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Abstract: Computed tomography (CT) imaging has been widely used in clinical
medicine, and high-resolution CT images play a crucial role in the determination
of lesions. To fully excavate the contributive information of initial features
and improve the feature representation ability of the model, we propose a
Pixel-Attention Feedback Network (PAFNet) for CT image super-resolution
reconstruction. Specifically, the PAFNet adopts multi-feedback network as
backbone to make full use of initial features. Subsequently, a gated feedback (GF)
block is introduced to refine the underlying features using the feedback features.
To enrich the output characteristics and pay attention to essential details, a pixel
attention mechanism is adopted to the self-calibration convolution. The subjective
and objective evaluation demonstrate the superiority of the proposed method over
the state-of-the-art approaches.
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1 Introduction

Computed tomography (CT) imaging has been broadly applied in medical diagnosis. A
high-resolution image of organs and tissues is crucial for accurate disease analysis. However,
because of the restriction of hardware facilities, the generated medical images often have
low resolution and even lose some essential structural information.

Recently, many effective methods have been proposed to enhance the image resolution Li
et al. (2020). The early methods Chang et al. (2004); Anbarjafari & Demirel (2010); Liu et al.
(2013); Kumar & Singh (2013); Ruangsang & Aramvith (2017); Shen et al. (2009); Zhang
et al. (2010, 2012) are based on interpolation or reconstruction. Although these methods are
simple, they are often unable to retain fine detail information due to their limited ability to
extract features. Subsequently, deep learning-based super-resolution methods have been the
mainstream due to the powerful ability of feature representation. The image super-resolution
using deep convolutional networks (SRCNN) Dong et al. (2014) is the cornerstone of deep
learning application in the domain of image super resolution. Kim et al. Kim et al. (2016)
improved the learning rate of SRCNN and eliminated the obstacles of gradient propagation
by adopting residual learning. In recent years, the introduction of attention mechanism has
greatly improved the performance of the network due to the recalibration of the feature
responses towards the most informative and important components of the inputs Zhai et al.
(2022a,c); Guo et al. (2022); Zhai et al. (2022b). Zhang et al. Zhang et al. (2018a) proposed
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the residual channel attention network (RCAN) and applied the attention mechanism in the
super-resolution domain.

To fully excavate the contributive information of intermediate features and improve
the feature representation ability, we propose the PAFNet for CT image super-resolution.
Compared with the single-feedback network Dong et al. (2014); Zhang et al. (2018a)
which only propagates the highest-level features to the shallow layer, ignoring other high-
level information captured in the receptive field of different sizes, the PAFNet employs a
multi-feedback network as the backbone. The multi-feedback network can transfer several
advanced features to the shallow layer, so that the reconstructed image contains valuable
context information. Meanwhile, the PAFNet contains two key components, namely gated
feedback (GF) block and pixel attention based on self-calibrated convolution (PASC). The
feedback connection of two adjacent subnetworks can be established through multiple GF
blocks and skip connections. The GF block can refine low-level features using high-level
features, which are transported via the feedback connections. The PASC block is obtained
by replacing the pooling layer and upsampling in self-calibration convolution with pixel
convolution unit. To improve the feature representation ability of the model, the PASC block
is built to extract the detail features and enhance the diversity of output features.

The remainder of the paper is described as follows. Section 2 presents the previous
work. Section 3 introduces the architecture and details of the PAFNet. Section 4 verifies the
effectiveness by comparative experiments. Section 5 is the conclusion.

2 Related work

Image super-resolution technology has attracted the attention of researchers considering
its broad application prospects. Therefore, the researchers have invested a lot of effort and
proposed many effective methods, which can be roughly categorized into two branches,
namely conventional algorithms and deep learning-based algorithms Dai et al. (2019).

The early conventional methods are basically based on bicubic interpolation. Benefiting
by the low complexity and effectiveness, they became the mainstream at the time. However,
these methods inevitably lead to image edge artefacts. To address this problem, Kumar et
al. Kumar & Singh (2013) proposed an algorithm using discrete wavelet transform and
interpolation successively.

The image super-resolution using deep convolutional networks Dong et al. (2014) is
the first work of deep learning application in the field of super resolution. In order to
achieve lightweight design and save computing resources, Dong et al. Dong et al. (2016)
proposed the accelerating super-resolution convolutional neural network (FSRCNN) by
adding a deconvolution layer and using a smaller filter on the basis of SRCNN. The
residual dense network (RDN) Zhang et al. (2018b) achieves dense feature fusion and depth
monitoring via utilizing local and global features adequately. Li et al. Li et al. (2019b)
proposed a super-resolution feedback network (SRFBN) to refine the representation of
low-level features through the feedback of high-level features. The attention mechanism
can boost the feature representation ability in deep learning-based methods. The second-
order attention network (SAN) Dai et al. (2019) was proposed to adjust channel features
to obtain discriminative features. Improving convolutional networks with self-calibrated
convolutions (SCNet) Liu et al. (2020) can adaptively establish remote spatial and channel
dependencies around each spatial location through self-correcting operations.
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3 The proposed approach

3.1 Network framework

The framework of PAFNet is depicted in Fig. 1. It includes a series of subnetworks, each of
which containing five blocks, namely low resolution feature extraction (LRFE) block, gated
feedback (GF) block, residual density (RD) block, pixel attention based on self-calibrated
convolution (PASC) block and pixel attention based reconstruction (PAR) block.
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Figure 1: The framework of the proposed PAFNet for CT image super-resolution
reconstruction.

The low-resolution image ILR is fed to the LRFE block to extract shallow feature F t
L,0.

The operation of LRFE block is formulated as

F t
L,0 = HLRFE (ILR) , (1)

where HLRFE (·) represents the function of the LRFE block. Then, the feature F t
L,0 is

transferred to multiple RD blocks to generate features at different levels.
The feature representation ability of a subnetwork is closely related to cascaded RD

blocks in the subnetwork. The feedback connection between two adjacent subnetworks is
realized by the RD blocks and the GF blocks. The high-level feature F t

L,K is defined as

F t
L,K = HGF-RD

(
F t
L,0

)
, (2)

where HGF-RD (·) is the combining function of RD blocks and GF blocks. F t
L,K denotes

the output of the K-th RD block in the t-th subnetwork. L symbolizes the low-resolution
space.

Then, F t
L,K is fed to PASC block to generate more powerful features. The final refined

feature F t
PASC is formulated as

F t
PASC = HPASC

(
F t
L,K

)
, (3)

where HPASC (·) represent the functions of PASC block.
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Subsequently, we utilize PAR block to upsample the refined features F t
PASC to generate

the final results ISR, which is formulated as

ISR = HPAR
(
F t
L,K , ILR

)
, (4)

whereHPAR (·) denotes the function of the PAR block, and ItSR is the super-resolution image
generated by the t-th subnetwork. The PAR block consists of a deconvolution layer, a pixel
attention layer, and a 3× 3 convolutional layer.

The L1 loss function is adopted to train the proposed PAFNet model. It is denoted as

L1 (θ) =
1

T

T∑
t=1

∥∥ItHR − ItSR

∥∥
1
, (5)

where T denotes the number of subnetworks. ItHR indicates the high-resolution image in
the t-th subnetwork, and θ symbolizes the parameter to be trained.

3.2 PASC block

To generate a weighted feature matrix (C ×H ×W ) in three dimensions, we employ the
pixel attention Zhao et al. (2020). Pixel attention generates the attention coefficients of all
the pixels in the feature map, which helps preserve the subtle detail features and the diversity
of the output features. As depicted in Fig. 2, the pixel attention contains a 1× 1 convolution
layer and a sigmoid function. Then, the input features will multiply with available attention
maps to obtain the final weighted feature maps.

Suppose Fk−1 and Fk represent the input and output of pixel attention, respectively.
The mathematical formulation of the pixel attention can be expressed as

Fk = HPA (Fk−1) · Fk−1, (6)

where HPA (·) represents the operation of the convolution layer and sigmoid function.

1×1
Conv

Sigmoid

Element_wise Multiplication

Figure 2: Structure of the pixel attention block

To enhance the feature representation, we build the pixel attention based on self-
calibrated convolution (PASC) block, which is depicted in Fig. 3. The PASC block has a
similar network architecture with SCNet Liu et al. (2020). It includes two branches, and
each branch has a 1× 1 convolution layer at the beginning, which is called fsplit (·). Given
the input high-level feature F t

L,K , the two branches are denoted as

F t,1
L,K = f1

split

(
F t
L,K

)
, (7)
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F t,2
L,K = f2

split

(
F t
L,K

)
. (8)

Where F t,1
L,K and F t,2

L,K denote the two intermediate features, and their channel number are
half of F t

L,K .
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Figure 3: Structure of the PASC block.

The upper branch contains two 3× 3 convolutional layers, and only the first layer is
equipped with pixel attention. The lower branch sustains the initial features by concatenating
3× 3 and 1× 1 convolution layers. The upper branch converts the high-level feature F t

L,K

to the split feature F t,1
PASC, and the lower branch converts the high-level feature F t

L,K to the
split feature F t,2

PASC. At last, F t,1
PASC and F t,2

PASC are concatenated and transferred to a 1× 1
convolution layer to obtain the refined feature F t

PASC.

3.3 Feedback connection

The feedback connection of two adjacent subnetworks is achieved through multiple GF
blocks and skip connections. As depicted in Fig. 1, the GF block contains two key
subassemblies, namely gate unit and refinement unit. The GF blocks is adopted to take
advantage of multiple high-level features to refine the low-level features Li et al. (2019a).
The high-level features are transported via feedback connection, and the low-level features
are extracted from shallow RD blocks. GF blocks are typically placed in front of shallow
RD blocks. The outputs of these RD blocks are low-level features which need to be refined.
The outputs of the deep RD blocks are identified as high-level features, which are fed to
the GF blocks at the next time step through the long skip connection. The gate unit is to
select the conducive information from high-level features, and the refinement unit will use
the information to achieve the refinement of low-level features.

Given that SM = {1, 2, ...,M − 1,M} is the set of selected indexes of the shallowest
RD blocks and the input ofSM is low-level features. TheDN = {N,N + 1, ...,K − 1,K}
is regarded as the set of selected indexes of the deepest (K −N + 1)RD blocks. The output
of DN is utilized to refine the low-level features. At the t-th time, if k ∈ SM and t > 1 ,
the output of the k-th RD blocks F t

L,k can be obtained via

F t
L,k = HRD,k

(
HRU,k

([
F t
H,k, F

t
L,k−1

]))
. (9)

In other cases, the output of the k-th RD block can be derived by

F t
L,k = HRD,k

(
F t
L,k−1

)
, (10)
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where HRD,k (·) denotes the operation of the k-th RD block, and HRU,k (·) symbolizes
the function of the refinement unit.

[
F t
H,k, F

t
L,k−1

]
represents the combination of F t

H,k

and F t
L,k−1. F t

H,k represents the high-level information which is selected and enhanced
from high-level features. It is transmitted to the k-th GF block. The high-level features are
collected by the deepest RD blocks and then delivered via a series of feedback connections.
Hence, the high-level information F t

H,k is calculated as

F t
H,k =

HGU,k

([
F t−1
L,N , ..., F t−1

L,K

])
, if k < N,

HGU,k

([
F t−1
L,k , ..., F t−1

L,K

])
, otherwise,

(11)

where HGU,k (·) is the operation of the gate unit in the k-th GF block. To reduce the
computational burden, each of the gate unit and refinement unit consists of a 1× 1
convolution layer.

4 Experiments and discussion

4.1 Datasets

We perform the evaluation on two large-scale medical image datasets, i.e., Low Dose CT
dataset a and QIN LUNG CT dataset b. The Low Dose CT (LDCT) McCollough et al.
(2020) is collected from 299 clinically performed CT examinations on patients. We group
the samples into two splits, i.e. LDCT Part_A and LDCT Part_B, according to the scanned
position. The former split includes 2,272 chest images (1,822 images for training and 450
images for test). The later split contains 1,132 abdominal scan images (892 images for
training and 240 images for test). The QIN LUNG CT dataset Kalpathy-Cramer et al. (2015)
contains 3954 images, which are published in the TCIA Cancer Imaging Archive. We select
328 images for training and 150 images for test from the QIN LUNG CT dataset.

4.2 Evaluation metrics

Two evaluation metrics, i.e., peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) Wang et al. (2004); Li et al. (2022), are adopted for objective
assessments. The PSNR is the ratio between the powers of peak value and noise Georgescu
et al. (2022). It is denoted as:

PSNR (ISR, IHR) = 10 · log 10×

(
L2

1
N

∑N
i=1 (ISR (i)− IHR (i))

2

)
, (12)

where L represents the maximum pixel, and N denotes the number of all pixels in ISR

and IHR. The SSIM is proposed under the assumption that the human perceptual system
has a strong adaptability to the image structure. The SSIM takes the structural similarity

a[Online]. Available: https://wiki.cancerimagingarchive.net/pages/viewpage.
action?pageId=52758026

b[Online]. Available: https://wiki.cancerimagingarchive.net/display/Public/QIN+
LUNG+CT

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758026
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758026
https://wiki.cancerimagingarchive.net/display/Public/QIN+LUNG+CT
https://wiki.cancerimagingarchive.net/display/Public/QIN+LUNG+CT
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into account by combining the contrast, luminance and texture of the images. And it can be
formulated as:

SSIM (x, y) =
2uxuy + k1
u2
x + u2

y + k1
· σxy + k2
σ2
x + σ2

y + k2
, (13)

where x, y represent two images, σxy symbolizes the covariance between x and y, u and
σ2 represent the average value and variance, and k1, k2 denote constant relaxation terms.
Higher scores of the PSNR and SSIM denote better reconstruction effect.

4.3 Implementation details

The deep-learning framework configurations are PyTorch 1.8.0, CUDAToolkit 10.2, cuDNN
8.1.1, Python 3.8, and two paralleled NVIDIA 3060 GPUs. The medical LR image is
cropped into 16 image patches with size of 48× 48 in every iteration. Adam Kingma &
Ba (2014) is adopted to optimize the proposed PAFNet. The original learning rate is set to
2× 10−4, and it is halved every 2× 105 iteration.

4.4 Comparative analysis

To evaluate the performance of the PAFNet, we conduct comparative experiments with
some mainstream methods, e.g., SRCNN Dong et al. (2014), FSRCNN Dong et al. (2016),
RDN Zhang et al. (2018b), and SRFBN Li et al. (2019b). The objective evaluation and
subjective results are evaluated on the LDCT Part_A, LDCT Part_B and QIN LUNG CT
test sets with scale factors of ×2, ×3, and ×4.

Table 1 Comparative results on the LDCT Part_A, LDCT Part_B McCollough et al. (2020) and
QIN LUNG CT Kalpathy-Cramer et al. (2015) test sets with scale factor ×2. The best
rests are highlighted in bold.

Methods
LDCT Part_A LDCT Part_B QIN LUNG CT

PSNR SSIM PSNR SSIM PSNR SSIM

SRCNNDong et al. (2014) 43.79 0.9822 33.82 0.9488 34.20 0.9352
FSRCNNDong et al. (2016) 44.14 0.9837 34.39 0.9502 35.65 0.9362
RDNZhang et al. (2018b) 44.53 0.9841 35.05 0.9508 37.15 0.9401
SRFBNLi et al. (2019b) 47.32 0.9878 35.41 0.9523 38.49 0.9800
PAFNet (Ours) 48.39 0.9885 35.75 0.9544 40.77 0.9830

The results of PSNR and SSIM on LDCT and QIN LUNG CT test sets are illustrated
in Table 1, 2 and 3. The results prove that PAFNet acquires the best performance on the
LDCT Part_A, LDCT Part_B and QIN LUNG test sets. The PSNR and SSIM scores of the
proposed PAFNet on three test sets with scale factors of ×2 are (45.01, 0.9814), (31.91,
0.8864) and (36.19, 0.9569) respectively. Compared with SRCNN Dong et al. (2014) which
is the cornerstone of deep learning in the field of super resolution, the proposed method
increases the score of PSNR by 4.6 dB and SSIM by 0.0063 on the LDCT Part_A test
set. On Part_B test set, the PAFNet improves the score of PSNR by 1.36 dB and SSIM
by 0.0042 compared with the FSRCNN Dong et al. (2016). With scale factors of ×3, the
proposed PAFNet ranks the first place in both PSNR and SSIM compared with other SOTA
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Table 2 Comparative results on the LDCT Part_A, LDCT Part_B McCollough et al. (2020) and
QIN LUNG CT Kalpathy-Cramer et al. (2015) test sets with scale factor ×3. The best
rests are highlighted in bold.

Methods
LDCT Part_A LDCT Part_B QIN LUNG CT

PSNR SSIM PSNR SSIM PSNR SSIM

SRCNNDong et al. (2014) 39.12 0.9633 29.86 0.8072 31.85 0.8578
FSRCNNDong et al. (2016) 38.87 0.9623 30.19 0.8116 32.28 0.8612
RDNZhang et al. (2018b) 44.70 0.9668 31.79 0.8853 33.24 0.8911
SRFBN Li et al. (2019b) 44.16 0.9804 31.75 0.8843 34.55 0.9512
PAFNet (Ours) 45.01 0.9814 31.91 0.8864 36.19 0.9569

Table 3 Comparative results on the LDCT Part_A, LDCT Part_B McCollough et al. (2020) and
QIN LUNG CT Kalpathy-Cramer et al. (2015) test sets with scale factor ×4. The best
rests are highlighted in bold.

Methods
LDCT Part_A LDCT Part_B QIN LUNG CT

PSNR SSIM PSNR SSIM PSNR SSIM

SRCNNDong et al. (2014) 36.63 0.9465 28.46 0.8337 27.48 0.8381
FSRCNNDong et al. (2016) 37.06 0.9363 28.49 0.8215 27.55 0.8668
RDNZhang et al. (2018b) 40.78 0.9546 29.83 0.8346 30.43 0.8462
SRFBN Li et al. (2019b) 41.05 0.9714 30.06 0.8398 31.78 0.9226
PAFNet (Ours) 42.55 0.9748 30.22 0.8420 33.46 0.9339

methods. The mean PSNR and SSIM values obtained by PAFNet are increased by 5.49 dB
and 0.0385 compared with FSRCNN Dong et al. (2016) on the LDCT Part_A test set. On
the LDCT Part_B test set, the values of PSNR and SSIM are 0.12 dB and 0.0011 higher
than RDN Zhang et al. (2018b). Moreover, the proposed method also acquires the highest
PSNR and SSIM scores on three test sets with scale factor of ×4. Specifically, the proposed
PAFNet improves the PSNR and SSIM by 2.95 dB and 0.0658 on the QIN LUNG CT test
set, respectively. On the QIN LUNG CT test set, the proposed PAFNet improves PSNR and
SSIM by 1.5 dB and 0.0034 compared with SRFBN Li et al. (2019b) which also employs
the feedback connections.

Fig. 4 illustrates the results of the subjective visual comparison on LDCT Part_A test
set with scale factor of ×4. The first row of Fig. 4 depicts that the abdominal scan images
reconstructed by RDN Zhang et al. (2018b), SRFBN Li et al. (2019b) and the PAFNet are
sharper than those reconstructed by SRCNN Dong et al. (2014) and FSRCNN Dong et al.
(2016). Although there is visible difference in resolution ratio of the abdominal scan images
reconstructed by RDN Zhang et al. (2018b), SRFBN Li et al. (2019b) and the PAFNet, the
contrast of reconstructed image by PAFNet is enhanced. The second row of Fig. 4 shows
that the intestinal tract scan image reconstructed by the proposed PAFNet has sharper edges
compared with those images reconstructed by SRCNN Dong et al. (2014), FSRCNN Dong
et al. (2016), RDN Zhang et al. (2018b) and SRFBN Li et al. (2019b). The reconstructed
images of SRCNN Dong et al. (2014) and FSRCNN Dong et al. (2016) contain noise and
have edge overlap. Fig. 5 depicts the subjective results on LDCT Part_B test set with scale
factor of ×4. The first row of Fig. 5 depicts that the image reconstructed by the proposed
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PAFNet has a clearer representation of blood vessels in the human liver region compared
with those images reconstructed by other methods. The second row of Fig. 5 proves that the
lumbar disc scan image reconstructed by the proposed PAFNet can retain the bony details
on the surface of the lumbar spine while improving the resolution. The images reconstructed
by other methods can improve the resolution but lose the bony details of the lumbar surface,
which is not conducive to the diagnosis of lumbar diseases. Fig. 6 is the visualization
results on QIN LUNG CT test set with scale factor of ×4. Human lung texture feature is
difficult to capture. As can be seen from the first row of Fig. 6, the image reconstructed by
the proposed method contains numerous textures and have a favourable resolution. In the
second row of Fig. 6, the femoral head site scan images reconstructed by SRCNN Dong et
al. (2014), FSRCNN Dong et al. (2016), RDN Zhang et al. (2018b) and SRFBN Li et al.
(2019b) contain artefacts to some extends. The reconstructed image by PAFNet is clear for
the representation of femoral head periphery.

(a) HR (b) SRCNN (c) FSRCNN (d) RDN (e) SRFBN (f) Ours

Figure 4: Qualitative comparisons on LDCT Part_A dataset

(a) HR (b) SRCNN (c) FSRCNN (d) RDN (e) SRFBN (f) Ours

Figure 5: Qualitative comparisons on LDCT Part_B dataset
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(a) HR (b) SRCNN (c) FSRCNN (d) RDN (e) SRFBN (f) Ours 

Figure 6: Qualitative comparisons on QIN LUNG CT dataset

5 Conclusion

In this paper, we propose a Pixel-Attention Feedback Network (PAFNet) for CT image
super-resolution reconstruction. The proposed PAFNet employs a multi-feedback network
as the backbone to transmit multiple intermediate high-level features so as to refine the
low-level features. It consists of two components, namely a gated feedback (GF) block and
a pixel attention based on the self-calibrated convolution (PASC) block. The GF block can
refine the low-level features using high-level features delivered by feedback connection. In
addition, the PASC block enables the model to generate discriminative features, and enhance
the diversity of output features and grasp delicate details. The comparative experiments on
LDCT and QIN LUNG CT datasets illustrate that the proposed PAFNet outperforms the
state-of-the-art methods objectively and subjectively.
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