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Abstract
Pan-sharpening is a technique used to generate high-resolution multi-spectral (HRMS) images by merging high-resolution
panchromatic (PAN) images with low-resolution multi-spectral (LRMS) images. Many existing methods face challenges
in effectively balancing the trade-off between spectral and spatial information, leading to spectral and spatial structural
distortion. In order to effectively tackle these issues, we propose a dual-branch and triple attention (DBTA) network. The
proposed DBTA network consists of two essential modules: the Channel-spatial Attention (CSA) module and the Spectral
Attention (SPA)module. The CSAmodule effectively captures the spatial structural information of the images by jointly using
spatial and channel attention units. Meanwhile, the SPA module improves the expressive capacity of spectral information by
dynamically adjusting channel weights. These two modules work in synergy to achieve comprehensive extraction and fusion
of spectral and spatial information, thus resulting in more accurate and clearer reconstructed images. Extensive experiments
have been conducted on various satellite datasets to evaluate the performance of the proposed DBTAmethod outperforms the
state-of-the-art competitors in both qualitative and quantitative evaluations.

Keywords Deep learning · Image fusion · Pan-sharpening · Remote sensing · Attention mechanism

1 Introduction

The panchromatic (PAN) image is a remote sensing image
characterized by a single color band. This type of image is
known for its high spatial resolution but low spectral reso-
lution [55]. Meanwhile, multi-spectral (MS) remote sensing
images contain multiple bands, typically red, green, blue,
near-infrared, and other bands. Each spectral band captures
specific information about ground targets, reflecting their dis-
tinct features and properties. In contrast to PAN images, MS
images exhibit superior spectral resolution but lower spa-
tial resolution [61]. The pan-sharpening technique combines
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the spatial details from PAN images with the spectral char-
acteristics of LRMS images to generate a high-resolution
(HR) MS image. Pan-sharpening technique has been proven
to be highly beneficial for various applications, e.g., object
detection [15], land surveying [59], and environmental mon-
itoring [3].

Pan-sharpening algorithms can be broadly classified
into two categories: traditional methods and deep learning
methods. The traditional approaches can be further cate-
gorized into three groups, namely component substitution
(CS)-based methods [12], multi-resolution analysis (MRA)-
basedmethods [34], and variational optimization (VO)-based
methods [33]. Considering the intricate nature of ground
objects and the wide array of spectral characteristics cap-
tured by various sensors, traditional methods face difficulties
in establishing a meaningful connection between the input
image and the target HRMS image [20].

In recent years, deep learning has been widely used
in pansharpening, benefiting from the powerful feature
representation capabilities of neural networks [22]. Deep
learning-based Pan-sharpening methods can be categorized
broadly into two groups, i.e., convolutional neural network
(CNN)-based methods and generative adversarial network
(GAN)-based methods. Existing CNN-based methods typ-
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ically generate HRMS images by acquiring the mapping
function among the MS image, PAN image, and HRMS
image [60]. The GAN-based methods typically consist of
generator and discriminator networks, wherein the two
networks oppose each other.Using iterative learning, the gen-
erator network progressively acquires the ability to generate
HRMS images of increased realism, eliminating the depen-
dence on ground truth [37].

The PAN image encompasses substantial spatial texture
information, while theMS image offers ample spectral infor-
mation. Generating high-quality HRMS images necessitates
fully utilizing data acquired from both sources. Neverthe-
less, the majority of current pan-sharpening methods employ
a direct feature extraction and fusion approach from the
cascaded MS and PAN images [54]. Disregarding the redun-
dancy information between the MS and PAN images, as
well as the distinct characteristics of each band in the MS
image, these methods would significantly impede the abil-
ity to enhance the performance of these methods further.
Existing pan-sharpening methods struggle to balance the
preservation of spectral and spatial information, and thus, it
results in spectral distortion and spatial structural distortion
in the fused images.

To address these problems, we propose the dual-branch
and triple-attention (DBTA) network for pan-sharpening.
The architecture of the proposed DBTA is shown in Fig. 1.
Specifically, a dual-branch scheme is built to extract spatial
and spectral information of the input images, respectively.
The spatial branch incorporates the channel-spatial atten-
tion module, enabling improved preservation of information
such as spatial structure in the image. To maintain the spec-
tral information of the MS images in the spectral feature
branch, we propose the incorporation of the spectral atten-
tion module. The comparative experiments demonstrate the
superiority of the proposed DBTA over the current state-

of-the-art pan-sharpening method. The contributions of this
work can be summarized as follows:

1. A dual-branch and triple-attention (DBTA) network is
built for pan-sharpening to address the problem of spec-
tral distortion and spatial structure degradation.

2. A channel-spatial attention (CSA) module is designed to
preserve the spatial structural information in the images.
Meanwhile, a spectral attention (SPA) module is built to
preserve spectral information and avoid spectral distor-
tion.

3. Comprehensive experimental results on three datasets,
i.e., WorldViewIII, QuickBird, and GaoFen2 datasets
demonstrate the effectiveness of the DBTA. Meanwhile,
the ablation experiments validate the effectiveness of the
CSA and SPA modules.

The rest of this paper is structured as follows. Section 2
reviews the related work on pan-sharpening methods and
attention mechanisms. Section 3 describes the proposed
method in detail. Section 4 presents the experimental setup
and results. Section 5 concludes this paper and points out
future work.

2 Related work

2.1 Traditional pan-sharpeningmethods

In the last decade, a variety of pan-sharpening meth-
ods have been established, and striking results have been
yielded. There are three main categories of traditional pan-
sharpeningmethods, i.e., component substitution (CS)-based
methods [12], multi-resolution analysis (MRA)-based meth-
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Fig. 1 Architecture of the proposed DBTA for pan-sharpening
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ods [34], and variational optimization (VO)-based meth-
ods [33]. TheCS-basedmethods decompose theMSandPAN
images into multiple components. Subsequently, a specific
component from theMS image is partially or fully substituted
with a histogram-matched PAN image to generate an HRMS
image. The representative CS-based methods include the
Gram-Schmidt (GS) method [17], the principal component
analysis (PCA) method [40, 43], the intensity-hue-saturation
(IHS) method [26, 46], the Brovey transformation meth-
ods [13]. Nevertheless, since the MS component replaced by
the PAN image also contains certain spectral information, the
fused image obtained based on the CS-based method usually
suffers from spectral distortion [49].

The MRA-based methods exhibit the capability to pre-
serve favorable spectral features. The fundamental con-
cept underlying MRA-based methods is to leverage multi-
resolution decomposition technology to incorporate high-
frequency details obtained from the PAN images into the up-
sampled MS images. The decomposition methods typically
used in theMRA-based methods include the Laplacian pyra-
mid transform [23], the Wavelet transform [51], the Curvelet
transform [36], and the Support tensor transform [50]. In
most instances, the MRA-based methodology produces sat-
isfactory spatial-spectral unified fidelity [65]. Nonetheless,
the MRA-based approaches are contingent on the efficacy
of multi-resolution techniques, which can result in localized
spatial artifacts in the fused images [66].

The VO-based methods regard pan-sharpening as an
ill-posed problem [4]. It comprises two indispensable com-
ponents, i.e., the formulation of the energy functional and the
derivation of the optimization solution [33]. These methods
always combine the energy function with appropriate regu-
larization terms such as sparse regularization [44], low-rank
recovery model [42], and variational model [11]. Although
VO-based methods attempt to strike a balance between
spatial enhancement and spectral preservation, their effec-
tiveness is constrained by the utilization of shallow nonlinear
expressions in their models.

2.2 Deep learning-based pan-sharpeningmethods

Deep learning-based methods have been rapidly adopted
in remote sensing applications due to their excellent non-
linear map learning and feature extraction capabilities [22,
55]. These methods leverage the robust feature extraction
capabilities of convolutional networks, which often leads to
less spectral distortion and favorable fusion performance.
The pan-sharpening methods based on deep learning can be
broadly classified into CNN-based methods and GAN-based
methods [14].

Huang et al. [19] pioneered the use of deep learning tech-
niques for pan-sharpening. Inspired by the super-resolution
convolutional neural networks (SRCNN) [10], the pan-

sharpening network (PNN) [32] was proposed. However,
the performance and convergence speed of PNN is limited
because it only employs three convolutional layers and lacks
skip connections to expedite convergence. In addition, Liu et
al. [30] leveraged an encoder-decoder network to execute
feature extraction, fusion, and reconstruction procedures for
HRMS. Xiong et al. [52] introduced an unsupervised atten-
tion Pan-sharpening net (UAP-Net) without the need for
annotated training data. Lee et al. [25] discovered that the
alignment of the same object in MS and PAN images is not
consistently accurate. To tackle this issue, they introduced
SIPSA-Net by incorporating a feature alignment module.
Su et al. [41] proposed a Transformer-Based Regression Net-
work (DR-NET) for pan-sharpening. This approach utilizes
the Transformer to construct an end-to-end network archi-
tecture for generating high-quality fused images. Ciotola et
al. [7] proposed a deep learning-based full-resolution train-
ing framework for pan-sharpening. This framework is highly
versatile and can be applied to deep-learning pan-sharpening
models. The training process is conducted in the high-
resolution domain and relies solely on the original data.

The GAN-based methods commonly employ unsuper-
vised learning strategies to explore the underlying features of
a network through the iterative interaction between the gen-
erator and discriminator [29, 31]. Liu et al. [29] introduced
PSGAN, the pioneering GAN-based approach, to tackle the
pan-sharpening problem. The PSGANconsists of a generator
that combines the LRMS and PAN images and a discrimi-
nator to minimize the discrepancy between the fused image
and the ground truth. In addition, Ma et al. [31] presented
an unsupervised approach for pan-sharpening that can avoid
the resolution loss caused by degradation simulation in high-
resolution image fusion. Qu et al. [38] presented an unsuper-
vised learning method for pan-sharpening by incorporating a
self-attention module. To tackle the challenge of limited the
resolution of the training dataset, Xu et al. [53] introduced an
unsupervised pansharpening generative adversarial network
model termed Unsupervised Pansharpening Based on Spec-
tral and Spatial Loss Constrained Generative Adversarial
Network (UPanGAN). This model undergoes direct training
using the original panchromatic and multispectral images. In
contrast to models trained on downsampled data, the UPan-
GAN is well-suited for enhancing the spatial and spectral
richness of original full-resolution images. The GAN-based
methods exhibit a remarkable pan-sharpening effect, partic-
ularly for real data, typically of superior quality.

2.3 Attentionmechanism

The attention mechanism is based on human visual attention.
Attention mechanisms have wide applications and research
in fields, for example, natural language processing, computer
vision, and speech recognition [6, 16, 58]. The fundamen-
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tal idea behind attention mechanisms is that given an input
sequence and an output sequence, a model learns a weight
distribution to determine which elements from the input
sequence should be attended to when generating each output
element [5]. Therefore, the model can dynamically adjust the
focus of attention based on different tasks and contexts, and
extract more useful information.

Zhang et al. [62] proposed a method based on the Resid-
ual Channel Attention Network (RCAN) by introducing the
Residual in Residual (RIR) structure and Channel Atten-
tion (CA) mechanism within the residual channels. Tang et
al. [45] proposed the Attention Consistent Network (ACNet)
by introducing a dual-branch structure, different attention
techniques, and an attention consistencymodule. Li et al. [27]
introduced the Multi-Scale Channel Attention Residual Net-
work (MSCARN) by incorporating techniques including
multi-scale feature extraction, channel attention mechanism,
and residual learning. Liang et al. [28] proposed the parallel
multi-scale attention constraint network (PMACNet) for the
fusion of remote sensing images by utilizing themechanisms
of transformers and employing a parallel convolutional neu-
ral network structure to extract regions of interest and residual
information from low-resolution multi-spectral images and
high-resolution panchromatic images.

3 Methodology

3.1 Overview

The architecture of the proposed DBTA network for pan-
sharpening is shown in Fig. 1. It consists of three primary
components, i.e., spatial feature branch, spectral feature
branch, and image reconstruction module.

Specifically, given an LRMS image M ∈ RC× H
4 ×W

4 and
the PAN image P ∈ R1×H×W , the LRMS image is up-
sampled to align with the resolution of the PAN image. Then,
the PAN image is duplicated across the channels to match the
number of channels in the MS image. The registeredMS and
PAN images are inputted into the proposed model.

For the spatial feature branch, the MS and PAN images
are subtracted to extract the spatial and potential spectral
features [8]. The spatial feature branch employs a 3× 3 con-
volution layer to transform the image after the subtraction
of elements into feature space with modality-specific fea-
tures, denoted as P0. After that, the spatial feature map P0
undergoes feature extraction and detail learning through the
multiple residual blocks and channel-spatial attention mod-
ules (CSA). The spatial branch focuses on the spatial position
and content of the features of interest. This is because both the
spatial location and content of features are equally important.
For example, in an image containing cars, the spatial position
and content of the cars are equally important because they
can help the network distinguish between different cars.

For the spectral feature branch, the up-sampledMS image
is employed as the input and then undergoes the transforma-
tion into the feature space using a 3× 3 convolutional layer,
denoted as M0. Subsequently, the ultimate spectral feature
map is obtained from M0 by utilizing a feature extractor
consisting of numerous residual blocks and spectral atten-
tion modules (SPA).

We employ the residual channel attention block [62] as the
image reconstruction module (IR) to mitigate the impact of
noise and artifacts. The architecture of the image reconstruc-
tion module is shown in Fig. 2. We transmit the feature Ff ,
which combines spatial and spectral features, to the image
reconstructionmodule to achieve effective feature fusion and
generate the reconstructed image I f . Finally, the genera-
tion of HR-MS images is accomplished by integrating the
up-sampled MS images into the transformed representation
through a skip connection.

By simultaneously utilizing the channel-spatial attention
module and the spectral attention module in two distinct
branches, the DBTA network can learn how to emphasize
or suppress the most informative features in both spatial
and spectral dimensions selectively, thereby enhancing the
performance of feature extraction in spatial and spectral
domains. The residual blocks [21] are employed in both
branches to extract image features. Figure 3 shows that the
residual block consists of two 3×3 convolutional layers and

Conv Conv

Multiply Sum

Ff  If

Fig. 2 Architecture of the image reconstruction module
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Fig. 3 Architecture of the residual block

a skip connection. The skip connection adds the input fea-
ture map to the output of the convolutional layers to form the
residual output. After each convolutional layer, we apply the
ReLU activation function for non-linear transformation.

3.2 Channel-spatial attentionmodule

The architecture of the channel-spatial attention module
is shown in Fig. 4. The channel-spatial attention module
composes a channel attention (CA) unit and a spatial atten-
tion (SA) unit. The channel attention unit adjusts the weights
of different channel features to emphasize the important
channels containing object properties, colors, textures, and
so on. The spatial attention unit is to modify the feature map
weights in various spatial locations to emphasize crucial fea-
ture regions, such as the shape and structure of objects.

3.2.1 Channel attention unit

Toeffectively extract texture and structural features,we adopt
the CA unit that learns the importance weights of each chan-

nel automatically. The channel attention unit is a mechanism
that can adaptively recalibrate the feature maps of each chan-
nel in the CNN. It can selectively emphasize or suppress
the feature maps of each channel and enable the network to
focus on the most informative features. The architecture of
the channel attention unit is presented in Fig. 4. The compu-
tation of the channel attention (CA) unit is defined as follows,

Fc = σ (C1(MaxPool(F) ⊕ AvgPool(F))) , (1)

where σ(·) denotes the sigmoid function. C1 is a 3 × 3
kernel convolution operator. The functions MaxPool(·) and
AvgPool(·) denote the max pooling and average pooling
operations along the channel dimensions, respectively. The
symbol ⊕ represents the elemental addition.

3.2.2 Spatial attention unit

The utilization of a channel attention unit enables the model
to concentrate on image channels to enhance the clarity and
sharpness of the resultant image. However, relying solely
on channel attention might overlook the unique characteris-

O

Average poolingSigmoid

MultiplyMax poolingConcatnate

Conv-7*7 Sum

Conv-1*1

Channel attention unit Spatial attention unit

F

Fs

Fc

Fig. 4 Architecture of the channel-spatial attention module
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tics present in various regions of the image, thereby limiting
the comprehensive improvement of the image quality. To
address this issue, the spatial attention (SA) unit is integrated
following the channel attention unit. Figure 4 illustrates the
framework of the SA unit. It is formulated as follows.

Fs = σ
{
C7(Cat

[
MaxPool (Fc) ;AvgPool (Fc)

]
)
}⊗Fc, (2)

where σ represents the sigmoid function, and C1 denotes a
convolution operation with the filter size of 7× 7. The sym-
bol ⊗ denotes the element-wise multiplication. MaxPool(·)
and AvgPool(·) are the max pooling and average pooling
functions in channel dimensions, respectively.

3.3 Spectral attentionmodule

The proposed spectral attention module enhances the capa-
bility of the method to extract spectral features. This is
accomplished by recalibrating the feature maps by using
global context guidance, thereby emphasizing the most
salient features. In contrast to the channel attention unit,
the spectral attention module is specifically designed for the
spectral bands found in multi-spectral images. It can dynam-
ically recalibrate the spectral bands within multi-spectral
images, thereby selectively enhancing or suppressing spec-
tral bands. Therefore, the spectral attention module helps the
network to focus on the most informative spectral bands.
Figure 5 illustrates the architecture of the spectral feature
attention.

Assuming an input tensor X ∈ R
H×W×C , the global con-

text vector is calculated throughglobal poolingG ∈ R
1×1×C ,

G(:, :, k) = 1

H · W
H∑

i=1

W∑

j=1

X(i, j, k), (3)

where k is the index of the channel dimension. To obtain the
weight matrix of the spectral information, we implement two
fully connected layers to conduct a nonlinear transformation

ofG ∈ R
1×1×C . Then, the sigmoid gating function is utilized

to compute the vector of channel scaling factors S ∈ R
1×1×C ,

S = σ (W2δ (W1G)) , (4)

where δ represents the ReLU function [35]. W1 ∈ R
C
r ×C ,

and W2 ∈ R
C×C

r . To balance the computational cost and
model capacity, a reduction ratio r is introduced. To accom-
modate the proposed model, the value of r is set to 4. The
output Y (i, j, k) of the spectral attention module is defined
as follows,

Y (i, j, k) = S(:, :, k) · X(i, j, k). (5)

3.4 Loss function

The mean squared error (MSE) is adopted to quantify the
deviation between the fusion result and the ground truth [39].
It is formulated as,

L =
K∑

i=1

∥∥Hi − Hgt,i
∥∥
2 , (6)

where K represents the number of training data, Hi repre-
sents the output high-resolution MS image, ‖ · ‖2 is l2 norm
andHgt,i represents the corresponding ground truth, respec-
tively.

4 Experimental results and discussion

4.1 Dataset

To demonstrate the effectiveness of the proposed method,
the comparison experiments are conducted on three publicly
available datasets,i.e., GaoFen2 (GF2), QuickBird (QB), and
WorldView III (WV3) datasets that were introduced by
Deng et al. [9]. For these three datasets, the MS images

H

W
C

X

H

W
C

YG S

Global average pooling SigmoidConv-1*1 Multiply

Fig. 5 Architecture of the spectral attention module
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have spatial resolutions of 4 m, 2.44 m, and 1.2 m, respec-
tively, whereas the PAN images have corresponding spatial
resolutions of about 1 m, 0.61 m, and 0.3 m. The orig-
inal spatial resolution ratio between the MS and PAN
images in these datasets is 4. Two types of test datasets are
employed, i.e., reduced resolution test dataset following the
Wald protocol [47], and full resolution test datasets at the
original scale. A total of 40 image pairs are used for the
test.

To augment the training dataset, the original image is
initially divided into several image blocks. Then, down-
sampling is applied to generate low-resolution LRPAN and
LRMS images. TheMS image before down-sampling serves
as the ground truth. Finally, we obtain 22010 image patches
of the GF2 dataset, 19044 image patches of the QB dataset,
and 10794 image patches of theWV3 dataset.We divided the
datasets of three satellites into a training set comprising 90%
of the data and a validation set comprising 10% of the data
for each satellite, respectively. The size of LRMS images uti-
lized for training is 16× 16, whereas the size of the LRPAN
and original MS images is 64 × 64. Table 1 illustrates the
specifics of the dataset employed in the experiment.

4.2 Training details

The training and test phases are performed utilizing the
PyTorch framework on an NVIDIA RTX3080Ti GPU. For
the training phase, the Adam optimizer is utilized for opti-
mization. It consists of 1500 epochs of iterations with a batch
size of 32. The learning rate is initialized to 3 × 10−4 and
set as a fixed value during training. Since the real MS and
PAN images are mismatched, we constructed the datasets for
training and testing using the Wald protocol [47].

4.3 Qualitative evaluation

Qualitative evaluation refers to the level of satisfaction that
humans have towards an image. From a human percep-
tual standpoint, it encompasses luminance, contrast, chro-

maticity, and authenticity indicators. Eight state-of-the-art
competitors, i.e., PNN [32], DICNN [18], MSDCNN [56],
BDPN [63], DRPNN [64], SFITNet [67], LAGConv [24] and
FusionNet [8] are employed for comparison.

4.3.1 Qualitative evaluation on theWorldViewIII dataset

Two types of tests, namely reduced-resolution test and
full-resolution test are carried out on the WorldViewIII.
The reduced-resolution results example contains numerous
forests and dense houses, which can easily lead to issues such
as spectral distortion and spatial structure distortion. The
qualitative results on the WorldViewIII dataset are presented
in Fig. 6. The comparison results prove that MSDCNN [56],
BDPN [63], PNN [32], SFITNet [67], LAGConv [24] and
DRPNN [64] exhibite significant distortion across extensive
forested regions and buildings. Meanwhile, the DICNN [18]
and FusionNet [8] methods fail to achieve a satisfactory bal-
ance between spectral and spatial information and thus result
in significant spatial distortions in the output.On the contrary,
the proposed DBTAmodel demonstrates satisfactory perfor-
mance in terms of spectral distribution and spatial structure
compared to alternative approaches.

The full-resolution results example contains densely
houses and vehicles, where densely residential areas can
lead to spectral distortion issues while moving vehicles can
easily cause spatial artifacts. Figure 7 presents the results
obtained from the full-resolution dataset. The images pro-
duced by MSDCNN [56], BDPN [63], and DRPNN [64],
exhibit distortions in both spectral and spatial attributes.
Due to the insufficient integration of spectral information
by DICNN [18] and PNN [32], the generated images exhibit
significant spectral distortions. By comparison, the results of
the proposed DBTA are clear, and there are no blur effects.
Although SFITNet [67], LAGConv [24], and FusionNet [8]
show no visible spectral distortion, they have noticeable spa-
tial artifacts compared to PAN images. The comparative
evaluation illustrates the superior performance of the pro-
posed method compared with other competitors.

Table 1 Details of the datasets
used for evaluation

Size Phase WorldViewIII QuickBird GaoFen2

Training 10794 19044 22010

Patches Reduced_testing 20 20 20

Full_testing 20 20 20

Training 16 × 16 16 × 16 16 × 16

MS_size Reduced_testing 64 × 64 64 × 64 64 × 64

Full_testing 128 × 128 128 × 128 128 × 128

Training 64 × 64 64 × 64 64 × 64

PAN_size Reduced_testing 256 × 256 256 × 256 256 × 256

Full_testing 512 × 512 512 × 512 512 × 512
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Fig. 6 Qualitative evaluation of
different methods for
pan-sharpening under reduced
resolution test conditions on the
WorldViewIII dataset. The
images presented in the last
three rows depict the residuals
between different results and the
ground truth LRMS PAN

SFITNet LAGConv FusionNet

DRPNNMSDCNN BDPNDICNN

PNN

Ours

Ground Truth

LAGConv

FusionNet

DRPNN

MSDCNN

BDPN

DICNN

PNN

Ours

SFITNet

LRMS

4.3.2 Qualitative evaluation on the QuickBird dataset

Figure 8 illustrates the results of the low-resolution test-
ing on the QuickBird dataset. It is evident that the spatial
structure in the proposed DBTA results closely resembles
the ground truth. For example, in the reference image, the
closely grouped boats positioned in the lower right cor-
ner maintain their spatial structure. The proposed method,

FusionNet [8] and DRPNN [64] retain this feature, whereas
other approaches display artifacts in the image. Furthermore,
the proposed method can effectively retain spectral distribu-
tion information, such as the sea surface and road spectral
distribution. However, DRPNN [64] suffers from spectral
distortion in both the sea surface and road areas. Due to the
influence of different channel bands, there are differences in
some spatial details between PAN images and ground truth.
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Fig. 7 Qualitative evaluations
of different pan-sharpening
approaches for full resolution
test on the WorldViewIII dataset

LRMS PAN

SFITNet LAGConv

FusionNet OursDRPNN

MSDCNN BDPN

DICNNPNN

Therefore, despite FusionNet [8] presenting details consis-
tentwith PAN images, there is still a significant gap compared
to the reference image. The results of residuals in Fig. 8 illus-
trate the higher consistency between the proposed method
and the ground truth than other methods.

The qualitative results of different pan-sharpening approa-
ches for full resolution test on the QuickBird dataset are
depicted in Fig. 9. It shows that the spectral distributions
of DRPNN [64], PNN [32], SFITNet [67], and the proposed
DBTA model closely resemble those of the LRMS images.
Meanwhile, the DBTAmodel outperforms the DRPNN [64],
PNN [32], and SFITNet [67]. For example, the proposed
DBTA model yields clearer representations of dense ships
and roads in the results.

4.3.3 Qualitative evaluation on the GaoFen2 dataset

The qualitative results on GaoFen2 dataset with reduced res-
olution are presented in Fig. 10. This example is an urban
image with densely populated houses. It can be observed
that the MSDCNN [56], SFITNet [67], LAGConv [24]
and BDPN [63] are all suffered from significant spectral
distortion. For instance, the originally red roof appears rel-

atively dim in all these methods, tending to blend with the
colours of the surrounding roads. Although theDRPNN [64],
DICNN [18], FusionNet [8], and PNN [32] maintain spec-
tral quality in the fused images, it falls short in preserving
clear spatial information, particularly the structural details of
buildings in densely populated areas. The proposed DBTA
method effectively preserves spatial structural details, even
in densely populated residential regions.

The qualitative results on GaoFen2 dataset with full reso-
lution are presented in Figure 11. It shows that the PNN [32],
DRPNN [64], and the proposed DBTA model can preserve
spectral information. For example, the spectral distribution
of the roof, vehicles, and land closely resembles that of
the LRMS image. However, in terms of the preserving of
spatial structural information, the proposed DBTA network
demonstrates superior performance compared to PNN [32]
and DRPNN [64].

4.4 Quantitative evaluation

To evaluate the performance of the reduced resolution
images, four evaluation metrics, namely the universal image
quality index (Q2n) [48], the spectral angle mapper (SAM)
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Fig. 8 Qualitative evaluation of
different methods for
pan-sharpening under reduced
resolution test conditions on the
QuickBird dataset. The images
presented in the last three rows
depict the residuals between
different results and the ground
truth LRMS PAN

SFITNet LAGConv FusionNet

DRPNNMSDCNN BDPNDICNN

PNN

Ours

Ground Truth

LAGConv

FusionNet

DRPNN

MSDCNN

BDPN

DICNN

PNN

Ours

SFITNet

LRMS

[57], the relative dimensionless global error in synthe-
sis (ERGAS) [2], and the spatial correlation coefficient (SCC)
are utilized.

Specifically, the Q2n (termed Q4 when the data band is 4
and termed Q8 when the data band is 8) is a generic metric
used for assessing image quality. It evaluates image qual-
ity by comparing the differences between the ground truth

and the fused image. The higher value of Q2n indicates a
greater similarity between the image and the ground truth,
resulting in lower distortion. The SAM metric is used to
measure the spectral similarity between the fused image and
the multispectral image. The lower SAM value indicates a
smaller angular difference between the spectral characteris-
tics of the pixel and the ground truth spectrum. The ERGAS
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Fig. 9 Qualitative evaluation of
different pan-sharpening
approaches for full resolution
test on the QuickBird dataset

LRMS PAN

SFITNet LAGConv

FusionNet OursDRPNN

MSDCNN BDPN

DICNNPNN

is an indicator used to compare the spatial information dif-
ferences between fused images and the original images. The
lower ERGAS value indicates better preservation of spec-
tral information in the fusion result. The SCC is used to
assess the spatial correlation between the fused and original
images. The higher SCC value indicates better preservation
performance of the fusion result in terms of spectral and spa-
tial information. Additionally, metrics with no reference,
including Dλ [1], Ds [1], and QN R [1], are employed for
evaluating full-resolution images. Lower Dλ and Ds values,
along with higher QNR, indicate that the algorithm performs
well in terms of spectral preservation, spatial preservation,
and overall quality, enabling the generation of high-quality
fused images of MS and PAN images.

Quantitative comparative results on the WorldViewIII,
QuickBird, andGaoFen2 datasets are summerized in Table 2.
For the WorldViewIII dataset with reduced-resolution images,
Table 2 shows that the DBTA performs best in Q8, SAM,
ERGAS, and SCC. Meanwhile, the DBTA performs best in
Dλ, Ds , andQNRwhen tested on full-resolution images. This
indicates that DBTA demonstrates the versatility and excel-
lent performance in image processing at different resolutions
on the WorldViewIII dataset.

For the QuickBird dataset, Table 2 illustrates that the
DBTA ranks first inQ4, SAM,ERGAS, andSCCwhen tested
on reduced-resolution images. Therefore, the DBTA demon-
strates rewarding performance in both spectral preservation
and spatial structure preservation. For full-resolution images,
the proposed method ranks fourth, second, and third in Dλ,
Ds , and QNR, respectively. It is worth mentioning that the
calculation of Dλ involves comparing the resulting image
with the LRMS image. The LRMS image and the HRMS
image have different resolutions. Therefore, considering the
scale difference, it is reasonable to expect that the spectral
distribution of the LRMS image may not be precisely identi-
cal to that of the generated high-resolution image. Likewise,
the down-sampling process can introduce differences in the
spatial distribution compared to the actual spatial distribu-
tion.

For the GaoFen2 dataset, Table 2 demonstrates that the
DBTA performs best in Q4, SAM, ERGAS, and SCC indi-
cators. Meanwhile, it demonstrates suboptimal results in
the unsupervised evaluation indicators. The reasons can be
explained from the following aspects. Firstly, the dataset used
for training and evaluation may possess inherent character-
istics, such as variations in spectral properties or sensor-
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Fig. 10 Qualitative evaluation
of different methods for
pan-sharpening under reduced
resolution test conditions on the
GaoFen2 dataset. The images
presented in the last three rows
depict the residuals between
different results and the ground
truth LRMS  PAN
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DRPNN MSDCNN  BDPN DICNN

 PNN

 Ours
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 PNN

 Ours

SFITNet

LRMS

specific artifacts, which challenge the effectiveness of the
supervised model. Furthermore, the complexity of the model
architecture can also impact its ability to capture and lever-
age the necessary information for accurate pan-sharpening.
Moreover, it is worth noting that the suitability of the evalu-
ation metrics themselves should be considered, as they may

not fully capture the perceptual quality or visual fidelity
of the enhanced images. Qualitative evaluation of differ-
ent pan-sharpening approaches for full resolution tested on
the GaoFen2 dataset is shown in Fig. 11. It proves that the
proposed model can deliver the highest quality subjective
results.
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Fig. 11 Qualitative evaluation
of different pan-sharpening
approaches for full resolution
test on the GaoFen2 dataset

LRMS PAN

SFITNet LAGConv

FusionNet OursDRPNN

MSDCNN BDPN

DICNNPNN

4.5 Efficiency analysis

To evaluate the efficiency of the methods, the floating
point operations (FLOPs), multiply-accumulate operations
(MACs), and parameters of the model are evaluated. FLOPs
refer to the number of floating-point operations (additions
and multiplications) performed. Floating-point operations
are mathematical operations used for handling real numbers,
typically involving addition, subtraction, multiplication, and
division of floating-point numbers. FLOPs are used to mea-
sure the computational workload required by neural network
models during inference or training processes. MACs quan-
tify the number of mathematical operations performing
multiplication and accumulation. In deep learning,MACs are
used to measure the computational complexity of the mod-
els. The parameters refer to the total quantity of all weights
and biases in the model. The parameters are used to measure
the complexity of the model.

All methods are evaluated on an NVIDIA GeForce RTX
3090Ti GPU. The efficiency results are shown in Table 3. It
shows that the PNN, DICNN, and LAGConv are highly effi-
cient due to their simple network architectures. Compared
to other methods, the proposed model achieves accept-
able parameter counts, complexity, and memory costs while
ensuring performance.

4.6 Ablation study

A series of ablation experiments are conducted to validate the
effectiveness of the CSA and SPA modules. Table 4 presents
four configurations of the proposedmethod on three datasets.

The supervised evaluation metrics are used exclusively
in the ablation experiments for two primary purposes. First
and foremost, these metrics are widely used in various
image-processing tasks because of their interpretability and
alignment with human visual perception. Furthermore, the
main objective of the proposedmethod is to enhance the level
of detail and clarity in the generated images, aiming to closely
approximate the ground truth. Hence, supervised evaluation
metrics offer a quantitative assessment of the quality of the
generated outcomes.

It can be seen from Table 4 that the proposed method per-
forms best on the Q4, SAM, ERGAS, and SCC indicators on
QuickBird andGaoFen2 datasets. It demonstrates the robust-
ness and generality of the DBTA model. Nonetheless, the
inclusion of either the CSA or SPA module independently
resulted in a deterioration in method performance. This is
due to the potential for an imbalance of spectral and spatial
information in the fused image when the CSA module or
SPA module is added separately. Meanwhile, the proposed
DBTA model ranks first in the SAM indicator, second in
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Table 3 The efficiency results of eight comparison methods and the
proposed method

Methods FLOPs MACs Params

PNN [32] 111.10 111.10 0.08042

DICNN [18] 96.88 96.88 0.04218

MSDCNN [56] 436.76 436.76 0.18985

BDPN [63] 2,131.74 8,509.22 2.95841

DRPNN [64] 963.23 963.23 0.41837

SFITNet [67] 236.62 231.93 0.10473

LAGConv [24] 290.26 71.95 0.05370

FusionNet [8] 175.18 684.79 0.15031

Ours 412.98 3,135.38 0.25483

The unit of the displayed values is million (M)

the ERGAS and SCC indicators, and third place in the Q8
indicator on the WorldViewIII dataset. This proves that the
proposed method can effectively preserve the spectral infor-
mation of fused images and enhance their spatial structure.

It is worth mentioning that the Q8 metric quantifies the
similarity between the fused images and the ground truth
images by assessing both spectral and spatial characteristics.
The proposed method may not be very similar to ground
truth images in terms of pixel values. This is because ground
truth images are obtained by downsampling the original MS
images, which could introduce some errors and artifacts in
terms of spectral and spatial information. Therefore, the pan-
sharpened images generated by the proposed method are
more realistic and clearer than ground truth images, but their
similarity to ground truth images is lower.When theCSAand
SPAmodules are equipped, the performance of the method is
improved. This proves that the CSAmodule and SPAmodule

are beneficial in enhancing the performance of our method.
The CSA module can effectively extract and preserve the
spatial structural information of the image, while the SPA
module can effectively extract and preserve the spectral infor-
mation of the image. The combination of these two modules
allows the proposed method to simultaneously focus on the
most informative features in both spatial and spectral dimen-
sions, thereby improving feature extraction and fusion.

5 Conclusion and future work

In this paper, we propose aDual-Branch andTriple-Attention
Network (DBTA) to mitigate the problems of spectral and
spatial structural distortion encountered in pan-sharpening
tasks. The proposed model consists of two key compo-
nents, namely the channel-spatial attention (CSA) module
and the spectral attention (SPA) module. Specifically, the
primary objective of the CSA module is to capture spa-
tial structural information within the image. This module
enhances spatial structure details within the target area while
suppressing noise and artifacts. Additionally, the SPA mod-
ule is introduced to extract spectral information from MS
images. Numerous qualitative and quantitative experiments
have validated the effectiveness and superiority of the pro-
posed DBTA.

In future studies, it is worth considering the integra-
tion of unsupervised learning techniques to enhance the
performance of pan-sharpening. Incorporating unsupervised
self-learning or adaptive mechanisms can better leverage the
structure and characteristics of the images to guide the pan-
sharpening process, ultimately improving the generalization
capability of the model.

Table 4 Comparative results of the baseline with different compound modes on the WorldViewIII, QuickBird, and GaoFen2 datasets

Datasets CSA SPA Q2n↑ SAM↓ ERGAS↓ SCC↑
✗ ✗ 0.9058± 0.0871 3.2282± 0.6488 2.4318± 0.6252 0.9809± 0.0063

WorldViewIII ✓ ✗ 0.9064±0.0866 3.1326±0.6223 2.2967±0.5274 0.9833±0.0054

✗ ✓ 0.9056± 0.0869 3.2727±0.6541 2.4531±0.6415 0.9809±0.0063

✓ ✓ 0.9057±0.0866 3.1178±0.6249 2.3034±0.5446 0.9832±0.0055

✗ ✗ 0.9261±0.9005 4.8968±0.8859 4.0586±0.4213 0.9771±0.0089

QuickBird ✓ ✗ 0.8857±0.0964 5.9455±1.0945 5.8172±0.5235 0.9484±0.0148

✗ ✓ 0.8852±0.0945 5.8388±1.0863 5.8653±0.5170 0.9482±0.0137

✓ ✓ 0.9319±0.0881 4.6316±0.8264 3.8285±0.3033 0.9803±0.0079

✗ ✗ 0.9594±0.0092 1.0543±0.2160 1.0888±0.2470 0.9743±0.0069

GaoFen2 ✓ ✗ 0.9329±0.0221 1.4155±0.2130 1.3255±0.2539 0.9636±0.0079

✗ ✓ 0.9350±0.0167 1.3059±0.2325 1.3286±0.2640 0.9629±0.0081

✓ ✓ 0.9749±0.0087 0.8536±0.1640 0.7798±0.1408 0.9871±0.0022

The presented values represent the mean value ± standard deviation. The best result is highlighted in red
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