware

module is employed to assess the probability distribution regarding the illumination

factor. Meanwhile, an illumination perception loss is formulated by the illumination

probabilities to enable the proposed MAIANet to better adjust to the changes in illu-

mination. Experimental results on three datasets, that is, MSRS, TNO, and RoadSence,

verify the effectiveness of the MAIANet in both qualitative and quantitative

evaluations.
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1 INTRODUCTION

Numerous cameras feature both visible and infrared imaging sensors to capture visible and infrared pictures. Visible images include abundant

textural information, but are vulnerable to environmental and climatic concerns. Since infrared photographs are recorded on thermal radiation,

they are resistant to influence from unfavorable environments.1 Infrared photos, however, have poor spatial resolution and texture information.

In order to take full advantage of these images, more and more infrared and visible image fusion (IVIF) techniques have been developed in the

past decade.2,3

The existing IVIF methods are broadly categorized into traditional-based methods and deep learning-based methods.3 The traditional-based

methods typically consist of three essential parts, that is, feature extraction, fusion strategy, and reconstruction.4-6 However, these methods have

major drawbacks. The same transformation strategies should be adopted to extract features in the infrared and visible images to ensure the viability

of later feature fusion. Therefore, these methods need to consider the feature differences between infrared and visible images, which would lead to
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a lack of information on the extracted features. Meanwhile, the traditional feature fusion strategies are relatively rudimentary, resulting in degraded

fusion performance.2

The explosion of deep learning greatly promotes the development of image fusion technology.7 The deep learning-based fusion methods are

generally divided into three categories according to their adopted architectures, that is, autoencoder (AE)-based methods, convolutional neural

Network (CNN)-based methods, and generative adversarial network (GAN)-based methods.3,7 The AE-based methods usually utilize a pre-trained

autoencoder for feature extraction and image reconstruction, and feature fusion is done by traditional fusion rules.8

CNNs are typically introduced into image fusion frameworks in two ways. One is to construct an end-to-end fusion network and design a loss

function to train the fusion network end-to-end.9 The other is to train the CNNs to guide feature fusion, while feature extraction and image recon-

struction are implemented by traditional methods.10 The GAN-based approach utilizes a generator to generate the fused image, and the fusion

network is optimized by adversarial between the generator and the discriminator.11

However, the existing fusion networks are incapable of extracting intensity information in infrared images as well as detail information in vis-

ible images under different illumination environments. To this end, a multiscale aggregation and illumination-aware attention network (MAIANet)

is proposed in this paper for the IVIF task. A multiscale feature extraction (MFE)module is built to extract multiscale features from infrared and

visible images. Meanwhile, a cross-modal difference-aware fusion (CMDAF) unit4 is adopted in the MFE model to merge complementary features

of infrared and visible images. Moreover, a lightweight channel attention (LCA) module is built to determine the weights of each feature channel.

Finally, an image reconstructor (IRC) module is applied to generate the final fused images. To make the network better handle the illumination inten-

sity variations in visible images, the illumination-aware (IA) module is adopted to calculate the distribution regarding the illumination factor of the

visible image. In sum, the main contributions of this work are:

1. A Multiscale Aggregation and Illumination-aware Attention Network (MAIANet) constructed for IVIF tasks. It is capable of extracting dis-

criminative and representative multiscale features from pairs of infrared and visible images, and pays particular attention to fluctuations in

light.

2. An MFE module is constructed to extract multiscale information of the infrared and visible images.

3. An LCA model is built to focus on the intensity information of infrared and the detailed information of visible images.

4. An IA module is adopted to assess the probability distribution regarding the illumination factor. Meanwhile, an illumination-aware loss function

is formulated to guide the network to adjust the illumination variations.

The remaining parts of this paper are structured as follows. Related works of image fusion are introduced in Section 2. Details of the proposed

MAIANet are presented in Section 3. Comparative experiments are conducted in Section 4. Conclusions are derived in Section 5.

2 RELATED WORK

2.1 Traditional image fusion methods

The traditional image fusion methods mainly consist of three parts, namely feature extraction, feature fusion, and feature reconstruction.2,12 There-

into, feature extraction, and feature fusion play key roles in image fusion methods because feature reconstruction is the inverse feature extraction

process.

Traditional image fusion methods typically depend on spatial transformation techniques to extract features. To efficiently fuse the source

images, Bhat et al.13 proposed a multi-focus image fusion method by combining the Neutrosophic set and stationary wavelet transform. Mei et al.14

proposed a medical image fusion method based on the non-subsampling contourlet transform and adaptive pulse-coupled neural network. The

technique effectively preserves the spectral features of the source images. Also, the saliency map is widely used in infrared images to improve the

visualization of the visible image. Han et al.15 presented a saliency-aware fusion method. The method first generates a saliency map by performing

saliency target detection on the infrared image, and a subsequent fusion step biases the fusion result towards the visible image. Meng et al.16 pro-

posed an image fusion algorithm that combines saliency maps and interest points to extract saliency maps from infrared images. The saliency results

are more accurate and better able to locate the object accurately.

Besides, the optimization-based approaches present the image fusion community with fresh perspectives.17 The loss function for image fusion

is defined as a weighted combination of intensity loss and texture loss. In addition, the hybrid models, combined with the advantages of different

frameworks, are employed to pursue better image fusion performance.7,18 Specifically, Huang et al.19 proposed a synthetic aperture radar and mul-

tispectral image fusion via combining non-subsampled shearlet transform and activity measure, which could improve the interpretation ability of

SAR images. Zhang et al.20 developed an image fusion framework by combining the Laplacian pyramid and sparse representation to integrate the

information from multispectral and synthetic aperture radar images.
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2.2 Autoencoder-based image fusion methods

Deep learning has emerged as a powerful tool for resolving image fusion problems, leveraging the substantial capabilities of feature learning.17

Thereinto, the autoencoder (AE)-based method is an important branch. It achieves feature extraction and reconstruction by a trained autoencoder

network, while feature fusion is performed by traditional strategies.21

For example, Prabhakar et al.22 proposed a CNN-structured autoencoder network termed Deepfuse for image fusion. They adopted an encoder

to extract features from five layers and utilized a decoder to reconstruct the fused image. Li et al.8 presented an encoder that incorporates a dense

block and convolutional layer to obtain more beneficial features. The fusion layer employs two different strategies, that is, addition strategy and the

l_1-norm strategy, and it utilizes four 3 × 3 convolutional layers to reconstruct the fused image. In the aforementioned methods, manually designed

fusion rules are utilized which limits the performance. To address this issue, the end-to-end fusion framework is introduced for the better fusion

of depth features. Li et al.23 proposed an end-to-end fusion network architecture in which a learnable fusion strategy termed residual fusion net-

work (RFN) is designed to improve the performance of the image fusion framework. Ma et al.24 proposed a cascade network to generate the decision

map and fused images, which aims to improve the fused image in both quality and structure.

2.3 CNN-based image fusion methods

The CNN-based image fusion methods are developed to avoid manually designed fusion rules. Generally, CNN is introduced into the image fusion

framework in two forms. One is end-to-end image fusion by constructing a network structure and a well-designed loss function, where feature

extraction, feature fusion, and image reconstruction are done in an implicit manner.2

For example, Zhang et al.9 introduced an end-to-end CNN-based method in which a proportionate maintenance loss of gradient and inten-

sity was adopted to generate the fused image directly. Another is to use a pre-trained CNN model to formulate fusion rules, while the modules

of feature extraction and image reconstruction are performed by traditional methods.10 Liu et al.25 utilized a two-branch Siamese network to

generate fusion weights, and employed the Laplace pyramids to implement image decomposition and reconstruction. Moreover, Xu et al.26 pro-

posed a unified model for multi-fusion missions. The cross-fusion between different image fusion tasks is considered and consolidated with elastic

weights. However, because there is a lack of ground truth, the CNN-based network is unable to demonstrate its full potential in the picture fusion

domain.

2.4 GAN-based image fusion methods

In the GAN-based methods, the probability distribution of the target is estimated depending on the adversarial game between the generator and

the discriminator, which can perform feature extraction, feature fusion, and image reconstruction synchronously in an implicit manner.3,27,28

For example, Ma et al.11 proposed a GAN-based method to fuse infrared and visible images, referred to as FusionGAN. The method treated

the IVIF as a game between the generator and discriminator. The generator aims to generate a fused image with major infrared intensities as

well as additional visible gradients and maintain the allocation balance. The function of the discriminator is to compel the generator to generate a

fused image containing more textures. However, the fused images generated by a single discriminator may be biased toward the infrared or visi-

ble images. To ensure the fused image simultaneously maintain the structural and detailed information from these multi-modal sources, Ma et al.29

recently designed DDcGAN to learn unbiased knowledge with a dual-discriminator GAN model. In addition, Yang et al. designed two additional loss

functions in ResNetFusion,30 in which a detailed loss is to improve the detail quality, and a target edge enhancement loss is to sharpen the edges

of targets.

3 PROPOSED METHOD

3.1 Network architecture

The framework of the proposed MAIANet is depicted in Figure 1. As shown in Figure 1, a multiscale feature extraction (MFE) module is introduced to

extract multiscale features of infrared and visible images. By this means, the network can learn features at different scales adequately and improve

the effectiveness of the features. Then, a lightweight channel attention (LCA) module is adopted to further suppress irrelevant channel features and

enhance key channel features, the lightweight channel attention module is adopted. Subsequently, an image reconstruction module is established

to generate the fused image. In addition, an illumination-aware module4 is employed to estimate the illumination of the visible image.
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F I G U R E 1 Framework of the MAIANet for infrared and visible image fusion.

TA B L E 1 Architecture of the multiscale feature extraction module.

Layers Kernel size Input channels Output channels Activation function

Layer1 1 × 1 1 16 LReLU

Layer2 3 × 3 16 16 LReLU

Layer3 3 × 3 16 32 LReLU

Layer4 3 × 3 32 64 LReLU

Layer5 3 × 3 64 128 LReLU

3.2 Multiscale feature extraction module

The MFE module is built to extract multiscale features from both visible and infrared images. As illustrated in Figure 1, five identical convolutional

layers are deployed in a parallel way to extract low-level features. The configuration lists the specifics of each convolutional layer in the feature

extraction in Table 1. Specifically, the multi-modal images are fed into a 1 × 1 convolutional layer to initialize the low-level feature representation.

We aim to fully extract the complementary information across the low-level feature by adopting a CMDAF unit4 which is illustrated in Figure 2. It’s

embedded in the first four layers and formulated as

̂F
i
ir = Fi

ir ⊕ 𝛿

(
GAP

(
Fi

vi − Fi
ir

))
⊙

(
Fi

vi − Fi
ir

)
,

̂F
i
vi = Fi

vi ⊕ 𝛿

(
GAP

(
Fi

ir − Fi
vi

))
⊙

(
Fi

ir − Fi
vi

)
, (1)

where⊕ stands for the element-wise summation, and⊙denotes the channel-wise multiplication. The 𝛿(⋅) and GAP(⋅) refer to the Sigmoid activation

function and the global average pooling operation, respectively. The value of ith convolutional layer features for the infrared and visible images are

Fi
ir

and Fi
vi

, respectively.

Thus, the common and complementary features could be fully extracted from the infrared and visible images by the MFE module, which can be

formulated as,

{Fir, Fvi} = {EF (Iir) , EF (Ivi)} , (2)
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F I G U R E 2 Framework of cross-modality differential aware fusion (CMDAF) unit.

F I G U R E 3 Framework of multiscale extraction (ME) unit. “D-Conv3, d= t” indicates the dilated convolution with a 3 × 3 convolution kernel
with dilation ratios of t.

where Fir / Fvi respectively denote the infrared/visible features. Iir and Ivi indicates the infrared and visible images

Subsequently, these extracted features from the multi-modal sources are concatenated and fed into the multiscale extraction (ME) unit to

extract the multiscale features. The framework of the ME unit is shown in Figure 3. Specifically, the ME unit squeezes the channels of the feature

maps by 1 × 1 convolution layer. After that, the squeezed feature map is handled by dilated convolution with different dilation ratios of 1, 2, 3, and 4

to conserve the multiscale features of the source images. The feature maps are concatenated and fed into a 3 × 3 convolution layer. The final feature

map is the same size as the input.

3.3 Lightweight channel attention module

To further emphasize the intensity information of the infrared images and the detailed information of the visible images, an LCA module is built, as

shown in Figure 1.

The LCA module employs a local cross-channel interaction strategy without dimensionality reduction. Meanwhile, it utilizes a dynamic

convolution kernel to adapt to the size of the input channel feature maps and extract different ranges of dimensional features. In addition,

this module can better focus the significant target and detailed information of infrared and visible images on the promise of small model

complexity.

Specifically, the multiscale feature H ×W × C is compressed by global averaging pooling of spatial information to generate a 1-dimensional

feature map. Then, the compressed feature maps are convolved with a 1 × 1 convolution kernel to learn the weight of different channels.

The dimension of the channel attention feature map is formulated as follows:

C = 2𝜙(k)
, (3)
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6 of 15 SONG ET AL.

where 𝜙(k) = 𝛾 ∗ k − b is a simple linear function. The kernel size k is denoted as,

k = 𝜓(C) =
||||

log2(C)
𝛾

+ b
𝛾

||||odd
, (4)

where 𝜓 is the mapping function. The C stands for the number of channels. |t|odd denotes the nearest odd number of t. In this paper, 𝛾 and b are set

to 1 and 2, respectively. Finally, the obtained channel attention feature map is multiplied by the original feature map channel by channel, and the

feature map with channel attention is generated.

3.4 Image reconstruction module

The IRC module consists of five convolutional layers to produce the fused image. Table 2 displays the Architecture of the IRC module. The first four

layers use kernel size of 3 × 3, while the last layer adopts kernel size of 1 × 1. All the convolution layers employ the LReLU activation function except

for the final convolution which applies a Tanh activation function to generate the output.

The padding is set to the “SAME” in all convolutional layers to prevent information loss during image fusion. In addition, the stride is set to

1 for all convolution layers except for the first and the last layers. By these means, the size of the fused image remains the same as the size of the

source images.

3.5 Illumination-aware module

We further estimate the distribution of the illumination factor by adopting the IA module,4 as shown in Figure 1. The configuration of the

convolutional layer in the IA module is depicted in Table 3.

Given a visible image Ivi, the illumination-aware module process is defined as,

{Pd,Pn} = NIA (Ivi) , (5)

where NIA stands for the illumination-aware module. Pd and Pn indicate the probability that the visible image belongs to the day and night, respec-

tively. Since the infrared image captures thermal radiation emitted by objects, the infrared image lacks of illumination information. In contrast,

the visible images capture illumination reflection information and therefore contain rich illumination information. The visible image is fed into the

convolutional layer, and the illumination probability is calculated by two fully connected layers.

The spatial information is compressed, and illumination data is extracted using a 4 × 4 convolutional layer with a 2 stride. A Leaky ReLU (LReLU)

activation function is adopted in all convolutional layers. The padding is set to the “SAME” to ensure that the size of fused images is consistent with

TA B L E 2 Architecture of the image reconstructor module.

Layers Kernel size Input channels Output channels Activation function

Layer1 3 × 3 256 256 LReLU

Layer2 3 × 3 256 128 LReLU

Layer3 3 × 3 128 64 LReLU

Layer4 3 × 3 64 32 LReLU

Layer5 1 × 1 32 1 Tanh

TA B L E 3 Architecture of the multiscale feature extraction module.

Layers Kernel size Input channels Output channels Activation function

Layer1 4 × 4 1 16 LReLU

Layer2 4 × 4 16 32 LReLU

Layer3 4 × 4 32 64 LReLU

Layer4 4 × 4 64 128 LReLU
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source images. After that, the illumination information is integrated using a global average pooling manipulation. Finally, two fully connected layers

are employed to calculate the illumination probabilities.

3.6 Loss function

The illumination-aware loss is presented in MAIANet to fuse significant information in illumination conditions which are formulated as,

illum = Wir ⋅ 
ir
int + Wvi ⋅ 

vi
int, (6)

where ir
int

and vi
int

stands for the intensity losses that are corresponding to the infrared and visible images, respectively. Wir and Wvi denote the

illumination-aware weights calculated over infrared and visible sources. They are formulated as:

Wir =
Pn

Pd + Pn
,

Wvi =
Pd

Pd + Pn
, (7)

where Pd and Pn represent the probability regarding the day time or night time of the given image. To adaptively tune the inten-

sity factor of the fused image, With the formulation of Equation (7), we thereby calculate the illumination-aware weights, that is,

Wir and Wvi.

To minimize the difference between the fused image and the source images, we design the intensity loss as


ir
int =

1
HW

‖‖If − Iir
‖‖1 ,


vi
int =

1
HW

‖‖If − Ivi
‖‖1 , (8)

where H and W are the height and width of the images. || ⋅ ||1 is the l1-norm. Iir and Ivi are the infrared and visible images. If represents the fused

image.

The proposed method is driven by the illumination loss to dynamically preserve intensity information from the source image based on illu-

mination circumstances. However, it cannot guarantee the overall distribution of the intensity factor, which may result in suboptimal fusion

results caused by imbalanced intensity distribution. To solve this problem, an auxiliary intensity loss is further employed, which is formulated

as follows:

aux =
1

HW
‖‖If − max(Iir, Ivi)‖‖1 , (9)

A texture loss is defined as the following, and it is used to inject more detailed texture information into the fused image:

texture = 1
HW

‖‖||∇If
|| − max(|∇Iir| , |∇Ivi|)‖‖1 , (10)

where∇ indicates the gradient operator (Note: in this work the Sobel operator is adopted). | ⋅ | denotes the absolute operation.

The final loss function of the proposed model is the weighted combination of several components. It is represented as:

fusion = 𝜆1 ⋅ illum + 𝜆2 ⋅ aux + 𝜆3 ⋅ texture , (11)

where the hyperparameters of 𝜆1, 𝜆2, 𝜆3 are set to 3, 7, and 50, respectively.

In addition, the cross-entropy loss is used to constrain the training process of the illumination-aware module, which is formulated as:

IA = −z log 𝜎(y) − (1 − z) log(1 − 𝜎(y)), (12)

where z represent the y =
[
Pn,Pd

]
illumination of the input image, y =

[
Pn,Pd

]
represent the probability regarding the day time or night time of the

input image, and 𝜎 refers to the softmax function.
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4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Dataset

To verify the effectiveness of the proposed MAIANet, qualitative and quantitative experiments are conducted on the MSRS,4 TNO,31 and

RoadSence26 datasets. The MSRS dataset contains 1,444 pairs of aligned infrared and visible images with high quality. The TNO dataset31 consists

of multi-spectral nighttime images in various military-related scenes.

The TNO dataset is divided into three sequences, containing 19, 23, and 32 pairs of images, respectively. To compensate for the lack of quantity

in the existing datasets, Xu et al.26 built the RoadSence dataset based on the FLIR video.

The RoadSence dataset contains 221 matched visible and infrared image pairings in a variety of different roadside contexts, including roads,

cars, and people.

The representative infrared and visible images from these three datasets are depicted in Figure 4. Inspired by Tang et al.,4 752 pairs of infrared

and visible images of the MSRS dataset are randomly selected as the training set, and 360, 21, and 40 image pairs from the MSRS, TNO, and

RoadSence datasets are used as the test set.

M
S

R
S

T
N

O
R

o
ad

S
ce

n
e

F I G U R E 4 Representative infrared and visible images from the MSRS dataset, TNO dataset, and RoadScene dataset. The first and the second
rows in each dataset denote the infrared and visible images, respectively.
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TA B L E 4 Parameters of the training phase.

Batch size Training step Epoch

Illumination-aware module 128 438 100

Multiscale feature extraction 64 819 30

Image reconstruction module 64 819 30

Algorithm 1. Pseudocode of the training phase

Require: Infrared images Iir and visible images Ivi

Ensure: Fused images If

for M1 do

for p1 do

Select visible images;

Generate the illumination probability Pn and Pd with the illumination-aware module;

Calculate the cross-entropy lossIA according to Eq∼12;

Update the parameters of the illumination-aware module by Adam Optimizer;

end for

end for

for M2 do

for p2 do

Select infrared images;

Select visible images;

Generate the illumination probability Pn and Pd with the illumination-aware module;

synthesize the fused images with the fusion network;

Calculate the total loss Lfusion according to Eq∼11;

Update the parameters of the fusion network by Adam Optimizer;

end for

end for

4.2 Training details

The MSRS dataset is employed to train the MAIANet. The training of the proposed method is divided into two stages. First, the illumination-aware

module is trained using 427 daytime images and 376 nighttime images. In addition, the multiscale feature extraction and image reconstruction

module are trained by 376 pairs of daytime and 376 pairs of nighttime infrared and visible image pairs. To augment the training samples, the images

are cropped into patches with a size of 64 × 64 and the cropping stride is set to 64. To minimize the side effects caused by internal covariate shift,

these patches are normalized to [−1,1]. The daytime vector is set to [1,0] and vise-verse for the nighttime scene as [0,1]. The parameter of the

training phase is listed in Table 4. The training step in one epoch is set as p, the batch size is set to b and it takes M epochs to train a model. The

illumination-aware module is trained for M1 = 100 epochs, train steps as p1 = 438 and the batch size is defined as b1 = 128. The multiscale feature

extraction and image reconstruction are trained for M2 = 30 epochs, training steps as p2 = 819 and the batch size is defined as b2 = 64. The Adam

is introduced as the optimizer. The learning rates of the multiscale feature extraction and image reconstruction are initialized as 0.001.

Considering that some of the visible images in MSRS and RoadSence datasets are color images, a special fusion strategy22 is utilized to retain

their color information in the fused images. Specifically, the visible image is first converted to the YCbCr color space. The Y channel of the infrared

and visible images are then merged using the proposed method. In the end, the fused image is converted to RGB color space. The pseudocode of the

training phase is shown in Algorithm 1.

4.3 Qualitative evaluation

The qualitative evaluation is the degree of human satisfaction with the image from the human observation criteria, including brightness, con-

trast, color, and naturalness metrics. Seven state-of-the-art competitors, that is, Deepfuse,22 Densefuse,8 Dualbranch,32 FusionDN,26 GAN-FM,33
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10 of 15 SONG ET AL.

GTF,34 and SwinFusion35 are compared with the proposed MAIANet. Comparative results on the MSRS, TNO, and RoadSence datasets are shown

in Figures 5,6, and 7, respectively.

In Figure 5, the sample depicts a representative pair of infrared and visible images on the MSRS dataset. Specifically, a bright region (in the

red box) and a dark region (in the green box) are selected for analysis. In the bright region, the thermally radiated information of the infrared

image can be utilized as complementary information to the visible image. Therefore, a superior fusion method should emphasize the important

targets while maintaining the textural features of the visible images. Comparative results prove that the GTF,34 Deepfuse,22 Densefuse,8 Dual-

branch,32 and FusionDN26 fail to maintain the detailed information of the visible image. Although the GAN-FM33 and SwinFusion35 combine

the texture information of the visible image with the salient target information in the infrared image, the detailed information of the back-

ground region is missing. The MAIANet not only highlights salient target information but also retains background detail information well in

visible images.

In Figure 6, the sample illustrates a representative pair of infrared and visible images in the TNO dataset, a person walking down a forest path

with houses nearby. The illumination is too dark to discover the person in the visible image, and it is only in the infrared image that the person

can be detected. Meanwhile, the infrared image lacks detailed information about the trees and houses. It shows that the Deepfuse,22 Densefuse,8

Dualbranch,32 FusionDN,26 and GTF34 fail to capture the intensity information of the person. As shown in Figure 6, the MAIANet retains the edge and

detail information. Although the GAN-FM33 performs well in persevering intensity information from images, it does not perform well in maintaining

the edge and detail information of images. The green contour in the visible image shows the eaves and windows, which contain a lot of edge and detail

information. The fusion of GAN-FM33 results in the loss of edge and detail information. Compared with other competitors, the proposed MAIANet

(B) IR(A) VIS (C) Deepfuse (D) Densefuse (E) Dualbranch

(F) FusionDN (G) GAN-FM (H) GTF (I) SwinFusion (J) Ours

F I G U R E 5 Qualitative comparison results on the MSRS dataset.

(B) IR(A) VIS (C) Deepfuse (D) Densefuse (E) Dualbranch

(F) FusionDN (G) GAN-FM (H) GTF (I) SwinFusion (J) Ours

F I G U R E 6 Qualitative comparison results on the TNO dataset.
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SONG ET AL. 11 of 15

(B) IR(A) VIS (C) Deepfuse (D) Densefuse (E) Dualbranch

(F) FusionDN (G) GAN-FM (H) GTF (I) SwinFusion (J) Ours

F I G U R E 7 Qualitative comparison results on the RoadSence dataset.

can retain more intense information with the person in the image being more clear and more natural. Meanwhile, the edge information and texture

detail are well preserved.

Figure 7 illuminates a scenario from the RoadScene dataset in which cars and puddles are thermal targets with strong intensity in the

infrared image, while manhole covers, trees, and house windows are textured details in the visible image. The subjective comparison result

proves that only the GAN-FM,33 SwinFusion,35 and MAIANet preserve full intensity information, while Deepfuse,22 Densefuse,8 Dualbranch,32

FusionDN,26 and GTF34 have diminished performance. In terms of visual perception, the proposed method is more in alignment with human

visual perception and more natural. Besides, the MAIANet performs well in the reconstruction of textured areas (the textured details of the win-

dow in the red contour and the tree in the green box). However, the Densefuse,8 Dualbranch,32 and FusionDN26 miss a lot of edge and detail

information.

4.4 Quantitative evaluation

For quantitative evaluation, six metrics, that is, Edge Intensity (EI),36 spatial frequency (SF),37 Qabf,38 FMI_pixel,39 Q_E40 and average gradient (AG),41

are employed to evaluate the fusion performance of the MAIANet and the competitors. Among them, EI represents the contrast intensity of adjacent

pixels. SF denotes the degree of mutation in the image. Qabf measures the amount of edge information transferred from source images to the fusion

result. FMI can describe the amount of feature information transferred and preserved in the fused image. Q_E considers the edge information of the

human visual system. AG quantifies the gradient information of the fused image to measure the detail and texture information of the fused image.

Quantitative comparison experiments are conducted on 360, 21, and 40 image pairs of the MSRS, TNO, and RoadScene datasets. The comparative

results are averaged as the final results which are presented in Tables 5, 6, and 7, respectively.

TA B L E 5 Quantitative comparison results on the MSRS dataset.

Methods EI ↑ SF ↑ Qabf ↑ FMI_pixel ↑ Q_E ↑ AG ↑

Deepfuse22 26.5760 7.3778 0.4967 0.923123 0.5624 2.5058

Densefuse8 21.7100 6.0216 0.3678 0.923126 0.3824 2.0552

Dualbranch32 21.5734 5.9915 0.3491 0.3622 0.3622 2.0329

FusionDN26 52.1984 13.7831 0.4292 0.9003 0.5773 4.9097

GAN-FM33 42.5906 11.6002 0.5376 0.9071 0.6119 4.0157

GTF34 24.2052 7.6823 0.3458 0.9048 0.3027 2.3052

SwinFusion35 38.0957 11.0911 0.6545 0.9306 0.8479 3.5709

Ours 42.7669 12.0459 0.6585 0.9288 0.8709 4.0418

Note: The best, second-best, and third-best results are marked in red, blue, and green, respectively.
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12 of 15 SONG ET AL.

TA B L E 6 Quantitative comparison results on the TNO dataset.

Methods EI ↑ SF ↑ Qabf ↑ FMI_pixel ↑ Q_E ↑ AG ↑

Deepfuse22 34.7373 8.9177 0.4967 0.9047 0.5042 3.5129

Densefuse8 23.3069 6.0417 0.3678 0.9086 0.3098 2.3534

Dualbranch32 23.3851 5.7463 0.3491 0.9079 0.3002 2.3162

FusionDN26 53.6711 12.8069 0.4292 0.8803 0.4171 5.2768

GAN-FM33 44.4676 12.0983 0.5376 0.8860 0.4353 4.6080

GTF34 32.5279 9.2044 0.3458 0.9047 0.3521 3.3587

SwinFusion35 38.8169 11.9617 0.6545 0.9117 0.5502 3.9276

Ours 44.8592 11.9617 0.6585 0.9169 0.7039 4.5583

Note: The best, second-best, and third-best results are marked in red, blue, and green, respectively.

TA B L E 7 Quantitative comparison results on the RoadSence dataset.

Methods EI ↑ SF ↑ Qabf ↑ FMI_pixel ↑ Q_E ↑ AG ↑

Deepfuse22 46.5114 11.2044 0.4827 0.86312 0.4376 4.4297

Densefuse8 35.2111 8.4654 0.3802 0.86318 0.2879 3.3600

Dualbranch32 35.3197 8.3459 0.3760 0.8626 0.2843 3.3623

FusionDN26 66.4588 15.5675 0.4808 0.8519 0.4696 6.2816

GAN-FM33 59.1052 15.0467 0.4600 0.8590 0.4186 5.6422

GTF34 35.4243 9.4159 0.3480 0.8710 0.1849 3.3632

SwinFusion35 47.7495 12.0794 0.4571 0.8573 0.3734 4.4535

Ours 65.6589 17.7281 0.5252 0.8696 0.6361 6.4276

Note: The best, second-best, and third-best results are marked in red, blue, and green, respectively.

Table 5 illustrates that the proposed MAIANet performs best in the Qabf and Q_E indicators on the MSRS dataset. The MAIANet ranked second

in EI, SF, FMI_pixel, and AG. Especially, compared with the second-best method of SwinFusion,35 the proposed method improves Qabf and Q_E by

0.6%, and 2.7%, respectively. Meanwhile, the proposed method improves the EI, SF, and AG by 0.4%, 3.8%, and 0.6% compared with the GAN-FM33

respectively. Specifically, compared with the SwinFusion35 which is a CNN-based method, the MAIANet improves the EI, SF, Qabf, and AG by 12.3%,

8.6%, 0.6%, 2.7%, and 13.1%.

Table 6 shows that the proposed MAIANet ranks first in Qabf, FMI_pixel, and Q_E on the TNO datasets. Meanwhile, the MAIANet ranks second

place in EI and third place in both SF and AG. Particularly, compared with Deepfuse22 which is an autoencoder-based method, the proposed method

improves the EI, SF, Qabf, FMI_pixel, Q_E and AG improved by 29.1%, 34.1%, 32.6%, 1.3%, 39.6% and 29.8%, respectively. Compared with SwinFu-

sion,35 which is a CNN-based method, the proposed method improves the EI, Qabf, FMI_pixel, Q_E, and AG by 15.6%, 0.6%, 0.5%, 27.9%, and 16.7%,

respectively.

Table 7 demonstrates that the MAIANet performs best in SF, Qabf, Q_E, and AG on the RoadSence dataset. Also, it ranks second place in EI

and FMI_pixel. Particularly, compared to the second-best method FusionDN,26 the MAIANet improves SF, Q_E, and AG by 13.9%, 35.5% and 2.3%,

respectively. Meanwhile, the proposed MAIANet improves the QABF by 8.8% compared to the second-ranked Deepfuse.22 In addition, compared

with SwinFusion,35 the proposed method improves the EI, SF, Qabf, FMI_pixel, Q_E and AG improved by 37.5%, 46.8%, 14.9%, 1.4%, 0.7%, and 44.3%,

respectively.

4.5 Ablation study

To further investigate the effectiveness of different components of MAIANet, we conduct ablation studies on the TNO dataset. The ablation studies

are divided into two aspects, that is, the effectiveness of the multiscale extraction unit and the effectiveness of the lightweight channel attention

module. The detailed network configurations are depicted as follows.
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TA B L E 8 Ablation analysis on the key components in MAIANet.

Methods EI ↑ SF ↑ Qabf ↑ FMI_pixel ↑ Q_E ↑ AG ↑

Baseline 42.3462 11.0184 0.5756 0.9166 0.6630 4.2651

Baseline+ME 43.8706 11.5155 0.5808 0.9185 0.7254 4.4513

Baseline+ LCA 43.1541 11.2222 0.5657 0.9173 0.6954 4.3707

Baseline+ME-LCA 44.8592 11.9617 0.6585 0.9169 0.7039 4.5583

Note: The best results are marked in bold.

1. “baseline” refers to the vanilla model without any component.

2. “baseline+ME” denotes the baseline model with single ME unit.

3. “baseline+ LCA” represents the baseline model with single LCA module.

4. “baseline+ME-LCA” refers to the baseline model with the ME unit and LCA module sequentially connected.

Comparison results are shown in Table 8. It proves that the ME unit and LCA module contribute to substantial improvements in the baseline

approach. As shown in Table 8, the “baseline” method achieves the worst performance. Compared with the “baseline” method, the “baseline+ME”,

“baseline + LCA”, and “baseline +ME-LCA” methods synergy multiscale information and channel attention. Therefore, the latter is better than the

former. Specifically, compared to the “baseline” method, the “baseline + ME” and “baseline + LCA” methods improve EI by 3.6%, 1.9%, and 5.9%
respectively. In addition, it can be seen that the addition of the ME unit and the LCA module are helpful to enhance the SF, Qabf, FMI_pixel, Q_E, and

AG. Specifically, the “baseline+ME” method achieves 4.5%, 0.9%, 0.2%, 9.4%, and 4.4% improvement in SF, Qabf, FMI_pixel, Q_E, and AG, respectively.

The “baseline+LCA” method obtains 1.8%, 0.07%, 4.9%, and 2.5%enhancement in SF, FMI_pixel, Q_E, and AG, respectively. The ”baseline+ME-LCA”

method performs best in EI, SF, Qabf, and AG. Particularly, compared with the ”baseline” method, the ”baseline +ME-LCA” method improves EI, SF,

Qabf, FMI_pixel, Q_E, and AG by 5.9%, 8.6%, 14.4%, 0.003%, 6.2%, and 6.9%, respectively.

5 CONCLUSION

A multiscale aggregation and illumination-aware attention network (MAIANet) is proposed for the IVIF task. The proposed MAIANet utilizes the

multiscale feature extraction module to extract multiscale information from infrared and visible images. In addition, the suggested method con-

structs an illumination-aware module to evaluate the illumination probability and distribution. An illumination-aware loss function is developed to

assist the network in adjusting to differences in illumination. Meanwhile, a lightweight attention module is employed to focus on the salient targets

and texture details of the infrared and visible images. The proposed fusion network is verified with state-of-the-art techniques on three challenging

infrared and visible datasets in both qualitative and quantitative evaluation. Comparison results prove that the proposed strategies can preserve

the intensity information of the infrared image and the detailed information of the visible image under various illumination circumstances. In the

future, more efforts are expected to detail preserving, as the visible images are susceptible to loss of detail information and are highly susceptible

to interference.
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