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Abstract

Person Re-Identification (ReID) is a retrieval task across non-overlapping cameras. Given a

person-of-interest as a query, the goal of ReID is to determine whether this person has appeared

in another place at a distinct time captured by a different camera, or even the same camera at

a different time instant. ReID is considered a zero-shot learning task because the identities

present in the training data may not necessarily overlap with those in the test data within the

label space. This fundamental characteristic adds a layer of complexity to the task, making ReID

a highly challenging representation learning problem. This thesis solves the problem of learning

generalizable yet discriminative representation with the following solutions:

Chapter 3 Noisy and unrepresentative frames in automatically generated object bounding boxes

from video sequences cause significant challenges in learning discriminative representations in

video ReID. Most existing methods tackle this problem by assessing the importance of video

frames according to their local part alignments or global appearance correlations separately.

However, given the diverse and unknown sources of noise that usually co-exist in captured video

data, existing methods have not been effective satisfactorily. In this chapter, we explore jointly

both local alignments and global correlations with further consideration of their mutual promo-

tion/reinforcement so to better assemble complementary discriminative ReID information within

all the relevant frames in video tracklets, and propose a model named Local-Global Associative

Assembling (LOGA). Specifically, we concurrently optimize a Local Aligned Quality (LAQ)

module that distinguishes the quality of each frame based on local alignments, and a Global

Correlated Quality (GCQ) module that estimates global appearance correlations. With a local-

assembled global appearance prototype, we associate LAQ and GCQ to exploit their mutual

complement.

Chapter 4 While deep learning has significantly improved ReID model accuracy under the In-

dependent and Identical Distribution (IID) assumption, it has also become clear that such models

degrade notably when applied to an unseen novel domain due to unpredictable/unknown domain

shift. Contemporary Domain Generalizable ReID models struggle in learning domain-invariant
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representation solely through training on an instance classification objective. We consider that

deep learning models are heavily influenced and therefore biased towards domain-specific char-

acteristics, e.g background clutter, scale, and viewpoint variations, limiting the generalizability of

the learned model, and hypothesize that the pedestrians are domain invariant owning they share

the same structural characteristics. To enable the ReID model to be less domain-specific from

these pure pedestrians, we introduce a Primary-Auxiliary Objectives Association (PAOA) model

that guides model learning of the primary ReID instance classification objective by a concurrent

auxiliary learning objective on weakly labeled pedestrian saliency detection. To solve the prob-

lem of conflicting optimization criteria in the model parameter space between the two learning

objectives, PAOA calibrates the loss gradients of the auxiliary task towards the primary learn-

ing task gradients. Benefiting from the harmonious multitask learning design, our model can be

extended with the recent test-time diagram to form the PAOA+, which performs on-the-fly opti-

mization against the auxiliary objective in order to maximize the model’s generative capacity in

the test target domain. Experiments demonstrate the superiority of the proposed PAOA model.

Chapter 5. In this chapter, we propose a Feature-Distribution Perturbation and Calibration

(PECA) method to derive generic feature representations for person ReID, which is not only dis-

criminative across cameras but also agnostic and deployable to arbitrary unseen target domains.

Specifically, we perform per-domain feature-distribution perturbation to refrain the model from

overfitting to the domain-biased distribution of each source (seen) domain by enforcing feature

invariance to distribution shifts caused by perturbation. In complementary, we designa global

calibration mechanism to align feature distributions across all the source domains to improve

the model’s generalization capacity by eliminating domain bias. These local perturbation and

global calibration are conducted simultaneously, which share the same principle to avoid models

overfitting by regularization respectively on the perturbed and the original distributions. Exten-

sive experiments are conducted on eight person ReID datasets and the proposed PECA model

outperformed the SOTA competitors by significant margins.

Chapter 6. Existing Domain Generalizable ReID methods explore feature disentanglement to

learn a compact generic feature space by eliminating domain-specific knowledge. Such methods

not only sacrifice discrimination in target domains but also limit the model’s robustness against

per-identity appearance variations across views, which is an inherent characteristic of ReID.

In this chapter, we formulate Cross-Domain Variations Mining (CDVM) model to simultane-
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ously explore explicit domain-specific knowledge while advancing generalizable representation

learning. Our key insight is that cross-domain style variations need to be explicitly modeled

to represent per-identity cross-view appearance changes. CDVM retains the model’s robustness

against cross-view style variations that can reflect the specific characteristics of different domains

whilst maximizing the learning of a globally generalizable (invariant) representation. To this

end, we propose utilizing cross-domain consensus to learn a domain-agnostic generic prototype.

Subsequently, this prototype is refined by incorporating cross-domain style variations, thereby

achieving cross-view feature augmentation. Additionally, we further enhance the discriminative

power of the augmented representation by formulating an identity attribute constraint to impose

attention on the importance of individual attributes, while maintaining overall consistency across

all pedestrians. Extensive experiments validate that the proposed CDVM model outperforms

existing SOTA methods by significant margins.

These four solutions jointly solved the problem of domain distribution shift for OOD data by

enableing the network to derive robust yet generalizable representation for the identities. There-

fore, facilicating the differentiation the inter-class decision boundary and improving the matching

accuracy among query and gallery instances.
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Chapter 1

Introduction

1.1 Scope the Thesis

With the rapid expansion of surveillance multi-camera systems around the world, associating

people over space and time becomes an increasingly significant capability for a wide range of

applications such as public safety, law enforcement, and forensic search. In this context, Person

Re-Identification (ReID) [11, 24, 143] is a fundamental task which aims to retrieve the same

pedestrian across non-overlapping camera views by measuring the distances among representa-

tions of all the candidates in a pre-constructed discriminative feature space. Person ReID encom-

passes two main aspects: video-based and image-based methods, and each with its distinct char-

acteristics. Video-based ReID [143, 178] focuses on matching individuals across different cam-

era views by analyzing temporal information, including movements and trajectories over time,

to enhance identification accuracy. This approach capitalizes on dynamic behaviors, thereby im-

proving robustness in matching individuals across non-overlapping camera views. Conversely,

image-based ReID [1, 179, 104] concentrates on static images captured by surveillance cam-

eras. It aims to identify individuals based on their appearance features extracted from single

images. This approach is particularly important in scenarios where only static images are avail-

able for matching individuals across camera views. Despite their distinct methodologies, both

video-based and image-based Person ReID methods are indispensable for surveillance and se-

curity applications in addressing the challenge of identifying individuals across non-overlapping

camera views in diverse environments.
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Accurate Person ReID relies heavily on extracting discriminative representations from track-

lets (clips of frames) and individual images. In deep learning-based methods, this is typically

achieved using a feature extractor, which maps raw inputs to high-dimensional feature represen-

tations. The discriminative nature of these representations is crucial for achieving high matching

accuracy, as it increases the distance between different identities (inter-class distance) while min-

imizing the distance between instances of the same identity (intra-class distance). Additionally,

beyond discrimination, another significant challenge is generalizability. Many networks are de-

signed under the assumption that both training and deployment occur in the same environment,

following the Independent and Identical Distribution (IID) assumption, which may not hold in

real-world scenarios. To this end, this thesis focuses on enhancing a model’s robustness and

discrimination power of learned representations, while improving the generalizability of models

trained on source domains when applied to unknown target domains, which may suffer from

significant distribution shifts. Our ultimate goal is to enable the generalization of discrimina-

tive Person ReID models to real-world environments at scale, thus advancing the field towards

practical deployment in diverse and challenging scenarios.

1.2 Frame Quality-aware Person Re-Identification

1.2.1 Problem Definition

Given N video tracklets T = {TTT i}N
i=1 with each containing L frames TTT i = {IIIi

j}L
j=1 depicting C

pedestrians in motion, the objective of video person ReID is to derive a representation model

θ from the tracklets data V which is capable of extracting robust and discriminative feature

representations xxx: fθ (TTT ) → xxx for ReID matching across disjoint camera views. Considering

the diverse and unknown sources of noise commonly exist in surveillance videos which leads to

distractions in different frames, it is essential for the model to effectively recognize visual patterns

that are specific to each pedestrian to selectively assemble frames into a tracklet’s representation.

This is inherently challenging due to the uncertain nature of noise in tracklets of people in motion

against backgrounds of visually similar distractors.

1.2.2 Challenges and Solutions

Challenges: Video-based person ReID necessitates the analysis and aggregation of information

across a sequence of video frames within each tracklet to construct a more discriminative and
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(a) ID switch (b) Multiple persons (c) Occluded by objects (e) Partial detection(d) Occluded by people

Figure 1.1: An illustration of various types of frame quality degradations.

robust representation of pedestrians in motion. However, tracklets often contain poor-quality

frames resulting from occlusion, illumination changes, and identity switches [96, 157, 11, 25,

164, 50], as demonstrated in Figuer 1.1. Traditional video ReID methods typically extract per-

frame representations, followed by global average pooling to obtain tracklet-level representa-

tions. These methods assume uniform frame quality, thereby neglecting the diverse qualities

present and making them susceptible to various types of noise. Consequently, the discriminative

power of the representation will be compromised, as illustrated in Figure 1.2. Numerous meth-

ods have been proposed to address this issue by selectively assembling high-quality frames, either

through local alignment or global correlations. However, both approaches have drawbacks. Lo-

cal alignment-based methods are fragile when detected pedestrians are not well-aligned, while

global appearance-based approaches are spatially insensitive and may lead to misaligned pat-

terns, especially in complex backgrounds.

Solution: To address the challenges posed by low-quality frames, we propose an approach for

video person ReID termed Local-Global Associative Assembling (LOGA). LOGA dynamically

assembles video frames within the same tracklet using two key modules: Local Aligned Qual-

ity (LAQ) module and Global Correlated Quality (GCQ) module. These modules assess the

importance and relevance of frames based on their alignments in local regions and global appear-

ance correlations, as well as their mutual reinforcement. Additionally, LOGA model constructs

a local-assembled global appearance prototype to leverage both types of information and fos-

ter mutual complementarity by learning their consensus. Unlike most existing spatial-temporal
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Aggregation
Avg. Pooling

Figure 1.2: An illustration of object occlusion and the heatmap from global average pooling on

the frames within a tracklet [128].

attentive methods, which focus on integrating temporal information with intraframe spatial atten-

tion, LOGA aims to more effectively exploit inter-frame complements. This approach is distinct

and stands to benefit from advancements in per-frame learning. Furthermore, to harness the

benefits of both local and global information and exploit their mutual advantages, we define the

tracklet’s representation assembled by the LAQ module as a prototype, which is compared with

global visual features in the GCQ module. Through this association, we encourage the two mod-

ules to find a trade-off between local and global knowledge to cope with different types of noise

more reliably.

1.3 Cross-domain Generalizable Person Re-Identification

1.3.1 Problem Definition

Despite the great progress made over recent years, most existing ReID methods [155, 95, 181,

174] are built upon the fragile Independent and Identical Distribution (IID) assumption. The

performance degrades significantly when deployed on a new test domain due to the covariant

shift. This refers to the situation where the input distributions of training and testing data differ,

causing a discrepancy in the learned model’s performance. This phenomenon poses a signifi-

cant challenge in real-world scenarios where the target domain during testing may vary from the

source domain during training. To illustrate this challenge, a few samples from different domains

are shown in Figure 1.3, from which we can observe significant domain shifts caused by various

factors. Unlike traditional ReID methods, Domain Generalizable ReID (DG ReID) assuming the
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absence of target domains during training, aims to learn a generalizable model which can extract

discriminative representations in any new environment. It is naturally challenging but practical

and has attracted increasing attention. Despite its inherent difficulty, DG ReID holds practical

significance and has garnered increasing attention within the research community. By focusing

on learning domain-agnostic representations, DG ReID aims to enhance the generalizability and

adaptability of ReID models, making them more applicable in real-world settings with diverse

environmental conditions. Mathematically, the problem of DG ReID can be formalized as fol-

lows: Let Xs and Ys denote the source domain data and corresponding labels, respectively, where

Xs = {xs
1,x

s
2, ...,x

s
n} and Ys = {ys

1,y
s
2, ...,y

s
n} with n samples. Similarly, let X represent the target

domain data, where Xt = {xt
1,x

t
2, ...,x

t
m} with m samples. The goal of DG ReID is to learn a

domain-agnostic feature extractor fθ parameterized by learnable weight θ that maps input data

x to a discriminative feature space Z , i.e f : X →Z , where Z is the feature space shared across

different domains. The objective function is

minimize
θ

Lreid( f (Xs),Ys)+Lfeat( f (Xs)) (1.1)

where Lreid denotes the ReID loss function and Lfeat represents the regularization term, such as

KL divergence, which encourages domain-invariant representations extracted by the extractor.

To further leverage the diverse training samples from multiple source domains, current research

is increasingly focusing on multi-source Domain Generalization for ReID. In this context, the

objective function can be reformulated as follows:

minimize
θ

k

∑
i=1

Lreid( f (X si),Ysi)+ f̂ (X t)Lfeat( f (X si)), (1.2)

where k denotes the number of source domains. Recognizing the practical value of multi-source

domain generalization in real-world scenarios, this thesis primarily focuses on exploring and

advancing this area.

1.3.2 Challenges and Solutions

Challenges: Existing Domain Generalizable ReID methods are typically classified into four

groups. The first group focuses on feature disentanglement, aiming to identify explanatory and

independent factors by separating domain-invariant components from identity representations.

Notably, feature normalization techniques like Instance Normalization (IN) have been exten-

sively studied to reduce style discrepancies among normalized representations [64, 112]. How-
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(a) CUHK02
 (b) CUHK03
 (c) DukeMTMC
 (d) Market1501
 (e) MSMT17


(g) GRID
 (j) iLIDS
(h) PRID
 (i) VIPeR
(f) CUHK-SYSU


Figure 1.3: Visualization on a few identity samples from different domains. Significant domain

gaps are caused by the variation on nationality, illumination, viewpoints, resolution, scenario,

etc.

ever, while these methods explicitly reduce domain-invariant components, they often compro-

mise the discriminative capability of the acquired representations due to the limited information

retained in the disentangled features. Another approach involves aligning the target domain

with the Batch Normalization (BN) statistics calculated over the source domain. Additionally,

meta-learning has been widely explored to simulate the training-testing discrepancy and enable

domain-agnostic feature extraction [177, 17, 4]. Ensemble learning-based techniques represent

another group, aggregating descriptors from multiple experts to construct a more robust rep-

resentation [162, 156, 18]. Alternatively, some methods aim to leverage diverse training data

through augmentation. Despite their demonstrated effectiveness, both strategies have limitations

in effectively managing cross-domain conflicts and exploring cross-domain correlations. Despite

the advancements made by State-of-the-Art (SOTA) models, significant room for improvement

remains, as evidenced by low mean Average Precision (mAP) scores, such as less than 20%

on MSMT17 and less than 40% on CUHK03. This is primarily attributed to domain-specific

interference in the source domain, which hinders the learning of a domain-invariant model.

Solution 1: The first solution is to minimize domain-specific contextual interference in model

learning by focusing more on the domain-invariant person’s unique characteristics. This is

achieved by introducing the association of learning the primary instance classification objec-

tive function with an auxiliary weakly labeled/supervised pedestrian saliency detection objective

function. Specifically, by two steps : (1) Additionally train a pedestrian saliency detection head

with an auxiliary supervision to assist in focusing the primary ReID discriminative learning task

on more domain-invariant feature characteristics. (2) Eliminate the interference attributed to in-

accurate saliency labels by calibrating the gradients of the shared feature extractor raised from
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the weakly labeled auxiliary learning task towards that of the primary task as a reference when

they are in conflict [122]. This association mechanism helps ensure the ReID model learns to

attentively focus on generic yet discriminative pedestrian information whilst both learning tasks

are harmoniously trained.

Solution 2: The second solution is to to diversify the feature distribution based on a perturbing

factor estimated per domain, which enables the model to be more invariant to distribution shifts,

and simultaneously calibrate the feature distributions across all the source domains, so to elimi-

nate the domain-specific data characteristics in feature representations that are potentially caused

by identity-irrelevant redundancy. Both local perturbation and global calibration can reinforce

the same purpose of regularizing the model training, but they are devised in different hierarchies

and complementary to each other, further to promote the model in learning domain-agnostic

representations.

Solution 3: The third solution is to enhance the diversity of per-identity instances through the in-

troduction of cross-view style variations across different domains. The objective is to expand the

cross-view style inherent to individual identity to learn a generalizable ReID representation that

is more robust under the presence of such cross-view style variations. Specifically, we first learn

a domain-agnostic (generalizable) identity prototype by exploiting the consensus of identities re-

gardless of their specific domain annotations. Secondly, we enhance the model’s robustness by

mitigating the covariance from cross-view style variations. This involves augmenting the pro-

totype with cross-domain variations through multi-view augmentation, to simulate the style dis-

crepancy for one identity between query and gallery views. Thirdly, we highlight person-specific

attributes to increase the feature discrimination while maintaining the overall consistency across

all pedestrians.

1.4 Contributions

The contributions made in this thesis are summarised as follows:

1. Chapter 3: We explore the association and mutual promotion of frame’s local part align-

ments and global appearance correlations in assembling a sequence descriptor so to im-

prove the model’s robustness to noisy frames and inter-frame ID-switch in video ReID. The

association and mutual promotion of frame’s local part alignments and global appearance

correlations are explored in assembling a sequence descriptor to improve the robustness of
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the model to noisy frames and inter-frame ID-switch in video ReID. A video person ReID

model termed Local-Global Associative Assembling (LOGA) is proposed, which learns

a discriminative and reliable representation for video tracklets by adaptively assembling

frames of diverse qualities. A local-assembled global appearance prototype is introduced

to associate the local and global visual information by exploiting their mutual agreements

to facilitate the learning of a discriminative tracklet representation.

2. Chapter 4: We introduce the idea of optimizing a more domain-generic ReID learning

task that emphasizes domain-invariant pedestrian characteristics by associating the ReID

instance discriminative learning objective to an auxiliary pedestrian saliency detection ob-

jective in a way that does not create conflicts or hinder the effectiveness of the primary ob-

jective. A regularization called Primary-Auxiliary Objectives Association (PAOA) is for-

mulated to implement the proposed association learning. It jointly trains the primary and

auxiliary tasks with referenced gradient calibration to resolve the conflicting optimization

criteria between the two learning objectives and promote the learning of a more domain-

generic ReID model. The target domain test data characteristics are further explored by

incorporating the PAOA regularization into a deployment-time model online optimization

process. To that end, we formulate a PAOA+ mechanism for on-the-fly target-aware model

optimization and show its performance benefit.

3. Chapter 5: We design Feature-Distribution Perturbation and Calibration (PECA) to ex-

ploit jointly the local feature-distribution perturbation and the global feature-distribution

calibration to improve the model’s generalizability to arbitrary unseen domains while

maintaining its discrimination. A Local Perturbation Module (LPM) is formulated to di-

versify per-domain feature distribution, thereby preventing the model from over-fitting to

each source domain. Additionally, a Global Calibration Module (GCM) is introduced to

further eliminate domain bias by aligning the distribution of multiple source domains. We

simultaneously regularize both to strike the optimal balance between these two competing

objectives.

4. Chapter 6: We propose Cross-Domain Variations Mining (CDVM) to pioneer cross-

domain variations to implicitly explore per-identity multi-view augmentation, thereby en-

couraging the model to learn and maximize invariant representations subject to cross-
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camera identity retrieval. A CDVM mechanism is formulated to learn a context-aware

generalizable ReID model sensitive to domain-specific cross-camera person-wise varia-

tions. This mechanism optimizes jointly two competing criteria of generalizability and

specificity. The proposed new model outperforms existing state-of-the-art methods by a

large margin on a wide range of benchmarks.

1.5 Thesis Outline

The remaining chapters of this thesis are organized as follows:

(1) Chapter 2 presents a review of extant literature pertinent to the principal components of

this thesis.

(2) Chapter 3 proposes a tracklet frame assembling approach called LOGA for video person

ReID. LOGA aims to adaptively assemble video frames in the same tracklets by a Local

Aligned Quality (LAQ) module and a Global Correlated Quality (GCQ) module to as-

sess importance/relevance of the frames by associatively their alignments in local part and

global appearance correlations, as well as their mutual reinforcements.

(3) Chapter 4 introduces a PAOA model that guides model learning of the primary ReID

instance classification objective by a concurrent auxiliary learning objective. To solve the

problem of conflicting optimization criteria between the two learning objectives, PAOA

calibrates the loss gradients of the auxiliary task towards the gradients of the primary task.

(4) Chapter 5 presents a PECA model to accomplish generalized ReID by regularization re-

spectively on the perturbed and the original distributions. These local perturbation and

global calibration are conducted simultaneously, with the objective of learning more gen-

eralizable discriminative representations for model deployment to unseen target domains.

(5) Chapter 6 introduces a CDVM model to enhance the diversity of per-identity instances

through the cross-view style variations across different domains. The objective is to ex-

pand the cross-view style inherent to individual identity to learn a generalizable ReID

representation that is more robust under the presence of such cross-view style variations.

(6) Chapter 7 provides the conclusion and various research problems and directions to be

pursued as further work.
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Chapter 2

Literature Review

2.1 Person Re-Identification – Zero-shot Person Retrieval

Query

Gallery

Search

Re-ID
Model

Figure 2.1: Pipeline of a practical person search system, involving five main steps: 1) Video data

collection, 2) Bounding box annotation, 3) Tracklet segmentation, 4) ReID model training, 5)

Identity retrieval.

Re-Identification (ReID) [11, 24, 143] is a critical task in computer vision that aims to accurately

identify and retrieve pedestrians across different camera views. As illustrated in Figure 2.1, it’s

a critical component of a practical person search system that operates by associating a query

person with individuals from a gallery. The query person can be represented through various

mediums, such as an image [1, 179, 104], a video sequence [143, 178], or even a text descrip-

tion [161, 83]. Unlike traditional person classification tasks, ReID is considered a zero-shot

learning task because the identities present in the training data are strictly non-overlap with those

in the test data. In other words, they have absolutely disjoint label space. This fundamental char-

acteristic adds a layer of complexity to the task, making ReID a highly challenging representation
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learning problem. In order to achieve accurate and reliable person re-identification, the learned

representations must exhibit two crucial qualities: generalizability and discriminativeness. Gen-

eralizability in ReID refers to the ability of the learned representations to effectively capture the

inherent characteristics of pedestrians across diverse environments and conditions. This is essen-

tial because the appearance of individuals can vary significantly due to factors such as changes

in illumination, viewpoint, pose, occlusion, and clothing. Therefore, the learned representations

should be robust enough to handle such variations and accurately match individuals across differ-

ent camera views and scenarios. On the other hand, discrimination ability is equally important in

ReID, as it ensures that the learned representations can effectively distinguish between different

individuals, even when they share similar visual attributes. The representations should encode

unique features that are specific to each individual, which enables reliable identification and re-

trieval, even in challenging scenarios where there may be significant visual similarities between

different pedestrians.

The query person can be represented through various mediums, such as an image [1, 179,

104], a video sequence [143, 178], or even a text description [161, 83]. Due to the urgent de-

mand for public safety and the increasing number of surveillance cameras, person ReID has

become a critical component of intelligent surveillance systems, and offers significant research

impact and practical value. Early ReID studies focus on exploring appearance patterns unique

per identity [27, 87, 160], which has shown remarkable discrimination capacity. However, these

methods often rely on the assumption of meticulously curated data with complete identity in-

formation, a premise that greatly limits their applicability in real-world scenarios where unpre-

dictable environments are commonplace and video data are collected [80, 97]. Video-based

person ReID [96, 157, 11, 25, 164, 50] extends beyond still images by analyzing and integrating

information across a series of video frames. This process aims to construct a more discerning

and resilient representation of individuals in motion, thereby reducing the impact of substandard

frames and ID switches.

2.1.1 Video-based Person Re-Identification

Video person ReID is a popular subtopic [46] of ReID, where each person is depicted by a

video sequence with multiple frames. The matching process of video-based ReID is shown in

Figure 2.2. A video tracklet is a sequence of frames that captures rich variations of the same

person. These video tracklets inherently constitute rich and informative data sources for ReID.
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Query Gallary

Figure 2.2: An illustration of video personal Re-Identification. Each clip refers to a video se-

quence for a pedestrian. The given query is searched across the gallery for matching. Green

denotes positive matching and red denotes negative matching.

Due to its rich appearance and temporal information, it has gained increasing interest in the ReID

community. Moreover, the video person ReID brings in additional challenges in video feature

representation learning with multiple images.

Related Works. Niall et al [106] devise a deep neural network incorporating pooling and re-

circulation mechanisms, amalgamating temporal data into a unified feature vector. Inspired by

the developments in 3D convolutional neural networks [9, 60], Li et al [76] develop a method

that uses 3D convolutional automatic learning to explore relationships along spatial and tem-

poral dimensions, transitioning from low-level to high-level features for the first time. Gu et

al [37] insert the APM module prior to 3D convolution to address the feature alignment problem.

Moreover, Zhao et al [176] introduce an attribute-based approach for feature-weighted frames

and entanglement resolution. This methodology divides single-frame features into distinct cate-

gories of sub-features, each representing specific semantic information. The attention mechanism

is becoming increasingly vital in person ReID. Instead of processing frames separately, certain

studies [126, 82] utilize attention mechanisms to focus on identity-revealing regions. Li et al [82]

employ the interaction of multiple spatial attention modules to emphasize crucial spatial regions

across different frames. Spatial features can be aggregated using learnable temporal attention
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mechanisms. Zhang et al [173] introduce an attention mechanism with global reference, facilitat-

ing the learning of attention in regions pertinent to the global context. Liu et al [91] utilize a non-

local self-attention mechanism, which has gained popularity in Convolutional Neural Network

(CNN) backbone networks. Song et al [127] propose a mask-directed network, integrating masks

with character images to reduce background interference. Chen et al [13] capture temporal and

spatial features and computed attention value maps to specify the importance of different com-

ponents of the person. The Concentrated Multi-grained Multi-Attention Network (CMMANet)

is proposed in [54] to manage multi-scale features and extract details at multiple granularities,

featuring a multi-attention module in each block for adaptive region retrieval within frame se-

quences. Hou et al [49] propose a computationally less complex bilateral complementary net-

work, which preserves the spatial features of the original image. Additionally, some recent work

has started to address computer vision problems using self-attention mechanisms [144, 6]. Self-

attention is typically a non-local network devoid of spatial encoding and featuring multiple atten-

tion heads initially devised to address video classification challenges [144]. The Transformer ar-

chitecture, which employs non-local attention as a key component, has achieved notable progress

in video-based person ReID. He et al [42] introduce a hybrid interactive learning architecture that

combines CNN with attention mechanisms for a video-based person ReID. Zhang et al [169] in-

troduce the inaugural Transformer and a data pre-training technique to alleviate overfitting in

re-id tasks. However, the substantial computational complexity associated with traditional self-

attention results in notable computational overheads. To mitigate this issue, axial attention has

been introduced in [48]. By breaking down operations, axial attention can substantially decrease

computational costs. Shen et al [124] devise an unsupervised algorithm that aligns the ranking

mechanism with the ReID approach.

Video-ReID Datasets. The statistics of commonly employed benchmarks are shown in Ta-

ble 2.1. The DukeMTMC dataset [183] comprisess video sequences captured by eight different

Table 2.1: The statistics of commonly employed video person ReID datasets.
Dataset #identity #sequence #boxes #frame #indoor cam. #outdoor cam. Detector Evaluation

DukeMTMC [183] 1,404 4,832 815,420 168 0 8 Hand CMC + mAP

Duke-SI [80] 1778 4,832 815,420 168 0 8 SSD CMC + mAP

MARS [178] 1,261 20,715 1,067,516 58 0 6 DPM CMC + mAP

PRID [47] 200 400 4,003,331 100 0 2 Hand CMC

iLIDS-VID [180] 300 600 4,246,031 73 2 0 Hand CMC

LS-VID [75] 3,772 14,943 2,982,685 200 3 12 Faster R-CNN CMC + mAP
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cameras. It offers diverse variations in pedestrian posture, movement, perspective, and light-

ing conditions across cameras. This diversity demands that algorithms exhibit robustness and

an ability to generalize effectively. The Duke-SI dataset [80] is a fully auto-generated version

of DukeMTMC without manual frames selection, thus, more practical and challenging. The

MARS dataset [178] stands out as the largest and most widely employed dataset for video person

ReID. It’s captured by six cameras and has significant complexity, characterized by extensive

overlaps of pedestrians, prevalent occlusions, and varying viewing angles among the cameras.

This complexity presents a challenging environment for video analysis tasks. The iLIDS-VID

dataset [180] comprises video sequences captured by two cameras, presenting challenges such

as illumination changes, attitude variations, and pedestrian overlaps, aligning closely with real-

world scenario requirements for the task. The PRID dataset [47] comprises video sequences ob-

tained from two distinct cameras, featuring variations in pedestrian posture, perspective changes,

background interference, and other factors. This dataset serves as a valuable resource for enhanc-

ing the accuracy and real-time performance of pedestrian re-identification systems. The LS-VID

dataset [75] is captured by 15 cameras and consists of a total of 14,943 video sequences. No-

tably, this dataset offers more precise pedestrian trajectories, rendering it valuable for research

and development in pedestrian tracking and analysis.

2.1.2 Image-based Person Re-Identification

Image-based person ReID is an essential research area within the field of person ReID. The

Image-based person ReID tasks still encounter numerous challenges. These encompass perspec-

tive shifts, lighting fluctuations, alterations in appearance, and instances where pedestrians are

obstructed by other objects.

Related Works. In recent years, numerous studies [133, 52, 10, 36] have shifted their focus

towards investigating image-based person ReID tasks. Currently, lightweight network architec-

tures have garnered increasing interest among researchers. Zhou et al [187] devise a network

that is compact and comprehensive, capable of discerning diverse spatial scales and facilitating

multi-scale cooperation. Li et al [72] introduce a fusion depth space approach to emphasize the

amalgamation of pattern information inherent in pedestrian images. It realizes a cost-effective

search method, enhancing the model’s generalization capability, recognition accuracy, and fea-

ture representation. Gu et al [36] employe a novel twin comparison mechanism to explore effec-

tive lightweight architectures. They introduced a multi-scale interaction space, offering a rational
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approach for interacting with multi-scale features. Furthermore, certain studies enhance model

performance by refining the loss function, thereby achieving superior results in person ReID

tasks. Gu et al [35] introduce AutoLoss-GMS, a method designed to search for an optimized

loss function within the loss function space, with the aim to achieve efficient and effective per-

son ReID. Chen et al [14] develop a quadruplet loss function and proposed a quadruplet deep

network, integrating online hard negative mining to enhance the model’s generalization capa-

bility. Yan et al [158] introduces a paired loss function as an alternative to the conventional

triplet loss. This novel approach is tailored to dynamically apply exponential penalties to im-

ages exhibiting minor differences, while imposing bounded penalties on those with substantial

distinctions, facilitating learning fine-grained features. Dong et al [20] investigate human par-

tial masks and human poses to enhance feature extraction from the human body. Meanwhile,

Zheng et al [182] endeavors to map 2D images into 3D spaces to conduct person searches within

these 3D spaces. Karianakis et al [65] propose a neural network architecture termed Reinforced

Temporal Attention (RTA). Besides, some studies [133, 134] have explored scenarios involving

image occlusion. Tan et al [133] propose a multi-head self-attention network designed to elim-

inate irrelevant information and capture crucial local features, particularly to tackle occlusion

challenges. The RFCNet [52] integrates spatial and temporal RFC to predict features within ob-

scured regions, thereby enabling the network to leverage both images and videos as sources of

information. Tan et al [134] propose a dynamic prototype mask based on two prior knowledge to

bridge the domain gap between the auxiliary model and the ReID dataset, effectively improving

the performance of the model.

Image-ReID Datasets. The statistics of commonly utilized image person ReID datasets are

shown in Table 2.2. The Market-1501 dataset [179], introduced in 2015, is captured by five

high-resolution cameras and one low-resolution camera. It employs DPM pedestrian detector to

identify pedestrian bounding boxes and contain a total of 32,668 images. This dataset represents

a large-scale resource for person ReID studies. The VIPeR dataset [33] stands as the pioneering

small-scale person dataset, featuring manually annotated pedestrians across 1,264 images. Ac-

quired from two cameras, the VIPeR incorporates varying viewing angles, as well as changes in

posture and lighting. It continues to be recognized as one of the most formidable datasets for per-

son ReID tasks. The MSMT17 dataset [147], introduced in 2018, represents a large-scale person

ReID dataset. Employing the Faster R-CNN [119] pedestrian detector, it automatically identifies
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Table 2.2: The statistics of commonly employed image person ReID datasets.

Datasets #ID #Track(#Bbox) #cam. Label Res. Eval.

VIPeR [34] 632 1,264 2 hand fixed CMC

iLIDS [180] 119 476 2 hand vary CMC

GRID [99] 250 1,275 8 hand vary CMC

PRID2011 [16] 200 1,134 2 hand fixed CMC

CUHK01 [85] 971 3,884 2 hand fixed CMC

CUHK02 [84] 1,816 7,264 10 hand fixed CMC

CUHK03 [86] 1,467 13,164 2 both vary CMC

Market-1501 [179] 1,501 32,668 6 both fixed CMC+mAP

DukeMTMC [183] 1,404 36,411 8 both fixed CMC+mAP

MSMT17 [147] 4,101 126,441 15 auto vary CMC+mAP

labeled frames, resulting in a compilation of 126,441 images. Captured by 15 campus cameras,

MSMT17 is designed to encompass a wider range of scenes. Notably, within a single scene, there

are minimal variations in lighting conditions. The DukeMTMC-reID dataset [183], collected at

Duke University, is captured by eight stationary high-definition cameras. It includes a rich set

of 16,522 training images, 2,228 query images, and an extensive gallery, forming a specialized

subset of the MTMCT dataset, specifically the DukeMTMC [120]. The CUHK01 dataset [85]

encompasses 971 individuals and 3,884 manually cropped images. Each individual is repre-

sented by a minimum of two images, captured from two disjointed camera views. The CUHK02

dataset [84] comprises 1,816 individuals and 7,264 manually cropped images. In contrast to

the CUHK01 dataset, CUHK02 offers a more extensive array of identity and camera views, fa-

cilitating greater variability in pedestrian image configurations. The CUHK03 dataset [86] is

a comprehensive person ReID dataset gathered in Hong Kong. It encompasses 1,360 distinct

pedestrians, represented by a total of 13,164 images.

2.1.3 Quality-aware Assembling for Video ReID

Video-based person ReID methods aim to learn an expressive appearance feature or distance met-

ric from a sequence of frames, i.e, a video tracklet, by taking advantage of the additional tempo-

ral information and complementary spatial information intrinsically available in video tracklets,

However, there can be low-quality frames over movement caused by occlusion and scale vari-

ations, as shown in Figure 2.3. To reduce the interference caused by these low-quality frames,
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Figure 2.3: An illustration of frame quality variation within a tracklet over a period of time.

existing approaches explore either local part alignments [128, 5, 173, 51, 50] or global appear-

ance correlations [97, 75, 168, 78, 89, 105, 95, 145] to assemble the per-frame representations

with high robustness to their diverse qualities.

Local Part Alignments. Song et al [128] introduced a region-based quality estimation net-

work that employs a training mechanism for extracting region-based complementary information

across various frames. The network architecture is illustrated in Figure 2.4. It utlizes landmarks

to denote significant points on the human body, and processes them through Fully-Connected

(FC) layers to generate intermediate representation. Then, the representation is divided into dis-

tinct regions based on the identified key points. A region-based quality predictor is used to pre-

dict image quality, and produces a fixed-dimensional feature representation with a sequence size

through weighted aggregation of all frames. Considering the consistent body structure shared

among human, It is intuitive to differentiate images/frames of pedestrians regarding their visual

similarity in different parts. Local-parts assembling approaches [128, 5, 173, 51, 50] apply per-

part comparisons of video frames in the same tracklets to identify outliers that are misaligned

with others in most local parts, and to restore the corrupted parts of frames with the complements

of others [51, 50], or degrade their importance in frame assembling [128, 5, 173]. However,

due to unreliable auto-generated person bounding boxes this assumption that a pedestrian de-

tected in different video frames being mostly well-aligned is often invalid, e.g the importance of

a noise-free video frame might be underestimated. In this work, we further consider the holistic

visual similarity of video frames in the assessment of their quality, thereby helping refrain from

inaccurate assessments caused by part misalignments.
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Figure 2.4: An illustration of a local part alignment-based method [128].

Global Appearance Correlations. Liu et al [97] introduced a method termed Quality-Aware

Network (QAN). It is designed for learning the metric between two sets of images, assuming

that each collection contains images from the same identity. The architecture of the network is

illustrated in Figure 2.5. QAN comprises two branches: one branch predicts the quality score

for each sample, while the other branch extracts appearance feature embeddings from each sam-

ple. These features and quality scores of all samples within the set are aggregated to produce

the final feature embeddings. Compared to local-parts approaches, methods based on global-

appearance [97, 75, 168, 78, 89, 105, 95, 145] take advantage of the strong representational

power of CNN [30, 70] to learn correlations between video frames holistically so that the irrel-

evant frames, which are likely of low quality, are suppressed in frame assembling. However,

the CNN features can be insensitive to a spatial shift resulting in potential mis-correlations of

visually similar but irrelevant parts, e.g the ID-switch issue is shown in Figure 2.3. Detecting

the subtle differences in the outfits of the two pedestrians is challenging. This may lead to mis-

assembling of frames to represent a tracklet. To address this problem, we propose enhancing

global-appearance methods by jointly exploring holistic visual correlations among frames and

aligning their local parts through inter-frame spatial relations.
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Figure 2. The end-to-end learning structure of quality aware net. The input of this structure is three image sets Sanchor , Spos and Sneg

belong to class A, A and B. Each of them pass through the fully convolutional network (FCN) to generate the middle representations,
which will be fed to quality generation part and feature generation part. The former generates quality score for each image and the latter
generates final representation for each image. Then the scores and representations of all image will be aggregated by set pooling unit and
the final representation of the image set will be produced. We use softmax-loss and triplet-loss to be the supervised ID signal.

is defined by human and independent with feature genera-
tion unit. In QAN, score is automatically learned and qual-
ity generation unit is joint trained with feature generation
unit. Due to mutual benefit between the two parts during
training, performance is improved significantly by jointly
optimizing images aggregation parameter and images’ fea-
ture generator.

3. Quality aware network (QAN)

In our work we focus on improving image set embedding
model, which maps an image set S = {I1, I2, · · · , IN} to
an representation with fixed dimension so that image sets
with different number of images are comparable with each
other. Let Ra(S) and RIi denote representation of S and
Ii. Ra(S) is determined by all elements in S, therefore it
can be denoted as

Ra(S) = F(RI1 , RI2 , · · · , RIN ). (1)

TheRIi is produced by a feature extraction process, con-
taining traditional hand-craft feature extractors or convo-
lutional neural network. F(·) is an aggregative function,
which maps a variable-length input set to a representation
of fixed dimension. The challenge is to find an optimized
F(·), which aggregate features from the whole image set
to obtain the most discriminative representation. Based on
notion that images with higher quality are easier for recog-
nition while images with lower quality containing occlusion
and large pose have less effect on set representation, we de-
note F(·) as

F(RI1 , RI2 , · · · , RIN ) =

∑N
i=1 µiRIi∑N

i=1 µi

(2)

µi = Q(Ii), (3)

where Q(Ii) predicts a quality score µi for image Ii. So the
representation of a set is a fusion of each images’ features,
weighted by their quality scores.

3.1. QAN for image set embedding

In this paper, feature generation and aggregation module
is implemented through an end-to-end convolutional neu-
ral network named QAN as shown in Fig. 2. Two branches
are splited from the middle of it. In the first branch, qual-
ity generation part followed by a set pooling unit composes
the aggregation module. And in the second branch, fea-
ture generation part generates images’ representation. Now
we introduce how an image set flows through QAN. At the
beginning of the process, all images are sent into a fully
convolutional network to generate middle representations.
After that, QAN is divided into two branches. The first one
(upper) named quality generation part is a tiny convolution
neural network (see Sec. 3.4 for details) which is employed
to predict quality score µ. The second one (lower), called
feature generation part, generates image representations RI

for all images. µ and RI are aggregated at set pooling unit
F , and then pass through a fully connected layer to get the
final representation Ra(S). To sum up, this structure gen-
erates quality scores for images, uses these quality scores
to weight images’ representations and sums them up to pro-
duce the final set’s representation.

3.2. Training QAN without quality supervision

We train the QAN in an end-to-end manner. The data
flow is shown in Fig. 2. QAN is supposed to generate dis-
criminative representations for images and sets belonging to
different identities. For image level training, a fully connec-
tion layer is established after feature generation part, which
is supervised by Softmax loss Lclass. For set level training,
a set’s representation Ra(S) is supervised by Lveri which
is formulated as:

Lveri = ‖Ra(Sa)−Ra(Sp)‖2− ‖Ra(Sa)−Ra(Sn)‖2 + δ
(4)

The loss function above is referred as Triplet Loss in pre-
vious works [26]. We define Sa as anchor set, Sp as pos-
itive set, and Sn as negative set. This function minimizes
variances of intra-class samples while Softmax loss cannot

Figure 2.5: An illustration of a global appearance correlation-based method [97].
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Local-Global Joint. Beyond the temporal assembling approaches discussed above, spatial at-

tention [148] is also popular in both image and video person ReID [87, 184, 153, 25, 151]. By

exploring different parts within a single frame, the spatial attention mechanism can dynamically

focus on the more discriminative parts. In contrast, our LAQ module investigates the alignments

of the same part across different video frames, focusing on exploiting complementary inter-frame

information in a tracklet. Chen et al [15] explored both local and global information for frame

assembling in video ReID. However, it learns from these two types of information separately

through a dual-branch network without considering their synergy (Figure 2.6). We demonstrate

the superiority of the proposed LOGA over FGRA in both performance evaluation and ablation

analysis in Chapter 3.
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Figure 2: The architecture of FGRA framework. This framework is designed as a two-branch architecture. The global branch is
deployed to extract global spatiotemporal features, and the local branch extracts local spatiotemporal features in two steps, in-
cluding region alignment and feature aggregation. Specifically, the local branch is composed of multiple functional components
including a template feature learning branch, a guide alignment module (GAM) and a spatial-temporal aggregation operation.

RC×H×W }Nn=1, where C, H and W denote the number of
channels, height and width of the feature maps, respectively.
We select Resnet50 (He et al. 2016) as the backbone net-
work, where the global average pooling and fully connected
layers are discarded. Then the frame features are processed
through the global branch and local branch to obtain the
global and local sequence features [fs,g ∈ Rc, fs,l ∈ Rc],
respectively, where c denotes the length of the reduced di-
mension. Both of them are complementary to each other and
concatenated as the final representation to perfect the com-
prehensiveness for retrieval.

In the global branch, we first apply a global average pool-
ing layer to each frame feature map, which is followed by a
temporal attention module originally proposed in (Li et al.
2018b) to temporally aggregate the global features and gen-
erate a compact video representation. A 1× 1 convolutional
layer is further applied to reduce the feature dimension from
2048 to1024 and output the final representation fs,g .

In the local branch, we adopt a region alignment mech-
anism and a feature aggregation strategy to drive region
alignment and capture discriminative spatiotemporal cues.
We deploy a guide branch to learn template region fea-
tures {Ft,i|Ft,i ∈ RC}Ns

i=1 of a reference frame selected
from a sequence of images, where Ns indicates the num-
ber of regions. Then the template features {Ft,i}Ns

i=1 and
the frame features {Fn}Nn=1 are fed into a guide align-
ment module (GAM) to generate the region-aligned features
{{Fn,i|Fn,i ∈ RC}Ns

i=1}Nn=1. The final local representation
fs,l is obtained by spatiotemporal weighted averaging and
dimension reduction.

Region Alignment Mechanism
Pedestrians in most datasets are well-aligned by hand-drawn
bounding boxes. But in reality, the bounding boxes of pedes-
trians are detected rather than manually labeled, and thus
pedestrian matching may succumb to heavy misalignment
and strong deformation. To this end, we propose an effec-

tive approach called region alignment mechanism, which au-
tomatically solves two common problems in video re-ID:
aligning corresponding body regions across frames and de-
termining which region is more informative.

Template Feature Learning. We treat the feature align-
ment challenge as a guided feature learning problem, con-
sidering that the previous frame can provide information
clues for feature learning of subsequent consecutive frames.
In the guide branch, we take the first frame of the input
video sequence as a reference frame and spatially downsam-
ple the corresponding backbone feature into Ns column vec-
tors {Ft,i}Ns

i=1. Afterward, a 1 × 1 kernel-sized convolution
layer is employed to reduce the dimension of Ft,i, which is
independently optimized by the objective function.

Guide Alignment Module (GAM). In order to solve the
misalignment problem, a novel non-parametric alignment
module is embedded to the proposed architecture to achieve
region alignment. As shown in Fig. 3, the template region
feature Ft,i and the frame feature Fn with the same number
of channels do the depth-wise cross correlation to produce
the similarity maps Mn,i ∈ RC×H×W , where the target re-
gion will get high response value. The above process can be
formulated as a parameter-free function f(Ft,i,Fn):

Mn,i = f(Ft,i,Fn) = Ft,i ∗ Fn, (1)
where ∗ indicates group convolution operation. It is clear
that depth-wise cross correlation is mathematically equiva-
lent to group convolution and the template feature Ft,i can
be regarded as the convolution kernel exactly.

We apply a batch normalization layer and a sigmoid func-
tion to the similarity maps to normalize each element to the
range of (0,1). Then the frame feature Fn and the similar-
ity maps Mn,i perform Hadamard product to enhance the
feature saliency of the target region. The result of the cal-
culation is further downsampled to obtain the final region-
aligned feature Fn,i, which can be summarized as :

Fn,i =
1

H ×W

H∑ W∑
Fn ◦Mn,i (2)

10593

Figure 2.6: An illustration of FGRA [15], which jointly exploits local and global information

separately in a dual-branch network.

2.1.4 Cross-domain Generalizable Re-Identification

To address this problem, Domain Generalizable ReID (DG ReID) [171, 22, 192, 186, 188, 103,

64, 112] has garnered increasing attention as a potential solution. In contrast to domain adaptive

ReID, which adjusts learned representations using unlabeled samples from the target domain.

Domain generalizable ReID operates without prior knowledge of the target domain, thus pre-

senting a practical yet challenging task. Domain-adaptive ReID focuses on aligning representa-

tions between a labeled source domain and an unlabeled target domain, while DG ReID aims to

learn robust representations transferable across diverse domains without specific adaptation. The

comparison between Domain Adaptation (DA) and Domain Generalization (DG) approaches is
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illustrated in Figure 2.7, where DA-based methods may achieve higher performance with target

domain data, while DG methods offer practicality in scenarios where access to target domain

data is limited or unavailable. Existing DG ReID methods generally designed with the following

Training domain Test

......

Domain Apatation

Domain Generalization

Test

Target domain

Update

Unseen domain
Trained model

Figure 2.7: Comparison on Domain Adaptation and Domain Generalization for person ReID.

principles: (1) To benefit the model from the diverse training data achieved by augmentation.

(2) To align the target domain with the Batch Normalization (BN) statistics calculated over the

source domain. (3) To mimic the train/test discrepancy with meta-learning. The first group of

methods [171, 22, 192] revolves around utilizing feature disentanglement to explore explanatory

and independent factors by decoupling domain-invariant components from an identity represen-

tation. Notably, feature normalization techniques, such as Instance Normalization (IN) have

been extensively researched to minimize style discrepancy among the normalized representa-

tions [64, 112]. However, while these methods can explicitly reduce domain-invariant compo-

nents, they inevitably diminish the discriminative capability of the acquired representations due

to limited information being retained in the disentangled feature. Furthermore, Meta-learning

which imitates the training-testing discrepancy has been widely studied to enable the extracted

features to be domain-agnostic [177, 17, 4]. On the other hand, ensemble learning-based tech-

niques often aggregate descriptors derived from multiple experts to assemble a more resilient

representation [162, 156, 18]. Despite the improvement obtained by these SOTA models, these

strategies have limitations in effectively managing cross-domain conflicts and exploring cross-

domain correlations, and leave significant room for improvement, as indicated by the low mAP
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scores, e.g less than 20% on MSMT17 and less than 40% on CUHK03. This is attributed to the

domain-specific interference in the source domain that limits the learning of a domain-invariant

model. In Chapter 6, we formulate a new generalizable ReID model termed CDVM pioneering

the incorporation of cross-domain variations to simulate the style shifts for one identity cap-

tured by disjoint cameras. This innovation is intended to enhance the model’s robustness against

domain-shifts and to extract discriminative representations. In Chapter 4, we aim to tackle this is-

sue by guiding the model to focus on the discriminative pedestrian area with the tailored auxiliary

task, and propose the PAOA regularization for that end. To obtain a robust model in achieving

“out-of-the-box” deployment, recent approaches focus on generalizing ReID to mitigate overfit-

ting in the source domains. This is achieved through either local domain manipulation or global

cross-domain alignment methods, which facilitate the extraction of domain-invariant features

less prone to bias.

2.2 Learning Representation Adaptable to Target Domain

2.2.1 Domain Adaptation

Domain Adaptation (DA) is a subset of Transfer Learning (TL) that offers solutions to real-

world challenges, particularly those encountered in uncontrolled environments. It achieves this

by leveraging a model trained on a source dataset to perform testing on a target domain with dif-

ferent distributions. DA [141, 117] has gained popularity in recent years. Deep Neural Networks

(DNNs) trained on one dataset (referred to as the source domain) often fail to perform well on

another dataset (the target domain), even if the latter shares similar properties with the former.

DA aims to mitigate this issue and shows significant potential for various applications in practical

settings, real-world scenarios, and industrial domains, among others. It’s achieved by transfer-

ring relevant knowledge during training. Unlike DG, where the model cannot access data from

the target domain during training, DA has access to such unlabeled target domain data. Pan et

al [114] introduce Transfer Component Analysis (TCA), a dimensionality reduction method for

domain adaptation. The TCA aims to identify transfer components that minimize distributional

differences between domains while preserving data properties. TCA addresses the domain dis-

tance reduction problem. It outperforms previous methods like Maximum Mean Discrepancy

Embedding (MMDE) in terms of effectiveness and computational cost. Tzeng et al [135] present

Adversarial Discriminative Domain Adaptation (ADDA), which is a framework that combines
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discriminative modeling with GAN-based loss for unsupervised domain adaptation. ADDA uti-

lizes asymmetric mapping and domain adversarial training to mitigate domain bias and improve

the generalization of datasets and tasks. Ganin et al [28] propose a generic domain adaptation

approach, termed Domain-Adversarial Neural Network (DANN), that trains neural networks on

labeled source domain data and unlabeled target domain data with similar distributions. This

method promotes discriminative and domain-invariant features to enhance adaptation perfor-

mance on various classification tasks. The DANN is a representative DA method. Its general
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Figure 2.8: An illustration of a representative Domain Adaptation model: DANN [28]

idea is illustrated in Figure 2.8. It enables models to adapt from a labeled source domain to an

unlabeled target domain. The core idea behind DANN is to learn feature representations that are

not only useful for making accurate predictions in the source domain but also indistinguishable

between the source and target domains. This is achieved through a two-part training process: 1.

Task Prediction on Source Domain: The model is trained to accurately predict labels for samples

in the source domain. This is accomplished by minimizing a classification loss, which encour-

ages the model to learn features that are predictive of the correct labels in the source domain. 2.

Domain Classification: Simultaneously, the model is trained with a domain classifier (or regres-

sor) component, which aims to distinguish between source and target domain samples. However,

the key twist is that the model is trained to fail at this task; that is, to make the domain classi-

fier unable to reliably tell whether a given feature representation comes from the source or the

target domain. This is realized by minimizing a domain classification loss, which uses known

domain labels (source or target) for both labeled source samples and unlabeled target samples.
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The overall objective combines these two aspects, with an emphasis on making the learned fea-

ture representations domain-invariant. Mathematically, this can be simplified to an optimization

problem for the entire training set, rather than individual samples:

min
θ

[
1
Ns

Ns

∑
i=1

Ly(xs
i ,yi)+

λ

Ns +Nt

Ns+Nt

∑
j=1

Ld(x j,d j)

]
, (2.1)

where Ly denotes the classification loss on the source domain, Ld represents the domain classi-

fication loss, xs
i and yi are the input features and labels of the source samples, x j are the input

features of both source and target samples, and d j indicates their domain labels. Ns and Nt are the

numbers of source and target domain samples, respectively, and λ is a hyper-parameter balancing

the two losses. In essence, DANN trains a model that excels in its primary task on the source

domain while simultaneously learning to generate feature representations that a domain classifier

cannot differentiate between domains. Therefore, this approach results in a model whose perfor-

mance on the target domain is improved, as the features it has learned are domain-agnostic by

focusing solely on the aspects relevant to the task at hand.

2.2.2 Deployment-Time Optimization

Training

cat

0° 180°
90° 270°

Testing

0° 180°
90° 270°domain shift

Figure 2.9: An illustration of Deployment-Time Optimization with Multi-Task Learning

Deployment-Time Optimization (DTO) is an emerging paradigm to tackle distribution shifts be-

tween training and testing environments. The key idea is to perform post-training model op-

timization given the test samples during deployment. Several recent works[142, 139, 59, 21]

propose to optimize the model parameters by providing proper supervision, such as batch-norm

statistics, entropy minimization, and pseudo-labeling. This line of methods is not directly ap-

plicable to ReID due to the zero-shot nature, in which the soft-max logits are in different label

space during training and testing. In contrastive, another line of works [132, 98] jointly trains
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additional self-supervised auxiliary tasks, in a Multi-Task Learning (MTL) design. These aux-

iliary tasks can be used to guide the model optimization during testing. This does not involve

any assumptions about the output and is more generic. In this realm, the objective is often to

optimize a model in such a way that it can efficiently learn from multiple tasks simultaneously.

This not only enhances the model’s performance on the main task but also leverages auxiliary

tasks to guide the model’s optimization during testing, especially when labels for the main task

are unavailable. This concept is illustrated in Figure 2.9, and formalized through the following

set of equations, Considering the conventional single-task learning scenario depicted by:

min
θθθ

1
n

n

∑
i=1

ℓm(xi,yi;θθθ), (2.2)

where θθθ represents the parameters of the model, n is the number of samples, and ℓm(xi,yi;θθθ)

denotes the loss function for the main task, with (xi,yi) being the input-label pairs for the training

samples. This equation represents the goal of minimizing the average loss across all samples for

a single main task. In the context of Deployment-Time Optimization that includes an auxiliary

task, the objective extends to:

min
θθθ e,θθθ m,θθθ s

1
n

n

∑
i=1

ℓm(xi,yi;θθθ m,θθθ e)+ ℓs(xi,ys;θθθ s,θθθ e), (2.3)

with θθθ e, θθθ m, and θθθ s representing the parameters of the feature extractor, main task model,

and auxiliary task model, respectively. ℓm and ℓs are the loss functions for the main and self-

supervised auxiliary tasks. This framework aims to minimize the combined losses of the main

and auxiliary tasks, allowing the model to learn from both simultaneously. At test time, in the

absence of main task labels, optimization is focused solely on the auxiliary task:

min
θθθ e

ℓs(x,ys;θθθ s,θθθ e). (2.4)

In such a way, the model can adapt to new domains or scenarios with the auxiliary task by op-

timizing the feature extractor (θθθ e) to ensure versatility and effectiveness. DTO has also been

applied to Re-Identification (ReID) [39] by considering self-supervised learning tasks for up-

dating BN statistics. In Chapter 4, we formulate the Primary-Auxiliary Objectives Association

(PAOA)+ method by incorporating the proposed PAOA regularization into the DTO framework

to seek further improvement. With the tailored auxiliary objective as the optimization supervi-

sion, PAOA+ effectively exploits the underlying target domain characteristic and exhibits boosted

performance on all the benchmarks.
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Figure 2.10: The schematic diagram of distribution alignment.

2.3 Learning Representation Generalizable to Unseen Domain

Domain Generalization (DG) [186] is a machine learning strategy designed to overcome the

challenge of models underperforming on new, unseen domains. The goal of DG is to empower a

model with the ability to achieve robust performance across different domains without requiring

retraining for each new domain encountered. This is accomplished by training the model on a

variety of domains, thereby to encourage the development of more adaptable feature represen-

tations. As a result, the model’s dependence on domain-specific data is diminished, so as to

enhance its ability to generalize to new domains. By broadening the model’s exposure to diverse

data during the training phase, DG helps ensure that the model remains effective and reliable even

when introduced to unfamiliar data environments. To achieve Domain Generalization, numerous

studies have been conducted from the following aspects.

2.3.1 Distribution Alignment

The idea of distribution alignment aims to minimize the feature discrepancy between source and

target domains. The schematic diagram of distribution alignment operation is shown in Fig-

ure 2.10. It generally designs a dedicated optimization objective to constrain the learned feature

distribution, such as by implicitly assume the feature distribution in different domains are are

linearly correlated. It has been widely adopted by DA models to align the distribution of per

domain learned representation to the target one. However, for DG, it is inherently incapable of

directly conducting such a “target-oriented” alignment due to the absence of target data during

model training. With a straightforward assumption that features which are invariant to the source

domain shift should also be invariant to any unseen target domain [73], DG approaches share
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the spirit to minimize the discrepancy among source domains to achieve distribution alignment.

There are a wide variety of statistical metrics available for minimizing, such as Euclidean dis-

tance and f -divergences. In this regard, Li et al [74] propose to minimize the Kullback–Leibler

(KL) divergence of source domain features with a Gaussian distribution. Several works achieve

distribution alignment by minimizing a single moment (mean or variance) [109, 55] or joint mo-

ments [23, 29] calculated over a batch of source domain samples through either a projection

matrix [29] or a non-linear deep network [63]. Moreover, minimizing contrastive loss offers

another avenue for mitigating distribution discrepancies [108, 103]. These methods leverage se-

mantic labels to pull together the anchor and positive groups while simultaneously pushing the

anchor away from negative groups. Li et al [73] minimize the Maximum Mean Discrepancy

(MMD) distance by aligning the source domain feature distributions with a prior distribution via

adversarial training [31]. Unlike explicit distance metrics MMD, adversarial learning formulates

the problem of distribution minimization through a minimax two-player game. Warde et al [146]

justify that generative adversarial learning is tantamount to minimize the Jensen-Shannon di-

vergence between the real and generated distributions. Alternatively, Variational Autoencoder

(VAE) [58] can be employed to model a normal distribution and create a shared space, thus

aligning the learned features. The loss function of VAE consists of two terms: the reconstruction

loss and the regularization term. The reconstruction loss measures the discrepancy between the

decoder’s output and the input data. It is typically measured using reconstruction error metrics,

such as mean squared error (MSE) or Cross-Entropy (CE). The regularization term penalizes the

deviation of the latent representation, ensuring that the sample distribution in the latent space is

close to the unit normal distribution. The alignment achieved by VAE is formulated as:

ℓ(φ ,θ ,x) = ℓrecon + ℓKL,

=
1
N

N

∑
i=1

(Xi − X̂i)
2 +KL[G(Zµ ,Zσ ),N (0,1)],

(2.5)

where ℓrecon represents the reconstruction loss, and KL stands for KL divergence. The diagram of

VAE alignment is shown in Figure 2.11. In chapter 5, the proposed global distribution calibration

operates on the same principle to align the source domains in learning a domain-agnostic model.

In contrast, we tailor the alignment objective for person ReID considering that all samples are

depicting pedestrians, rather than predefine a deterministic distribution to align, e.g Gaussian or

Laplace distributions. Specifically, we constructed a common feature space upon the ID proto-

typical representations stored in a global memory bank to eliminate domain-biased information.
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Figure 2.11: Structure of a Variational Autoencoder that aligns the latent vector with a normal

distribution.

Disentangled Representation Learning. The objective of disentanglement learning is to ex-

plore the distinct and explanatory components, and decouples a representation into domain-

invariant and domain-specific parts. It is generally achieved through adversarial training [28]

where the aim is to deceive a domain discriminator, to enable the learned features to be domain-

agnostic. For example, Wang et al [140] employs an adversarial learning approach to train two

independent encoders. These encoders were designed to capture identity and domain information

separately, and encoders aim to address cross-domain facial anti-spoofing. Disentangled Repre-

sentation Learning has also found widespread application in style and content disentanglement.

This method aims to separate the style (e.g color, texture, brushstrokes) of an image from its con-

tent (e.g objects, structure, layout), enabling independent manipulation of both. The schematic

diagram of different feature disentanglement methods is illustrated in Figure 2.12. This sepa-

ration enables networks to combine the style of one image with the content of another, create

images with new styles, or generate different styles of the same content by changing the style

parameters. For example, Kotovenko et al [69] propose a method that captures the nuances of

style and variations within it. The method can separate style from content. Disentanglement

has also been studied to generalize person ReID. For instance, EOM [22] designs a disentangle-

ment module incorporating a cycle-consistency constraint, while Zhang [171] et al construct a

structural causal model to approximate the shifted distribution and pursue the causality between

identity-specific factors and identity labels. However, it remains uncertain whether the disen-

tanglement criteria and the model is susceptible to learning less discriminative representations

when a significant domain shift occurs [107, 8]. In chapter 6, we design a disentanglement mod-

ule constrained by maximizing the consensus of domain-shared knowledge to learn an identity

prototype that is domain-agnostic.
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Figure 2.12: Comparison on different feature distribution manipulation methods, including (a)

distribution alignment by VAE, (b) distribution normalization by Normalizing Flow. (c) feature

disentanglement by GAN. (d) style-content disentanglement by Adversarial Training.

2.3.2 Data Augmentation

Training a neural network with diverse data can improve its generalizability on new, unseen

domains [66, 3], and further improve its robustness against spurious correlations. Data aug-

mentation [125] serves as a cost-effective method to enrich data diversity. It is a widely used

technique in computer vision and ML to increase the diversity of training data. It involves ap-

plying transformations or perturbations to the original data. Data augmentation aims to improve

the generalization ability of models, reduce overfitting, and make them more robust to different

scenarios and conditions. Traditional data augmentations [165, 38, 44, 159] are most commonly

applied within the raw image space, often through geometric transformations or random erasing.

A few augmented applied on the raw image space examples are illustrated in Figure 2.13 (a).

The emergence GANs [32] has enabled the generation of new, realistic augmented counterparts

featuring different contents or styles. The conventional paradigm of data augmentation is to di-

versify data. Yang et al [159] design an image augmentation module which helps the network

to learn domain-invariant representation by distilling information learned from the augmented

samples to the teacher network. More recently, feature augmentation has emerged as a more
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Figure 2.13: Comparison on augmentation in raw image space and feature space.

effective transformations. Different from augmentation on the raw image, feature augmentation

is directly applied on the holistic representation space. The diagram of performing feature distri-

bution augmentation [81] in shown Figure. 2.13 (b). In this regards, DeepAugment [43] perturbs

features via stochastic operations by forwarding images through a pre-trained image-to-image

model, to generate semantically meaningful and diverse samples. Li et al [81] discover that em-

bedding white Gaussian noise in high-dimensional feature space provides substantive statistics

reflective of cross-domain variability. Li et al [88] propose to model the feature uncertainty with

a multivariate Gaussian distribution to perturb hierarchical features to diversify the feature space.

In chapter 5, we explore feature distribution augmentation in each source domain to achieve per-

domain feature distribution diversification rather than diversifying the data, with the objective

of making the model invariant to per-domain holistic shift to avoid model overfitting in each

source domain. In Chapter 6, we model the cross-domain style variations and employ them to

augment the identity prototype, providing diverse pedestrian styles to achieve per-identity multi-

view augmentation. By simulating the identity cross-view discrepancy, the trained model is

robust in extracting domain-unbiased representations during testing.

2.3.3 Feature Normalization

Feature normalization, known as feature scaling or feature standardization, is commonly applied

to feature maps before feeding it into subsequent layers. It mainly includes Batch Normalization,

Instance Normalization, Layer Normalization, and Group Normalization. Their diagrams and

comprehensive comparisons are illustrated in Figure 2.14. Among them, Batch Normalization
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Figure 2.14: Comparison of different feature normalization techniques.

(BN) and Instance Normalization (IN) have been widely employed in Domain Generalization.

to improve model generalizability to unseen domains. BN [121] is a well-established technique

that improves training stability and accelerates convergence. This normalization process involves

centering and scaling the activations of each layer within a mini-batch, thereby mitigating the

internal covariant shift problem. This arises from the changing distribution of activations as

the network learns. BN introduces learnable parameters, termed scale γ and shift β parameters,

which allow the network to adaptively adjust the normalized activations. As a result, it contributes

to standardizing the training process so that it is less sensitive to initialization choices and enables

the use of higher learning rates. Given a mini-batch of activations X = x1,x2, ...,xn, where n is

the batch size. The process of performing BN is:

µB =
1
n

n

∑
i=1

(
1

N ×H ×W

N

∑
c=1

H

∑
h=1

W

∑
w=1

xi,c,h,w

)
,

σ
2
B =

1
n

n

∑
i=1

(
1

N ×H ×W

C

∑
c=1

H

∑
h=1

W

∑
w=1

(xi,c,h,w −µB)
2

)
,

(2.6)

where µB is the mean of the batch activations, σ2
B is the variance. Therefore, the activation is

shifted as:

x̂i,c,h,w =
xi,c,h,w −µB√

σ2
B + ε

yi,c,h,w = γcx̂i,c,h,w +βc,

(2.7)

where γc and βc are learnable scale and shift parameters for each channel c, and ε is a small

constant added for numerical stability to avoid division by zero. IN [57] is a variant aimed at re-

ducing style variation by holistically shifting per-instance activation moments. Compared to BN,

Instance Normalization (IN) has been widely used in style transfer and image generation [57]. It

can be used to eliminate illumination and color variations in images and makes the model more



52 Chapter 2. Literature Review

robust and stable. In style transfer tasks, IN can help to extract the style of one image and apply

it to another image, which facilitates style transfer. acrshortin operators as:

µi =
1

H ×W

H

∑
h=1

W

∑
w=1

xi,c,h,w,

σ
2
i =

1
H ×W

H

∑
h=1

W

∑
w=1

(xi,c,h,w −µi)
2,

(2.8)

where H and W represent the height and width of the feature map, respectively. xi,c,h,w denotes

the pixel value at position (c,h,w) in feature map i. Then, Instance Normalization scales and

shifts the normalized feature values:

x̂i,c,h,w =
xi,c,h,w −µi√

σ2
i + ε

,

yi,c,h,w = γcx̂i,c,h,w +βc.

(2.9)

IN [64, 62] in conjunction with BN [111, 17] have also been studied in ReID models to elim-

inate style information associated with identity. However, considering that a specific identity

captured by disjoint cameras showcases distinct styles [156], a model trained solely with normal-

ized features is limited in extracting a discriminative representation against such style variations.

Additionally, IN dilutes essential complementary information that is crucial for general visual

recognition, therefore it is suboptimal. In Chapter 6, we capture the distinct domain-specific

variations by computing the statistical moments and utilize them diversify the style of a singular

identity. This approach aims to achieve per-identity multi-view (style) augmentation, to further

result in improved model robustness.

2.4 Multi-Task Learning for Inter-task Representation Association

dog1
...

...

...

...

Task 1

Task 2

Task 3

Tesk-specific Layers
Shared Layers rabbit dog2

Classification

Segmentation

Detection

Figure 2.15: An illustration of a Multi-Task Learning framework.
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Multi-Task Learning (MTL) [172] is presented as a strategy to train a single model that can

be applied across multiple tasks, which offers greater efficiency compared to the training of

individual models for each task separately. A Deployment-Time Optimization (DTO) frame-

work [132, 98] usually optimize a MTL architecture during model training. The general design

of a MTL framework involves a shared feature extractor and several individual task heads. The

idea of MTL is illustrated in Figure 2.15, in which three tasks are involved, including classi-

fication, segmentation, and detection. The shared feature extractor is responsible for deriving

universal and beneficial representations from the input data, whereas the individual task heads

utilize these common representations to perform predictions or classifications for their respec-

tive tasks. We denote the output of the shared feature extractor for any given input data x as

fshared(x), which is typically realized through a combination of CNN, RNN, or various other neu-

ral network designs. For any given task i, the output of the task-specific head associated with

task i is expressed as fi( fshared(x)), where fi(·) is a function tailored to adapt the shared features

for predictions or classifications relevant to task i. The formulation of the loss function for MTL

is outlined as follows:

L=
N

∑
i=1

λiLi( fi( fshared(x)),yi), (2.10)

where L is the total loss function, Li(·) is the loss function specific to task i calculated over

the predictions from the task-specific head fi(·) and the corresponding ground truth yi. The λi

is a coefficient that controls the importance of task i, and N is the total number of tasks. The

Li(·) can vary depending on the nature of each task. For example, In classification tasks, Li(·)

could be cross-entropy loss. In regression tasks, Li(·) could be MSE loss. In this diagram,

closely related tasks can enhance each other’s learning by exchanging information and utilizing

shared features. This collaborative learning approach often results in enhanced performance on

individual tasks compared to training them in isolation. Nonetheless, recent research [163] has

highlighted that conflicting gradients during MTL can degrade performance, potentially due to

noisy labels. To break this condition and achieve positive interactions between tasks, research

work [163] propose to de-conflict such gradients by altering their directions towards a common

orientation. In Chapter 4, we design the PAOA model within a MTL framework, in which we

incorporate a complementary pedestrian saliency detection task as an auxiliary task alongside the

primary pedestrian classification task, and both tasks are concurrently optimized during training.

In contrast to conventional MTL designs where tasks are typically considered within the same
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hierarchy, we design the auxiliary task specifically to support the main task. To this end, we

propose referenced gradient calibration by setting the main task as the reference, and calibrating

the auxiliary gradient towards it, so as to ensure the auxiliary task can be harmoniously trained

alongside the main task, and provide supervision for the primary model objective.

Salient Object Detection [7] aims to identify objects or regions that are visually more attentive

than the surrounding areas. It has been significantly boosted solely by the rapid development of

deep learning. Current detection models are usually trained end-to-end and output a fine-grained

saliency map at the pixel level. In Chapter 4, we formulate PAOA that incorporate the auxiliary

task with a pedestrian saliency detection objective. Instead of exhaustively labeling the pedestrian

area manually as the previous work [127], we propose to use weakly labeled data generated by a

pretrained salient object detection model on the fly. The recent work GASM [41] shares a sim-

ilar spirit to ours by employing weakly labeled saliency masks as an additional prior. However,

GASM simply trains the saliency detection layers with the classification network while omitting

the potential worst-case where the weak label is not accurate and causes potential conflict opti-

mization direction during model training. In contrast, PAOA focuses on the association between

instance classification and saliency detection objectives by the proposed referenced gradient cal-

ibration mechanism, which promotes the learning of the primary objective while mitigating the

conflicts between the primary and auxiliary tasks.
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Chapter 3

Local-Global Associative Frame Assemble in Video ReID

3.1 Introduction

Early ReID studies [11, 149, 143, 150] concentrate on exploring appearance patterns unique per

identity from still images [27, 87, 160], which has shown remarkable discrimination capacity.

However, such methods assume well-curated data and the identity information is preserved in

images. This assumption dramatically restricts their scalability and usability to many practical

application scenarios when uncontrollable environments are the norm not the exception where

video data are captured [80, 97].

In the literature, one of the most commonly adopted techniques for assembling identity in-

formation from different video frames is averaging by pooling [130, 126]. By assuming all the

frames are of equal importance, the pooling method neglects their diverse qualities caused by

the constantly changing environments and/or unreliable pedestrian detections. Therefore, the

aggregated tracket’s representations are likely impacted by various types of noise as shown in

Figure 3.1. In order to selectively assemble video frames rather than averaging, attention mech-

anisms [53, 137, 144, 148, 56] have been studied to explore the correlations between the global

visual features of frames (Figure 3.1 (b)) so that the common appearance patterns shared among

frames in the same tracklet are maintained while removing/ignoring unusual and low-quality

frames [89, 105, 95, 145]. In contrast to the global appearance correlations, an alternative ap-

proach [173, 51, 50] compares video frames by local parts (Figure 3.1 (a)) so to identify outliers

that are significantly misaligned with other frames in a tracklet. Although sharing the same ob-
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(a) Local part alignments (b) Global appearance correlations

(c) Local-global Joint (d) Local-global Association

Figure 3.1: An illustration of four types of quality assessment strategies for frame assembling.

jective to adaptively assemble only the relevant video frames, these two approaches differ in

exploiting information in different granularities. In isolation, both are sub-optimal in different

real-world video scenes. The local-parts approach is fragile if the detected pedestrians are not

well-aligned while the global-appearance approach is spatially insensitive, tending to miscor-

relate patterns of interest in the background. Beyond attentive assembling, Recurrent Neural

Network (RNN) [157, 106] has also been exploited for modeling temporal information to rep-

resent frame sequences in video tracklets. However, this approach is also vulnerable to noisy

frames without careful frame selections [151].

To learn robust and discriminative representation with high-quality frames, we propose a

tracklet frame assembling approach to video person ReID termed Local-Global Associative As-

sembling (LOGA). As shown in Figure 3.1 (d), the LOGA method adaptively assembles video

frames in the same tracklets by a Local Aligned Quality (LAQ) and a Global Correlated Quality

(GCQ) modules to assess the importance/relevance of the frames by both their alignments in the

local part and global appearance correlations as well as their mutual reinforcements. Moreover,

the LOGA model constructs a local-assembled global appearance prototype to not only take the

advantage of two types of information but also complement each other mutually by learning their

consensus. Whilst the focus of most existing spatial-temporal attentive methods is on collaborat-
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Figure 3.2: An overview of the proposed LOGA model.

ing the temporal information with intra-frame spatial attention, we aim to exploit the inter-frame

complements more effectively, which is different and ready to benefit from the advancing per-

frame learning. Specifically, the LAQ module divides all video frames in a tracklet into the

same set of spatial parts and assesses each frame’s quality by their part-wise alignment to the

other frames so to measure both inter-frame visual similarity and spatial alignment. On the other

hand, the GCQ module is applied on the holistic feature representation of each frame to consider

inter-frame global appearance correlations, which is more robust to local part misalignment but

spatially insensitive so less reliable from mis-correlation of information, e.g irrelevant patterns

in the background. Furthermore, to associate the local and global information and exploit their

mutual benefits, we take the tracklet’s representation assembled by the LAQ as its prototype and

compare the global visual feature of frames with it in the GCQ module so that the two modules

are encouraged to find a trade-off between the local and global information to cope with different

types of noise more reliably.

Extensive experiments show the performance advantages and superior robustness of the pro-

posed LOGA model over the State-of-the-Art (SOTA) video ReID models on four video ReID

benchmarks MARS [178], Duke-Video [120, 152], Duke-SI [80], and iLIDS-VID [143].

3.2 Methodology

3.2.1 An overview

To learn robust and discriminative representation from high-quality frames, we propose a LOGA

model to selectively exploit information from video frames in the same tracklets according to

both their local part alignments and global appearance correlations as well as the synergy and
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mutual promotion of these two types of information. For notation clarity, in the following, we

focus on the formulation of assembling frames {IIIi}L
i=1 in a single video tracklet TTT and ignore its

tracklet index. As shown in Figure 3.2, the video tracklet is first fed into a LAQ module to assess

the quality of frames regarding their part-wise alignment:

{wl
i}L

i=1 = fθl ({III}L
i=1). (3.1)

The θl in Eq. (3.1) is the learnable parameters of the LAQ and wl
i denotes the importance of

frames IIIi determined by its alignments with other frames in local parts. Then, a GCQ module

is devised which is applied to the D-dim holistic visual representation EEE = {eeei}L
i=1 ∈ RD×L of

frames to determine their global appearance correlations. Instead of focusing on only the global

visual features that are prone to spatial-insensitive miscorrelation, we explore the mutual syn-

ergy between local and global information by associating LAQ and GCQ through a prototypical

descriptor ppp. This assembles a frame’s global features by their local-parts quality in GCQ for

correlation exploration:

ppp =
L

∑
i=1

wl
ieeei, (3.2)

xxx = fθg({eeei}L
i=1|ppp), (3.3)

where fθg(·) denotes global-appearance quality assessment on EEE, and xxx is the representation

of a tracklet TTT assembled by associating LAQ and GCQ through ppp. With the tracklet-level

representations, a generic distance metric (e.g cosine distance) is used to measure the pairwise

visual similarity of tracklets for video ReID matching.

3.2.2 Local Aligned Quality

To explore the visual similarity of frames in terms of their local alignments, we separate them

uniformly into M non-overlapping patches (parts) and apply patch-wise cross-frame convolution

to recognize the aligned local patterns. This is accomplished by first flatten the 2D frames {IIIi}L
i=1

then stacking them in the channel dimension as the raw representation of the tracklet TTT maintain-

ing the inter-frames spatial correspondence. An 1D convolution is then applied on TTT to explore

the per-part visual patterns,

w̃wwl = FFF ∗TTT , FFF ∈ RS×L×L, (3.4)

where ∗ denotes the 1D convolution function and FFF is a trainable kernel. The size S of kernel

FFF is determined by the granularity of the spatial separation, i.e, S = H×W
M where H and W are
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Figure 3.3: An overview of the proposed GCQ module.

the height and width of frames, respectively. The computed results w̃wwl ∈ RM×L encode the part-

wise importance of every frame, which is then aggregated by pooling followed by a multi-layer

perceptron (MLP) to obtain the per-frame scores:

wwwl = Softmax(MLP(Pooling(w̃wwl))) ∈ (0,1)L×1. (3.5)

The Pooling(·) in Eq. (3.5) is a frame-wise mean pooling function and the MLP(·) stands for

a single layer MLP activated by a ReLU function. The resulted scores are then normalized by

softmax function as the indication wwwl of per-frame importance to the tracklet TTT . In this way, the

LAQ learns to assess the frame’s quality by its local part alignments to other frames, so as to

identify the misaligned outlier frames and suppress them from representing a tracklet.

3.2.3 Global Correlated Quality

The GCQ module, as demonstrated in Figure 3.3, is formulated to explore the inter-frame corre-

lations according to their global appearances. However, the spatial invariant characteristic of the

CNN features tends to miscorrelate patterns of interests with potential noise in the background,

i.e completely ignoring the spatial part’s alignment. In this case, we propose to establish the

GCQ on the results yielded by LAQ so to associate them by their synergy. Specifically, given

the frame’s importance wwwl computed by Eq. (3.5) regarding their local part alignments, we first

assemble their visual features accordingly in Eq. (3.2), which serves as the appearance prototype

ppp of a tracklet. Then, the global-appearance quality of a frame is estimated according to the
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correlation between their global features and the prototype:

qqq = fθq(ppp) ∈ RD×1, KKK = fθk(EEE) ∈ RD×L

wwwg = Softmax(KKK⊤qqq) ∈ (0,1)L×1.

(3.6)

The fθq and fθk functions in Eq. (3.6) are to linearly transform respectively the prototype and

frame’s features. Both are followed by batch normalization. Given the global appearance quality

of frames, their visual features can be selectively aggregated by:

VVV = fθv(EEE) ∈ RD×L, p̂pp =VVV wwwg ∈ RD×1, (3.7)

where fθv is identical to fθq and fθk in Eq. (3.6) with independent parameters θv. Rather than

taking p̂pp as the final representation of the tracklet TTT , in light of the residual learning [40], we

distill the complementary information from global appearance correlations of frames to enhance

the prototype computed by local-parts quality so to minimize representational error from identity-

irrelevant part misalignments. To that end, we further learn the residual of ppp from p̂pp and obtain

the visual feature representation of TTT by:

xxx = ppp+FC(p̂pp) ∈ RD×1. (3.8)

This design of the GCQ module not only explores the global features of frames but also considers

their local part alignments for optimizing a discriminative tracklet representation.

3.2.4 Model Training

Given the formulations of LAQ and GCQ, the proposed LOGA model can benefit from con-

ventional learning supervision. Specifically, the LOGA model is jointly trained with a softmax

Cross-Entropy (CE) loss Lid and a triplet ranking loss Ltrip [45]. The softmax CE loss Lid is

employed to optimize identity classification:

ỹyyi = Softmax(FC(xxxi)), Lid(TTT i) =−
C

∑
j=1

yi, j log ỹi, j. (3.9)

The yyyi in Eq. (3.9) is an one-hot indicator of the ground-truth identity of tracklet TTT i and the FC(·)

serves as a linear classifier which maps the tracklet’s representation xxxi into an identity prediction

distribution ỹyyi while C is the total number of identities. Moreover, the triplet ranking loss Ltrip

explicitly draws the features of a positive tracklet pair sharing the same identity closer in the

learned latent space while pushing the negative pairs apart:

Ltrip(TTT i) = max(0,∆+D(xxxi,xxx+i )−D(xxxi,xxx−i )), (3.10)
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where xxx+i and xxx−i are the representations of two randomly sampled tracklets with the same and

different ground-truth labels as xxxi in respective, D(·, ·) measures the distance of two features

and ∆ is a predefined margin. The overall optimization objective of a batch of tracklets is then

formulated by combining the two losses as:

L=
1
n

n

∑
i=1

(Lid(TTT i)+Ltrip(TTT i)), (3.11)

where n is the size of a mini-batch. Since the objective function Eq. (3.11) is differentiable, the

LOGA model can be trained end-to-end by the conventional stochastic gradient descent algorithm

in a batch-wise manner. The overall training process is depicted in Algorithm 1.

Algorithm 1 Local-Global Associative Assembling (LOGA).
Input: Video tracklets T , Identity labels Y .

Output: A deep CNN model for video person ReID.

for i = 1 to max iter do

Randomly sample a mini-batch of video tracklets from T and their identity labels from Y .

Compute the local-aligned per-frame importance scores (Eq. (3.5)).

Feed the tracklets into the backbone network to obtain their holistic visual features EEE.

Compute the local-assembled global appearance prototype (Eq. (3.2)).

Compute the global-correlated per-frame importance scores (Eq. (3.6)).

Compute the tracklet-level representations (Eq. (3.7) and Eq. (3.8)).

Compute the objective losses and update the network by back-propagation (Eq. (3.11)).

end for

3.3 Experiments

3.3.1 Experimental Settings

Datasets and protocols. The proposed LOGA is evaluated on four video-based ReID datasets:

MARS [178], Duke-Video [120, 152], Duke-SI [80], iLIDS-VID [143]. Example tracklets are

shown in Figure 3.4. The MARS has 20,478 tracklets of 1,261 persons captured from a camera

network with 6 near-synchronized cameras. Duke-Video is a newly released large-scale bench-

mark of 1,812 person identities with 4,832 tracklets. Duke-SI is a fully auto-generated version of

Duke-Video without manual frame selection, thus, more practical and challenging. The iLIDS-

VID dataset is a relatively small-scale including 600 video tracklets of 300 persons captured
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(b) MARS(a) Duke-SI

(c) Duke-Video (d) iLIDS-VID

Figure 3.4: Example pairwise tracklets for the same identity. Various noises are caused by illu-

mination, viewpoints, resolution, occlusion, background clutter, etc.

by two disjoint cameras in an airport arrival hall. To evaluate the effectiveness of the proposed

LOGA model, we adopted two commonly used performance metrics in person re-id including

Cumulative Matching Characteristics (CMC) and mean Average Precision (mAP) [179].

Implementation Details. For fair comparisons, we took a ResNet50 [40] as the backbone net-

work for global visual feature extraction [37]. Given that the video tracklets are composed of an

arbitrary number of frames, we split each tracklet into several clips with a fixed length of 10. We

randomly sampled 4 identity instances each with 8 clips to construct a mini-batch in model train-

ing. All the frames were resized to 256×128 and augmented by random horizontal flip. We used

Adam [67] with a weight decay of 5e− 4 for model optimization. The margin ∆ in Eq. (3.10)

is set to 0.3, and the dimension D of representations is set to 2048 following [37, 101]. The

kernel size S for the 1D convolution in Eq. (3.4) is set to 10. The model was trained on two P100

GPUs for 240 epochs, and the learning rate is initialized to 3e− 4 which linearly decayed with

a factor of 0.1 per 60 training epochs. During the testing stage, the tracklet-level representation

was obtained by averaging and pooling the learned representations of their clips. Cosine distance

was then used to measure the distances between a query and every probed tracklet in the gallery

for ReID.

3.3.2 Comparative Evaluations

In Table 3.1, we compared the proposed LOGA model with a wide range of SOTA video person

ReID methods. The LOGA model yielded the best results across the board, which suggests
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Methods
Duke-Video Duke-SI MARS iLIDS-VID

mAP R1 R5 R20 mAP R1 R5 R20 mAP R1 R5 R20 R1 R5 R20

TAUDL† [79] - - - - 20.8 26.1 42.0 57.2 29.1 43.8 59.9 72.8 26.7 51.3 82.0

EUG [152] 78.3 83.6 94.6 97.6 - - - - 67.4 80.8 92.1 96.1 - - -

Snippet [11] - - - - - - - - 76.1 86.3 94.7 98.2 85.4 96.7 99.5

VRSTC [51] 93.5 95.0 99.1 99.4 - - - - 82.3 88.5 96.5 - 83.4 95.5 99.5

GLTP [75] 93.7 96.3 99.3 99.7 - - - - 78.5 87.0 95.8 98.2 86.0 98.0 -

UTAL† [80] - - - - 36.6 43.8 62.8 76.5 35.2 49.9 66.4 77.8 35.1 59.0 83.8

STMP [96] - - - - - - - - 72.7 84.4 93.2 96.3 84.3 96.8 99.5

STA [25] 94.9 96.2 99.3 99.6 - - - - 80.8 86.3 95.7 98.1 - - -

STAR [151] 93.4 94.0 99.0 99.7 - - - - 76.0 85.4 95.4 97.3 85.9 97.1 99.7

FGRA [15] - - - - - - - - 81.2 87.3 96.0 98.1 88.0 96.7 99.3

MG-RAFA [173] - - - - - - - - 85.9 88.8 97.0 98.5 88.6 98.0 99.7

AP3D [37] 95.6 96.3 - - 74.7 79.3 91.7 97.4 85.1 90.1 - - 86.7 - -

LOGA 96.6 97.0 99.4 99.9 76.6 81.0 92.8 97.8 84.1 89.5 96.3 97.9 91.3 99.3 100.0

Table 3.1: Performance comparisons of LOGA in video person ReID. Results of the prior

methods are from the original papers beside AP3D on Duke-SI which was reproduced by their

released code. The 1st/2nd best results are in bold/underlined. ‘†’: unsupervised learning based

methods.

the efficacy of associativity exploring local part alignments and global appearance correlation in

assembling a discriminative representation of a tracklet. Whilst maintaining its competitiveness

on the large-scale MARS and the well-curated Duke-Video datasets, the LOGA model achieved

compelling improvements over the other methods on iLIDS-VID and its performance advantage

is more significant on the automatically detected and segmented Duke-SI, in which case LOGA

outperformed the others by 1.9%∼55%, 1.7%∼54.9% and 1.1%∼50% on mAP, rank-1 and rank-

5, respectively.

3.3.3 Ablation Study

We conducted further studies to experimentally investigate the effectiveness of exploring the

complementary local and global information by solely considering one while ablating another,

and also demonstrated the superiority of our associative assembling over the dual-branch strat-

egy [15] which used both local and global information separately. We also provided comprehen-

sive visualization for intuitive understanding.

Components analysis. We started by examining the role of local part alignments by introducing
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Figure 3.5: Ablation studies on components and an alternative ‘Joint’ model, learned with local

and global information independently by a dual-branch network [15].

LAQ for frame assembling. Figure 3.5 (pink v.s orange) shows that both metrics on most datasets

are decreased. This is caused by the unrealistic assumption that local regions of all the frames are

well-aligned. Such an assumption is shown to be unreliable due to uncontrollable environment

and fragile detection/segmentation. We further examined the importance of global appearance

by solely employing GCQ for frame assembling. The unsatisfying performance as reported in

Figure 3.5 (pink v.s gray) suggests assessing the quality of frames in accordance with solely the

unobstructed global appearance is unreliable owing to the fine-grained details being ignored. In

contrast, when both LAQ and GCQ are adopted, LOGA exhibits remarkable advantage over all

other counterparts (green v.s others). This demonstrates the indispensable of both LAQ and GCQ.

Effects of assembling strategy. We further studied the effects of different strategies to join the

local and global information in frames assembling: (1) separately assembling by two individual

branches learned in parallel according to the two kinds of information [15]. (2) directly con-

necting local and global information by rescaling the per-frame visual features EEE according to

their normalized local alignment scores (Eq. (3.5)) then explore their global correlations by the

conventional self-attention on the rescaled features. (3) associatively assembling by combining

the local-assembled prototype and global-assembled residual (Eq. (3.8)) to exploit their synergy.

The comparison given in Figure 3.6 (green v.s others) shows a noticeable advantage of LOGA
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Figure 3.6: Impacts of assembling strategies.

over the dual-branch or direct-connecting counterpart, which demonstrates the effectiveness of

the proposed associative assembling strategy.

Effects of local part size. We study the effects of local part size by varying the kernel size of the

1D convolution in Eq. (3.4) and experimented on iLIDS-VID. The experimental results shown in

Figure 3.7 indicates our model’s robustness to this hyper-parameter within a wide range of values

thanks to the subsequent GCQ module which helps refine the local alignment scores according

to global correlations. Given that improving S doesn’t benefit the performance but increase the

model’s complexity, we set S = 10 in practice.
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Figure 3.7: Impacts of local part size in LAQ module.

Qualitative studies. Figure 3.8 shows several video clips stacked with their activation maps

generated according to the quality of their local parts. Each frame’s local-aligned score (upper,
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Eq. (3.5)) and global-correlated score (lower, Eq. (3.6)) are attached at their bottom-right corner.

As exhibited, LOGA is robust to various kinds of noise by providing a faithful importance score

for assembling a discriminative representation. The activation maps accurately reveal the critical

regions for ReID. The global-correlated scores are obtained with the complementary appearance

information so can reliably adjust the biased local-aligned scores. For instance, as shown in

Figure 3.8, LAQ enables the network to focus on the target instead of the switched ID or the ir-

reverent multi-detected ID as shown in the activation maps. For the low-quality frames caused by

partial-detection, scale-variation and occlusion, etc. LAQ can faithfully assess the local quality.

The suitable importance score revealed by the association of LAQ and GAQ efficiently guides

LOGA to learn the representation from the most discriminative region in the most discriminative

frames.

Figure 3.8: Visualisations of video clips suffering from various noise. The local-alignment scores

and global-correlation scores are shown at the upper and lower parts of each frame’s right-bottom

corner, respectively. Their corresponding importance in assembling are shown at the right-bottom

corner of each frame with the local-alignment scores at the top and the global-correlation scores

beneath (amplified by 1,000 times).

3.4 Summary

In this chapter, we presented LOGA method for video person ReID through selectively assem-

bling video frames of diverse qualities to derive a more reliable and discriminative representation
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of a video tracklet. This is accomplished by assessing the frame’s quality according to both their

local part alignments and global appearance correlation so to refrain from integrating undesired

visual information into tracklet’s representation causing identity mismatch. Different from exist-

ing approaches which explore either local or global information separately, our LOGA method

constructs a local-assembled global appearance prototype of a tracklet so to alleviate biased qual-

ity assessment caused by either identity-irrelevant misalignment or spatial-insensitive appearance

miscorrelation. Extensive experiments on four benchmark datasets show the performance advan-

tages of LOGA over a wide range of the SOTA video ReID methods. Detailed ablation studies

are also conducted to provide in-depth discussions about the rationale and essence of different

components in our model design.
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Chapter 4

Primary-Auxiliary Objectives Association

4.1 Introduction

Current Re-Identification (ReID) techniques are built based on an intrinsic assumption of (In-

dependent and Identical Distribution (IID)) between training and test data. The IID assumption

becomes mostly invalid across different domains when training and test data are not from the

same environment. As a result, most contemporary ReID models suffer from dramatic degra-

dation when applied to a new domain [100, 17, 147]. Domain Generalization (DG) methods

[186, 188, 103], which aim to learn a generalizable model between a source and a target domain

have been explored by recent studies to address this problem. Several Domain Generalizable

ReID (DG ReID) methods have been developed to mitigate performance degradation caused by

domain shift between training (source) data and test (target) data. They can be broadly catego-

rized into three main groups: (1) Learning from diversified training samples [64, 2], (2) Aligning

the distribution of source domains by data statistics [191, 190, 61], (3) Exploiting meta-learning

[17, 188, 18, 177] to mimic source-target distribution discrepancies. The first category confers

advantages to a model through the utilization of a diversified training dataset by either image

sample augmentation or feature distribution expansion. The second category aims to learn a

source-invariant model by aligning the training data, and expecting it to be invariant for the tar-

get domain. The third category focuses on simulating the training/testing discrepancy. Despite

some performance improvement from these methods, their overall performances across domains

remain poor, e.g the latest State-of-the-Art (SOTA) models [17, 177] can only achieve below 20%
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(a) Conventional ReID model training pipeline

Primary

Head

Auxiliary

Head

(b) The proposed Primary-Auxiliary Objective Association
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Figure 4.1: Comparison on conventional DG ReID model and PAOA model. A typical ReID

model is typically trained by optimizing an instance classification objective, which can suffer

from overfitting to domain-specific characteristics, e.g luminance, background, scale, and view-

point. The PAOA model considers learning jointly a weakly labeled/supervised auxiliary saliency

detection task concurrently with the primary task of the discriminative person ReID. This is

achieved by calibrating the gradient of the auxiliary task against that of the primary objective as

its reference.

mean Average Precision (mAP) on the MSMT17 benchmark. This highlights the limitation of

overfitting in the current Domain Generalizable ReID models and their inability to learn a more

generalizable cross-domain model representation. We consider this is due to the not-insignificant

interference of domain-specific contextual scene characteristics such as background, viewpoint,

and object distances to a camera (scale), which are identity-irrelevant but can change significantly

across different domains. Contemporary Domain Generalizable ReID models are mostly trained

by an instance-wise classification objective function, indirectly learning person foreground atten-

tion selection (Figure 4.1(a)). They are sensitive to such domain-specific but identity-irrelevant

contextual information, resulting in the misrepresentation of person foreground attention and

leading to less discriminative ReID representation. This likely causes notable ReID performance

degradation on models trained and deployed in different domains. To mitigate the impact of

domain-specific contextual attributes, an intuitive solution is to isolate the pedestrian object to

acquire a domain-invariant representation. Several endeavors [41, 189, 127] have been made to
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guide the person identification network focusing on the pedestrian with the human saliency prior,

which can point out the attentive region relevant to the human subject. These methods have

certain limitations, either relying on exhaustive manual masking [127] or lacking an appropriate

training objective [41, 189] to ensure the accuracy of the generated segmentation mask. Besides

this, it is crucial to note that these methods fail to consider the potential worst-case scenario

in which the saliency attention prior may be inaccurate, further leading to negative impacts on

identification rather than improvement.

In this chapter, we address this problem by introducing a novel model learning regulariza-

tion method called Primary-Auxiliary Objectives Association (PAOA). Our aim is to minimize

domain-specific contextual interference in model learning by focusing more on the domain-

invariant person’s unique characteristics. This is achieved by introducing the association of learn-

ing the primary instance classification objective function with an auxiliary weakly labeled/supervised

pedestrian saliency detection objective function, the idea is illustrated in Figure 4.1(b). Specifi-

cally, PAOA is realized in two parts: (1) Additionally train a pedestrian saliency detection head

with an auxiliary supervision to assist in focusing the primary ReID discriminative learning task

on more domain-invariant feature characteristics. (2) Eliminate the interference attributed to in-

accurate saliency labels by calibrating the gradients of the shared feature extractor raised from

the weakly-labeled auxiliary learning task towards that of the primary task as a reference when

they are in conflict [122]. This association mechanism helps ensure the ReID model learns to

attentively focus on generic yet discriminative pedestrian information whilst both learning tasks

are harmoniously trained.

Our contributions are: (1) We introduce the idea of optimizing a more domain-generic ReID

learning task that emphasizes domain-invariant pedestrian characteristics by associating the ReID

instance discriminative learning objective to an auxiliary pedestrian saliency detection objective

in a way that does not create conflicts or hinder the effectiveness of the primary objective. (2)

We formulate a novel regularization called PAOA to implement the proposed association learn-

ing. It jointly trains the primary and auxiliary tasks with referenced gradient calibration to solve

the conflicting optimization criteria between the two learning objectives, and promote the learn-

ing of a more domain-generic ReID model. (3) We further explore the target domain test data

characteristics by incorporating the PAOA regularization into a deployment-time model online

optimization process. To that end, we formulate a PAOA+ mechanism for on-the-fly target-aware
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model optimization and show its performance benefit.

Feature
Extractor

Instance
Classifier

Saliency
Detector

(a) Model Learning: Forward Step

Calibration

(b) Model Learning: Backward Step

... ...

Guide

Instance
Classifier

Saliency
Detector

Feature
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Figure 4.2: An overview of the proposed PAOA model. It aims to derive generic feature repre-

sentations by guiding the network to attentively focus on pedestrian information and mitigate the

interference of domain-specific knowledge, which is achieved by the PAOA regularization of a

primary classification objective and an auxiliary pedestrian saliency detection objective: (a) The

auxiliary task is jointly trained to provide hard-coded spatial attention to the pedestrian region.

(b) The primary task is used as a reference to calibrate the gradients of the auxiliary objective

when they are conflicting.

4.2 Methodology

In this chapter, we consider the problem of generalizing a ReID model to any new deployment

target environment subject to unknown domain bias between the training and the test domains,

where there is no labeled training data from the test domain. To that end, we propose a PAOA

regularization method to enable the model to be more attentive to learning universal identity gen-

erative information that is applicable in any domain whilst concurrently maximizing ReID dis-

criminative information from the domain labeled data. Figure 4.2 shows an overview of PAOA in

model training with two associative steps: (1) Guiding the ReID model to focus on discriminative
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pedestrian information with an additional auxiliary task dedicated to visual saliency detection.

(2) Calibrate the gradients of the auxiliary task when it conflicts with the primary instance clas-

sification objective. To further boost the performance, we build PAOA+ to utilize the available

samples in deployment time by minimizing the proposed auxiliary objective, and demonstrate

the plug-and-play merit of our design.

4.2.1 Joint Primary-Auxiliary Objectives Learning

The primary and auxiliary objectives are jointly trained in a multitask learning architecture,

which is composed of a shared feature extractor fθ , and two dedicated heads hp and ha respec-

tively for the primary and auxiliary tasks.

Primary Objective: Person ReID Learning a strong instance classification network is funda-

mentally important for training a discriminative ReID model. Given a labeled training set D =

{(xi,y
(p)
i )}i∈{1,··· ,N}, where xi is a person image and y(p)

i is the corresponding instance category

label, the primary instance classification task is trained with a softmax Cross-Entropy (CE) loss

Lid and a triplet loss Ltri:

Lid =−
N

∑
i=1

C

∑
j=1

p j
i logp̂ j

i , (4.1)

where pi is one-hot vector activated at y(p)
i , and p̂ j

i is the probability for categorized into the jth

class that calculated from the classifier. The additional triplet loss constrains the distance between

positive (same identity) and negative (different identities) sample pairs, which is formulated as

Ltri =
N

∑
i=1

[dp −dn +α]+, (4.2)

where dp and dn respectively denote the Euclidean distances for the positive and negative pairs

in feature space. α is the margin that controls the sensitivity and [s]+ is max(s,0). The overall

loss function for the primary task is as follows:

Lprim = Lid +Ltri. (4.3)

Auxiliary Objective: Pedestrian Saliency Detection As illustrated in [132], an auxiliary task

closely aligned with the primary task can substantially prompt the learning of the primary ob-

jective. Inspired by this, we formulated the auxiliary task as pedestrian saliency detection to

perform pixel-level pedestrian localization within the cropped pedestrian bounding boxes. Such

an auxiliary task is complementary to the primary task by providing pixel-level hard-coded spa-

tial attention to guide the ReID model to focus on the pedestrian region. Instead of exhaustively
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manually annotating the pedestrian region, we benefit from the large-scale trained model [175]

and perform feed-forward inference to get the weakly labeled samples. Specifically, given a

trained saliency model G, we feed the sample to obtain the weak label as y(a)i = G(xi), which

is a 2D map to indicate the saliency area. The auxiliary task is essentially a regression task in

the pixel level. To that end, the auxiliary head ha is designed as a lightweight module com-

posed of cascaded 2D CNN layers to predict the saliency map. It is optimized by minimizing a

conventional L1 loss on the predicted salient label ŷ(a)k :

Laux =
Nk

∑
k=1

|y(a)k − ŷ(a)k |. (4.4)

Joint Multi-task Learning: To build a joint multitask learning pipeline, we formulate the overall

objective function by combining both Lprim and Laux as

Ltrain =
1
N

N

∑
1
Lprim(xi,y

(p)
i ; fθ ,hp)+λLaux(xi,y

(a)
i ; fθ ,ha), (4.5)

where λ is the balancing hyperparameter.

Limitation: Despite the auxiliary objective essentially providing hard-coded spatial attention to

guide the network being focused on the salient pedestrian object, this pipeline is intrinsically

limited. This is due to the inherent noise in the weak label of the auxiliary task that brings a

detrimental impact on the primary task and distracts the shared feature extractor from focusing

on the pedestrian region. This has further resulted in a divergent gradient descent direction,

reflected by the conflicting gradients. Hence, it becomes necessary to perform a post-operation

that resolves the conflicts between the learning objectives.

4.2.2 Association: Referenced Gradient Calibration

During the model training, the learnable parameter θ of the shared feature extractor fθ is up-

dated based on two loss gradients: gggppp =
∂Lprim

∂θ
from the primary objective and gggaaa =

∂Laux
∂θ

from

the auxiliary objective. However, when gggppp and gggaaa are in conflict as reflected by a negative inner

product, i.e (gggaaa ·gggppp)< 0, their joint effort cannot provide the network with an informative direc-

tion on which to perform the gradient descent to optimize the parameters. Therefore, collectively

they bring significant difficulty in model convergence and can even lead to destructive interfer-

ence [163]. To address this fundamental limitation, we propose to break through the dilemma

by calibrating the conflicting gradient yield by the auxiliary objective with that from the primary

objective as a reference. Specifically, when gggaaa is conflicting with gggppp, we consider gggppp as a refer-

ence and manually alter the direction of gggaaa by mapping it to the normal plane of gggppp to get the
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calibrated gradient gggccc
aaa as

gggccc
aaa = gggaaa −

gggaaa ·gggppp

∥gggppp∥2 gggaaa, subject to (gggaaa ·gggppp)< 0, (4.6)

Remark: This procedure changes the direction of the conflicting gradient to ensure it does not

conflict with the primary task. With the calibrated gradient, the model can consider the partial

guidance of the auxiliary objective, ensuring the joint effort is non-conflicting with the primary

objective. It is effective in minimizing the side effects caused by the inaccurate labeling of the

auxiliary task while still performing conventional first-order gradient descent to optimize the

model.

4.2.3 Deployment-Time Optimization

We further formulate the PAOA+ to exploit the data characteristic of the target domain and per-

form deployment time optimization with the available samples during testing. Considering that

the proposed PAOA is composed of a shared feature encoder fθ and two separate task heads hp

and ha that are optimized jointly during model training. When the trained model is deployed

in a new environment, given a batch of identity-unknown samples {x′i}i∈{1,··· ,B′}, with the cor-

responding weakly labels {y′(a)i } generated by the pre-trained saliency detection model G, the

shared feature extract fθ can be further optimized on the auxiliary task by minimizing the fol-

lowing loss

Ltest =
1
B

B

∑
1
Laux(x′i,y

′(a)
i ; fθ ). (4.7)

So that fθ can be swiftly adapted by considering the data distribution of the new environ-

ment, further to yield improved performance on the main task. Note the difference from domain

adaptation-based method which assume the test sample is available during the training phase for

explicit distribution alignment, PAOA+ only requires a batch of samples with arbitrary numbers

for on-the-fly updates, allowing it to seamlessly adapt to new data distributions.

4.2.4 Model Training

Training stage: Given the formulation of the primary and auxiliary tasks, the PAOA model

is designed in multitask learning architecture and can benefit from the conventional learning

supervision by jointly minimizing the primary and auxiliary losses. The parameters are iteratively

optimized with the training loss (Eq. (4.5)). As the feature extractor parameterized by θ is shared

by both the primary and auxiliary tasks, it will be jointly updated with two gradients: gggppp for
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the primary task and gggaaa for the auxiliary task. To seek positive interactions between tasks, the

direction of gggaaa will be calibrated only if it conflicts with gggppp by Eq. (4.6). Note that the CE

loss provides stronger supervision for person classification, therefore we use its gradients as the

reference to calibrate that of the auxiliary task. This calibrated gradient ensures the auxiliary task

is harmoniously trained with the primary task by back-propagation and thereby brings benefits

to facilitate the deployment-time optimization. The overall training procedure is depicted in

Algorithm 2.

Algorithm 2 Model Training with PAOA regularization

Input: Labeled dataset D = {(xi,y
(p)
i )} for primary task, weak label generator G for auxiliary

task, shared feature extractor fθ , head modules hp/ha for primary/auxiliary tasks.

Output: Trained fθ , hp and ha.

for i = 1 to max iter do

Randomly sample a mini-batch {(xi,y
(p)
i )}i∈{1,··· ,NB} from source dataset D.

Generate the weak label for the auxiliary task by {y(a)i = G(xi)}i∈{1,··· ,NB}.

Compute the training loss (Eq. (4.5)) and calculate the gradients.

Calibrate the conflicting gradients (Eq. (4.6)).

Update the network by gradient descent.

end for

Deployment stage: To make a consistent comparison with Domain Generalizable ReID meth-

ods, we can directly apply the trained PAOA model for identity representation extraction. Addi-

tionally, the improved PAOA+ model further performs deployment time optimization during the

testing stage to mitigate the domain shift between the training and testing domains. Given the

identity representations, subsequent identity retrieval is performed by a general distance metric.

4.3 Experiments

4.3.1 Experimental Settings

Implementation Details We used PFAN [175] as the wake label generator for the auxiliary task.

The shared feature extractor is a ResNet50 [40] pre-trained on ImageNet [19] to bootstrap the

feature discrimination. The balancing hyper-parameter in Eq. (4.5) was set to 0.1. The batch size

was set to 64, including 4 images for 16 randomly sampled identities. All images were resized to

128× 256. The model was trained for 200 epochs with the Adam optimizer [67]. The learning
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rate was set to 3.5e−4. The dimension of the extracted identity representation was set to 2048.

The dimension of the saliency map is 64× 32. The learning rate for PAOA+ was set to 1e− 6

and the test batch size was 200. The post-optimization step is set to 1 for balancing performance

and efficiency. All the experiments were implemented on PyTorch [116] on a single A100 GPU.

(b) CUHK03
 (d) Market1501
(c) MSMT17
(a) CUHK-SYSU


Figure 4.3: Examples from different domains and weak labels for the auxiliary task. Signifi-

cant domain gaps are caused by the variation in nationality, illumination, viewpoints, resolution,

scenario, etc. As complementary, the pedestrian saliency label can provide a guide on the most

discriminative person area.

Datasets and Evaluation Protocol We conducted multi-source domain generalized ReID on a

wide range of benchmarks. including Market1501 (M) [179], MSMT17 (MS) [147], CUHK03

(C3) [86], CUHK-SYSU (CS) [154], CUHK02 (C2) [84], VIPeR [34], PRID [47], GRID [99],

and iLIDs [180]. We evaluated the performance of PAOA on the four small-scale datasets fol-

lowing the traditional setting [129, 63, 4, 167]. We also performed leave-one-out evaluations

by using three datasets for training and the remaining for the test [177, 17, 90]. Note that the

CUHK-SYSU is only for training given all the images are captured by the same camera. To learn

a discriminative model benefits from diverse identities, all the identities regardless of the origi-

nal train/test splits, were used for training. We adopted mAP and R1 of CMC as the evaluation

metrics.

4.3.2 Comparative Evaluations

We compared the proposed PAOA against several recent SOTA methods, and the comparison

results are shown in Table 4.1 and Table 4.2. Under a fair comparison with existing Domain

Generalizable ReID methods, the PAOA model outperforms all the competing methods by a sig-

nificant margin on both the traditional setting and the large-scale settings across all the evaluation

metrics. It shows a clear advantage over the recent SOTA methods. Notably, even trained with
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Table 4.1: Performance comparisons of PAOA on traditional evaluation protocol. The best results

are shown in red and the second-best results are shown in blue.
PRID GRID VIPeR iLIDs Average

Source Method
mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

DIMN [129] 52.0 39.2 41.1 29.3 60.1 51.2 78.4 70.2 57.9 47.5

SNR [64] 66.5 52.1 47.7 40.2 61.3 52.9 89.9 84.1 66.3 57.3
M+D+C2

+C3+CS
DMG-Net [4] 68.4 60.6 56.6 51.0 60.4 53.9 83.9 79.3 67.3 61.2

M3L [177] 64.3 53.1 55.0 44.4 66.2 57.5 81.5 74.0 66.8 57.2

MetaBIN [17] 70.8 61.2 57.9 50.2 64.3 55.9 82.7 74.7 68.9 60.5

ACL [167] 73.5 63.0 65.7 55.2 75.1 66.4 86.5 81.8 75.2 66.6

META [156] 71.7 61.9 60.1 52.4 68.4 61.5 83.5 79.2 70.9 63.8

PAOA (Ours) 74.0 65.6 67.2 56.3 76.6 66.7 87.1 83.1 76.2 67.9

M+C2+

C3+CS

PAOA+ (Ours) 75.1 66.5 67.8 56.9 77.2 67.7 88.0 83.9 77.0 68.8

fewer datasets compared with [129, 64, 4], the proposed method is still able to extract discrimina-

tive features for identity matching. Besides, we extended our analysis to include the results from

the test-time optimization variant, PAOA+, which notably improves PAOA consistently across

all benchmarks. These results provide additional evidence on the effectiveness of the associative

learning strategy, where the auxiliary task can promote the primary ReID objective during test

time given the absence of identity labels.

4.3.3 Ablation Study

Component Analysis We investigated the effects of different components in PAOA model de-

sign to study their individual contributions. The baseline model is a ResNet50 pre-trained on

ImageNet. The comparison results are shown in Figure 4.4, from which we can observe that

the auxiliary objective (A) and the gradient calibration (G) strategies can consistently improve

performance. With further deployment-time optimization (D), our model can be advanced by

benefiting from mining the data characteristics in the target domain. Notably, the variant with-

out gradient calibration can always benefit more from that post-optimization compared with the

PAOA+ (B+A+G+D) model, This further illustrates that the referenced calibration mechanism

has already enabled the PAOA model to be more attentive to the domain-invariant pedestrian

region, and therefore it relies less on on-the-fly optimization.

Influe on Number of Update Interactions We analyzed the effects of update iterations on

Deployment-Time Optimization and reported the results in Table 4.3. From which we observed
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Table 4.2: Performance comparisons of PAOA on large-scale evaluation protocol. The best re-

sults are shown in red and the second-best results are shown in blue.

M+MS+CS→C3 M+CS+C3→MS MS+CS+C3→M Average
Method Reference

mAP R1 mAP R1 mAP R1 mAP R1

SNR [64] CVPR2020 17.5 17.1 7.7 22.0 52.4 77.8 25.9 39.0

QAConv50 [90] ECCV2020 32.9 33.3 17.6 46.6 66.5 85.0 39.0 55.0

M3L [177] CVPR2021 35.7 36.5 17.4 38.6 62.4 82.7 38.5 52.6

MetaBIN [17] CVPR2021 43.0 43.1 18.8 41.2 67.2 84.5 43.0 56.3

ACL [167] ECCV2022 49.4 50.1 21.7 47.3 76.8 90.6 49.3 62.7

META [156] ECCV2022 47.1 46.2 24.4 52.1 76.5 90.5 49.3 62.9

PAOA Ours 49.8 50.5 25.1 51.5 77.1 90.8 50.7 64.3

PAOA+ Ours 50.3 50.9 26.0 52.8 77.9 91.4 51.4 65.0
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Figure 4.4: Component analysis in PAOA model.

that, a single update iteration consistently enhances model performance across all datasets, with

the mAP consistently increasing. This improvement underscores the benefits of feature extrac-

tor optimization during deployment, particularly noticeable in datasets C3 and MS, where mAP

peaks at the second iteration. However, further iterations tend to slightly degrade performance,

which suggests an optimal balance between model update frequency and maintaining core task

efficacy. This trend is evident as the mAP averages peak at the second iteration before declining,

which indicats that excessive updates may introduce a bias towards the auxiliary task, thereby

diminishing the model’s discriminative power for its primary objective. Consequently, we strate-

gicly limit of one update iteration by default, so as to ensure the model remains adaptable and

generalizable across varying inputs.

Gradient Calibration Designs We adopted a primary-referenced design for the gradient calibra-

tion between the primary and auxiliary objectives. This was based on the fact that the primary
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Table 4.3: Effects of update iterations during deployment optimization on mAP (%).

Dataset 0 1 2 3 4

C3 49.8 50.3 50.5 50.6 50.3

MS 25.1 26.0 26.5 26.0 25.0

M 77.1 77.9 77.5 77.0 76.2

Avg. 50.7 51.4 51.5 51.2 50.5

instance classification objective provides stronger supervision to identify pedestrians, while the

auxiliary objective is to guide the instance classifier to attentively focus on the pedestrian area

and ignore the domain-specific interference. It’s weakly labeled and therefore is intricately noisy

which can lead to a negative influence on the primary objective, reflected by the conflicting

gradient. We examined the effect of the calibration design by additionally testing three more

formulations as demonstrated in Figure 4.5. Table 4.4 shows the auxiliary-referenced design

yielded the worst performance, given the gradients of the auxiliary objective is noisy and unreli-

able, using it as a reference is harmful to the learning of the primary objective. By contrast, the

mutually referenced calibration design includes the primary gradients as referenced on top of the

auxiliary-referenced design, which alleviates the fallout caused by the gradient destruction, de-

spite it’s still inferior to the baseline. In comparison, the primary-referenced design consistently

obtained improved performance which supports the design of the proposed primary referenced

gradient calibration.

Table 4.4: Comparison of different gradient calibration designs by mAP (%). Refer to Figure 4.5

for the corresponding design.

Design C3 MS M Avg.

a 44.8 20.9 73.5 46.4

b 44.1 21.7 74.7 46.8

c 47.3 23.0 75.3 48.5

d 49.8 25.1 77.1 50.7
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(a) Independent Training

(c) Mutual-Referenced (d) Primary-Referenced

(b) Auxiliary-Referenced

Figure 4.5: An illustration of various gradient calibration designs. (a) No gradient calibration

as [127]. (b) Gradients of the primary objective are calibrated with the auxiliary objective as

a reference. (c) Gradients are calibrated in relation to each other as a reference, as designed

in [163]. (d) Gradients of the auxiliary objective are calibrated with the primary objective as a

reference.

4.4 Summary

In this chapter, we introduced a novel PAOA regularization to learn a generalizable ReID model

for extracting domain-unbiased representations more generalizable to unseen novel domains for

person ReID. PAOA encourages the model to get rid of the interference of domain-specific

knowledge and to learn from discriminative pedestrian information by the association of learning

an auxiliary pedestrian detection objective with a primary instance classification objective. To

mitigate the fallout caused by the noisy auxiliary labels, we further derive a referenced-gradient

calibration strategy to alter the gradient of the auxiliary object when it’s conflicting with the pri-

mary object. The PAOA framework is task-agnostic, making it readily adaptable to other tasks

through the incorporation of a close auxiliary task and a shared learning module.
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Chapter 5

Feature-Distribution Perturbation and Calibration

5.1 Introduction

Person Re-Identification (ReID) aims to identify the images of the same pedestrians captured by

non-overlapping cameras at different times and locations. It has achieved remarkable success

when both training and testing are performed in the same domains [87, 181, 174]. However, the

widely held IID assumption does not always hold in real-world ReID scenarios due to signifi-

cantly diverse viewing conditions at different locations of biased distributions at different camera

views, and more generally across different application domains. As a result, a well-trained model

will degrade significantly when applied to unseen new target domains [100, 17, 147]. To that end,

Domain Generalization (DG) [186, 188, 103], which aims at learning a domain-agnostic model,

has drawn increasing attention in the ReID community. It is a more practical and challenging

problem, which requires no prior knowledge about the target test domain to achieve “out-of-the-

box” deployment.

Recent attempts on generalized ReID aim to prevent models from overfitting to the training

data in source domains from either a local perspective by manipulating the data distribution of

each domain, or in a global view to represent the samples of all domains in a common represen-

tational space. The local-based methods [18, 162, 64, 61] are usually implemented by feature

perturbation and/or normalization, as shown in Figure 5.1 (a). However, the perturbed distribu-

tions constructed from the original data of a single source domain is subject to subtle distribution

shift and also domain bias. On the other hand, the global-based approaches [17, 2, 188, 171] aim
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(b) Global aligned training(a) Local perturbed training (c) Local-global regularized training
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Figure 5.1: An illustration of three training schemes in domain generalized ReID. The ‘Univer-

sal’ is ideally the distribution for any new target domains. The source domains are differentiated

by different colors, and the perturbed distributions share the same color with the corresponding

original. The number indicates the characteristics of that distribution, and similar value means a

smaller domain gap, vice versa. The proposed Feature-Distribution Perturbation and Calibration

(PECA) model simultaneously conducts local perturbation and global calibration to eliminate

domain bias for learning a domain-agonistic representation.

to align the feature distributions of multiple domains so that the per-domain data characteristic

(i.e mean and variance of the data distribution which is assumed to be a Gaussian distribution)

is ignored when representing images of different domains, as illustrated in Figure 5.1 (b). They

often explicitly pre-define a target distribution to be aligned toward, or implicitly learn a global

consensus by training a single model with data from all the source domains. However, even the

domain gap is reduced by such a global regularization from restricted ‘true’ distributions, the

learned representations are inherently domain-biased toward the consensus of the multiple seen

training domains rather than the desired universal distribution scalable to unseen target domains

given the number of domains available for training is always limited.

Local domain data manipulation. It is easy to train separate local models with labeled samples

respective to each source domain, with subsequently a model aggregation [18, 162]. However,

these local models would overfit to the corresponding source domain, while losing generaliz-

ability to others. A natural way is either to diverse the local training samples for learning a

knowledgeable model, or to eliminate biased information within each source domain for learn-

ing a domain-unbiased model. Both solutions fall into the category of local domain manipulation,

which alters the data distribution in a per-domain manner. For data diversification, the most intu-

itive approach is to perform augmentation, on either the raw image [12] or feature spaces [26]. To

eliminate local domain bias, the methods-based normalization have been widely studied recently.
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Jin et al [64] introduced IN for restituting the style component out of an ID representation. Jia et

al [61] combined BN with instance normalization in a unified architecture to achieve content and

style unification. However, these local diagrams consider only per-domain information during

feature perturbation, and is still subject to subtle distribution shifts. In this chapter, we propose to

associate the local per-domain feature distribution perturbation with global cross-domain feature

distribution alignment, to empower the model to be agnostic against holistic domain shift. The

complementary regularization provided by the global distribution calibration remedy helps the

learned model being invariant against both perturbed distribution shift and real domain gap, so to

extract generic yet discriminative representation for any unseen domain.

Global distribution calibration. In contrast to the local approaches, some methods based on

global distribution calibration consider the cross-domain association by learning a shared repre-

sentational space for all domains. These methods are built based on a straightforward assump-

tion that source invariant features are also invariant to any unseen target domains [73]. In this

spirit, DEX [2] dynamically performed the space expansion towards the direction of a zero-

mean normal distribution with a covariance matrix estimated from the corresponding domain.

Recent works [177, 17] took the idea of meta-learning with the aim of “learning to general-

ize” by randomly splitting available source domains into meta-training and meta-testing sets, to

mimic real-world deployment scenarios. Such a scheme implicitly aligns the cross-domain fea-

ture distributions to a shared space by randomly setting the alignment target, i.e the meta-testing

set. Zhang [171] et al propose learning causal invariant feature by disentangling ID-specific and

domain-specific factors for all the training samples from all the source domains, which enables

the disentangled feature to well-preserved ID information while sharing the same feature space

for all the domains. However, even aligning among multiple ‘real’ source domains can reduce the

domain gap, the learned representations are still biased towards the consensus of the limited seen

training domains, instead of the desired universal distribution scalable to unseen target domains.

In this chapter, we present a PECA model to accomplish generalized ReID with the objec-

tive to learn more generalizable discriminative representations for model deployment to unseen

target domains. This is achieved by regularizing model training simultaneously with local distri-

bution perturbation and global distribution calibration, as depicted in Figure 5.1(c). Specifically,

on the one hand, as each source domain usually depicts limited numbers of pedestrians under

certain scenarios, simply training from such data will lead to overfitting to the domain-specific
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inherently domain biased distribution, which harms the model’s generalizability. To address this

issue, we introduce the local perturbation module to diversify the feature distribution based on

a perturbing factor estimated per domain, which enables the model to be more invariant to dis-

tribution shifts. On the other hand, despite the unpredictable distribution gaps between different

ReID data domains due to the undesirable scenario-sensitive information embedded in images

specific to each domain, e.g the background, we consider that the features derived from different

independent domains should share a high proportion of information as the universally applicable

explanatory factors for domain-independent identity discrimination. In this regard, we propose

to simultaneously calibrate the feature distributions across all the source domains, so to elimi-

nate the domain-specific data characteristics in feature representations that are potentially caused

by identity-irrelevant redundancy. Both the proposed local perturbation and global calibration

modules reinforce the same purpose of regularizing the model training, but they are devised

in different hierarchies and complementary to each other. Different from the existing methods

which consider only partially from the local or global perspectives, our method handles both to

promote the model in learning domain-agnostic representations.

5.2 Methodology

In this chapter, we propose a PECA model to derive domain-agnostic yet discriminative ID repre-

sentations. It regularizes the model training to satisfy simultaneously both local perturbation and

global calibration. The local regularization is built to perform per-domain feature-distribution di-

versification, and the global calibration is designed to achieve cross-domain feature-distribution

alignment, as shown in Figure 5.2. During training, for each source domain Dk, a batch of sam-

ples (xk,yk) is fed into the network backbone to extract the feature map ek. Then we perform

per-domain diversification with Local Perturbation Module (LPM) as

{êk}K
k=1 = {l(ek)}K

k=1, (5.1)

where l(·) is the function of LPM to enable the local model to be invariant against per-domain

shifts by training with the perturbed features {êk}K
k=1.

The balancing Global Calibration Module (GCM) further regularizes the model learning by

aligning the holistic representation (the input feature of the classifier) into a common feature

space constructed from M regardless of the domain label. To distinguish the holistic representa-

tion from the intermediate representation ek, we note it as vk ∈RB×d and its perturbed counterpart
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Figure 5.2: An overview of the proposed PECA model. The overall objective is to derive a

generic feature representation by avoiding model overfitting to the source domains, which is

achieved by Local Perturbation Module to enforce the learned feature invariant to per-domain

distribution shifts caused by perturbation, and Global Calibration Module to align cross-domain

distribution regardless of domain annotations.

as v̂k correspondingly, where d is a hyperparameter to the representation dimension. This global

regularization is mathematically formulated as

Lg(v̂k,M) = ||dist(v̂k),dist(M)||1, (5.2)

where Lg(·) is the global regularization term aiming to align the distribution of holistic ID rep-

resentations dist(v̂k) with the global distribution dist(M).

As complementary to the LPM, GCM focus on cross-domain regularization by pulling repre-

sentations into a domain-agnostic space, thus empowering the generalizability of the ReID model

for any unseen novel domain. With the collaboration of LPM and GCM, the PECA model can be

trained with arbitrarily conventional ReID objectives in an end-to-end manner. When deployed

to an unseen novel domain, a generic distance metric (e.g Euclidean or Cosine distance) is used

to measure the pairwise representational similarity between the query image against the galleries

for identity retrieval.

5.2.1 Local Feature-Distribution Perturbation

Given an intermediate feature representation ek
i ∈ RB×C×H×W extracted from the source domain

Dk at i-th layer, the objective of LPM is to perturb per-domain features to avoid local-domain
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overfitting. For notation clarity, we omit the layer index i in the following formulations. Inspired

by feature augmentation [81] and Instance Normalization (IN) [57, 88], LPM performs perturba-

tion by randomly substituting the transformation factors of IN. Specifically, we first calculate the

channel-wise moments µ(ek) ∈ RB×C and σ(ek) ∈ RB×C for IN as

µ(ek) =
1

HW

H

∑
h=1

W

∑
w=1

ek
h,w, σ

2(ek) =
1

HW

H

∑
h=1

W

∑
w=1

(ek
h,w −µ(ek))2. (5.3)

As suggested by [64], these statistical moments encode not only style information but also cer-

tain task-relevant information dedicated to ReID. Instead of discarding all of them for style bias

reduction as adopted in [61, 177], we propose to maintain the discrimination while increasing the

local-domain data diversity by holistically shifting its distribution. This is achieved by perturbing

the per-domain instance moments as

µ̂(ek) = µ(ek)+ εµh(µ(ek)), σ̂(ek) = σ(ek)+ εσ h(σ(ek)), (5.4)

where h(·) calculate the perturbation factors, which are mathematically the standard derivation.

They reflect the dispersed level of the local domain, and ensures the perturbation is within a

plausible range, so to avoid over-perturbation which causes model collapse, or under-perturbation

which cannot provide any benefit in model learning. εµ and εσ varies the perturbation intensity

to guarantee the diversity of perturbed features, and both are randomly sampled from a standard

normal distribution. We subsequently perform feature transformation by substituting the local-

domain moments as

êk = σ̂(ek)
ek −µ(ek)

σ(ek)
+ µ̂(ek). (5.5)

By introducing the perturbed representation êk, the per-domain feature becomes more diverse so

to improve the model’s generalizability against the per-domain shift.

5.2.2 Global Feature-Distribution Calibration

The GCM is complementary to LPM by aligning the distribution of cross-domain features into a

common feature space. GCM considers the association between the perturbed holistic represen-

tation v̂k and a global memory bank M. Specifically, we calculate the global statistical moments

µg ∈ Rd and σg ∈ Rd in each training iteration as

µg =
1
K

1
Nk

K

∑
k=1

Nk

∑
n=1

Mk
n, σg =

1
K

K

∑
k=1

Nk

∑
n=1

(Mk
n −µg), (5.6)
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where Mk
n ∈ Rd is the prototypical feature of the n-th identity in the k-th domain. These global

statistical moments depict a feature space shared by the prototypical representations on M for

all the identities. Subsequently, the holistic representations are calibrated into the joint feature

space by

Lg(v̂k,M) =
1
K

K

∑
k=1

(||µ(v̂k)−µg||1 + ||σ(v̂k)−σg||1). (5.7)

Here, µ(v̂k) ∈ Rd and σ(v̂k) ∈ Rd are the channel-wise mean and standard derivation of the

perturbed representation v̂k. GCM enables the extracted features to fall into a domain-invariant

space. The hierarchical regularization achieved by LPM and GCM makes the model generic in

extracting domain-agnostic representations.

5.2.3 Model Training

Learning objective. Given the formulations of LPM and GCM, the proposed PECA can benefit

from conventional learning supervision. Specifically, the PECA model is jointly trained with a

softmax CE loss Lid and the global regularization item Lg as

L= Lid +λLg, Lid(xk,yk) =−
C

∑
j=1

pk
j log p̃k

j, p̃k = Softmax(MC(v̂k)). (5.8)

The notations xk and yk are the raw input images sampled from domain Dk and its corresponding

ID label, respectively, whilst pk is a one-hot distribution activated at yk. The function MC(·)

stands for the memory-based classifier [185, 177], and λ decides the importance of Lg regarding

the identity loss Lid.

Memory bank update. In each training iteration, once the network parameters are updated ac-

cording to L (Eq. (5.8)), the memory bank M is then refreshed by Exponential Moving Average

(EMA) as

Mk
yk = βMk

yk +(1−β )v̂k, k = {1, . . . ,K}, (5.9)

in which β is the EMA momentum. The prototypical features in the memory bank M is itera-

tively updated with the latest corresponding ID representations. Consequently, a more discrimi-

native feature space will be yielded by M for global alignment.
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5.3 Experiments

5.3.1 Experimental Settings

Datasets and protocols. We conducted multisource domain generalization on a wide range of

benchmarks, including Market1501 (M) [179], DukeMTMC (D) [183], MSMT17 (MT) [147],

CUHK02 (C2) [84], CUHK03 (C3) [86], CUHK-SYSU (CS) [154], and four small datasets

including PRID [47], GRID [99], VIPer [34], and iLIDs [180]. mean Average Precision (mAP)

and CMC accuracy on R1 are adopted as evaluation metrics.

Implementation Details. We used ResNet50 [40] pre-trained on ImageNet to bootstrap our

feature extractor. The batch size was set to 128, including 16 identities and 8 images for each.

All images were resized to 256× 128. We randomly augmented the training data by cropping,

flipping, and colorjitter. The proposed PECA was trained 60 epochs by Adam optimizor [67],

and we adopted the warm-up strategy in the first 10 epochs to stabilize model training. The

learning rate was initialized as 3.5e− 4 and multiplied by 0.1 at the 30th and 50th epochs. The

momentum for the memory update was set to 0.8. The dimension of extracted representations was

conventionally set to 2048. All the experiments were conducted on the PyTorch [116] framework

with four A100 GPUs.

5.3.2 Comparative Evaluations

Comparison under the traditional benchmark setting. Under the existing benchmark set-

ting [18, 64, 129], five datasets (M+D+C2+C3+CS) were used as source domains, and the gen-

eralizability was evaluated on four small-scale datasets of different domains not contributing to

training (unseen), which are PRID, GRID, VIPeR, and iLIDs. All the images in the source do-

mains were used for training, without the original training or testing splits. Being consistent

with existing performance evaluation protocols [64, 129], we performed 10-trail evaluations by

randomly splitting query/gallery sets, and reported the averaged performance in Table 5.1, which

shows the considerable superiority of the proposed PECA over the State-of-the-Art (SOTA) com-

petitors.

Comparison under large-scale benchmark setting. We further evaluated our model on four

large-scale datasets (M+D+C3+MS) with the ‘leave-one-out’ strategy, namely taking three datasets

used as source domains for model training, and one left out as an unseen target domain. Under

this setting, The original train splits in the three source domains were used for training, while
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Table 5.1: Performance comparisons of PECA on traditional evaluation protocol. The best results

are in bold.

PRID GRID VIPeR iLIDs Average
Method

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

AggAlign [170] 25.5 17.2 24.7 15.9 52.9 42.8 74.7 63.8 44.5 34.9

Reptile [113] 26.9 17.9 23.0 16.2 31.3 22.1 67.1 56.0 37.1 28.0

CrossGrad [123] 28.2 18.8 16.0 9.0 30.4 20.9 61.3 49.7 34.0 24.6

Agg PCB [131] 32.0 21.5 44.7 36.0 45.4 38.1 73.9 66.7 49.0 40.6

MLDG [71] 35.4 24.0 23.6 15.8 33.5 23.5 65.2 53.8 39.4 29.3

PPA [118] 45.3 31.9 38.0 26.9 54.5 45.1 72.7 64.5 52.6 42.1

DIMN [129] 52.0 39.2 41.1 29.3 60.1 51.2 78.4 70.2 57.9 47.5

SNR [64] 66.5 52.1 47.7 40.2 61.3 52.9 89.9 84.1 66.3 57.3

RaMoE [18] 67.3 57.7 54.2 46.8 64.6 56.6 90.2 85.0 69.1 61.5

PECA (Ours) 72.2 62.7 59.4 48.4 70.1 61.2 85.7 79.8 71.9 63.0

the test split on the unseen target domain was used for testing, same as in [177]. The evaluation

results in Table 5.2 show that PECA outperforms the SOTA competitors by a compelling margin,

Specially, on the more challenging datasets CUHK03 and MSMT17 with larger domain gaps

than the other datasets, all methods give relatively poorer generalization performances. In com-

parison, our PECA model gains the greater advantage over the other methods, especially on R1

scores. This suggests PECA’s better scalability with greater potential in real-world deployment

to different unseen target domains.

Table 5.2: Performance comparisons of PECA on large-scale evaluation protocol.

Market-1501 DukeMTMC CUHK03 MSMT17 Average
Method

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

QAConv50 [90] 39.5 68.6 43.4 64.9 19.2 22.9 10.0 29.9 28.0 46.6

M3L [177] 51.1 76.5 48.2 67.1 30.9 31.9 13.1 32.0 35.8 51.9

M3L(IBN) [177] 52.5 78.3 48.8 67.2 31.4 31.6 15.4 37.1 37.0 53.5

PECA (Ours) 58.3 81.4 49.8 70.0 34.1 35.5 17.7 43.1 40.0 57.5
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5.3.3 Ablation Study

Components analysis. We investigated the effects of different components in PECA model

design to study individual contributions. We trained a baseline model with only identity loss

Lid, and then incorporated it with either LPM or GCM as well as both PECA. Table 5.3 shows

that both the LPM and GCM are beneficial individually, and the benefits become clearer when

they are jointly adopted as in the PECA model. From another perspective, it also verifies that

solely considering the local or global regularization is biased, and it is non-trivial that the PECA

explores both in a unified framework to learn a more generic representation.

Table 5.3: Components analysis of LPM and GCM. PECA incorporates both in a unified frame-

work.
Market-1501 DukeMTMC CUHK03 MSMT17 Average

Setting
mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

baseline 54.1 78.5 49.0 68.1 31.1 31.9 14.9 38.1 37.3 54.1

+LPM 57.9 80.4 49.4 69.4 32.7 33.2 17.7 42.8 39.4 56.5

+GCM 55.0 79.5 49.0 68.5 32.6 33.6 16.1 39.4 38.2 55.2

PECA 58.3 81.4 49.8 70.0 34.1 35.5 17.7 43.1 40.0 57.5

PRID GRID VIPeR iLIDs Average
Setting

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

baseline 69.1 59.0 59.0 48.4 68.9 60.1 82.5 74.5 69.9 60.5

+LPM 71.5 61.2 58.0 48.5 69.7 60.9 85.3 78.7 71.1 62.3

+GCM 69.7 59.5 59.1 48.5 69.7 60.7 85.3 78.7 71.0 61.8

PECA 72.2 62.7 59.4 48.4 70.1 61.2 85.7 79.8 71.9 63.0

Discrimination and generalization trade-off. There is a trade-off between being discrimina-

tive to the source domains, and being generalized to the target domains [166]. We quantitatively

assessed the proposed PECA model in this regard. The results in Table 5.4 indicate the baseline

method fails to generalize well to the target domains but yielded compelling discrimination ca-

pacity in the source domains, which is likely due to overfitting. As a comparison, our PECA gains

notable improvements in generalization ability with only slight performance drops in the source

domains. This implies that PECA can effectively balance the generalization and discrimination

of feature representations, so to be applied to any novel unseen domains.

Effects of distribution perturbation on different layers. We studied the effects of perturbing

the input distributions of various layers in our backbone network, including the ‘Shallow’ layers
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Table 5.4: Local discrimination and global generalization trade-off.

Source Average Target: M Source Average Target: D
Setting

mAP R1 mAP R1 mAP R1 mAP R1

Baseline 58.6 73.8 54.1 78.5 63.0 77.4 49.0 68.1

LPGC 57.9 73.0 58.3 81.4 61.9 76.3 49.8 70.0

Source Average Target: C Source Average Target: MS
Setting

mAP R1 mAP R1 mAP R1 mAP R1

Baseline 64.2 82.3 31.1 31.9 69.9 79.3 14.9 38.1

LPGC 63.9 82.2 34.1 35.5 68.8 78.7 17.7 43.1

37.0
37.8
38.6
39.4
40.2

53.5
54.5
55.5
56.5
57.5

Rank-1mAP

None Shallow Deep All

(a) Averaged performance under large-scale setting.

67.0
68.2
69.4
70.6
71.8

mAP Rank-1

None Shallow Deep All

55.4
57.4
59.4
61.4
63.4

(b) Averaged performance under traditional setting.

Figure 5.3: Effects of distribution perturbation on different layers.

(the first convolution layer and a following residual block), and ‘Deep’ layers (the last two resid-

ual blocks). The results are shown in Figure 5.3. It is not a surprise that perturbing the shallow

layers consistently improves the performance under both the traditional and large-scale settings,

as perturbations in earlier stages helps enhance the invariance of most layers to distribution shift.

However, solely perturbing the deep layers exhibit distinct behaviors under different benchmark

settings. This is because the training data under the traditional setting is relatively smaller with

restricted diversity and perturbations in later stages tends to affect a limited part of the network

that is insufficient to improve the model’s generalization ability. Based on these observations, we

propose to perturb all the layers to improve the robustness of the PECA model regardless of the

dataset scale.

Effects of the global calibration objective. The importance of the global calibration objective

for avoiding the model from overfitting to source domains is determined by the hyperparameter λ

in Eq. (5.8). By linearly varying λ from 0.1 to 100, we observed from Table 5.5 that moderately

applying GCM (e.g 0.1 or 1) is beneficial to PECA’s generalizability; further increasing λ to a



94 Chapter 5. Learn Generalizable Representation by Feature-Distribution Perturbation and Calibration

Table 5.5: Effects of the global calibration objective whose importance is decided by the weight

λ in Eq. 5.8. Averaged performances are reported.

Traditional setting Large-scale setting
Setting

mAP R1 mAP R1

PECA (default, λ = 1) 71.9 63.0 40.0 57.5

PECA w/o GPM 71.0 61.9 37.5 54.3

PECA w/ λ = 0.1 71.2 62.2 39.4 56.5

PECA w/ λ = 10 70.8 62.1 39.2 56.5

PECA w/ λ = 100 33.9 23.9 38.5 55.5

larger value (e.g 10 or 100) brings more harm than help. This is because the learning process is

dominated by the calibration regularization and the model can barely learn from the identity loss,

hence, the resulting feature is less discriminative. We also observed that the traditional setting

is relatively more sensitive to λ , as it holds much less training data for learning a robust model,

and a similar phenomenon is shown in Figure 5.3. Given the above observations, we set λ = 1 in

practice for our PECA model.

5.4 Summary

In this chapter, we presented a novel PECA model to learn generic yet discriminative repre-

sentation in multiple source domains generalizable to arbitrary unseen target domains for more

accurate unseen domain person ReID. PECA simultaneously conducts model regularization on

local per-domain feature-distribution and global cross-domain feature-distribution to learn a bet-

ter domain-invariant feature space representation. Benefited from the diverse features synthe-

sized by local perturbation, PECA expands per-domain feature distribution to enable more ro-

bust to domain shifts. From the global calibration, feature distributions of different domains

are represented and holistically referenced in a shared feature space with their domain-specific

data characteristics (i.e mean and variance of feature distributions) being ignored, resulting in

higher model generalizability. Experiments on extensive ReID datasets show the performance

advantages of the proposed PECA model over a wide range of SOTA competitors. Extensive ab-

lation studies further provided in-depth analysis of the individual components designed in PECA

model.
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Chapter 6

Cross-Domain Style Variations Mining

6.1 Introduction

Advances in Convolutional Neural Network (CNN) have notably contributed to enhancing ReID

performance, particularly when the training and test data are drawn from the same distribu-

tion [87, 181]. However, despite these advancements, a well-trained ReID model can suffer sig-

nificant degradation when applied to unseen target domains, primarily due to Out-Of-Distribution

(OOD) samples resulting from domain shift [22]. Most existing generalizable models are typi-

cally designed for a classification task, rather than a ReID task, assuming a universal and homo-

geneous environment with a joint label space shared between the source (seen) training domain

and target (unseen) test domains, as shown in Figure 6.1 (a). In contrast, person ReID is a retrieval

task with completely disjoint label spaces in both training and testing. Hence, the direct appli-

cation of existing domain generalizable models to person ReID is sub-optimal. Recent efforts in

the domain of generalizable ReID primarily focus on learning a domain-invariant representation

by removing domain-specific information during model training. This is typically achieved by

designing a disentanglement module to factorize domain-invariant and domain-specific compo-

nents from an identity representation [171, 22, 192]. Alternatively, one assumes that the domain

gap is mainly caused by style (appearance) variations [136] which can be mitigated with batch

or/and instance normalization [64, 112]. Both of these approaches reduce domain-specific char-

acteristics and enable the learned representations to be less domain-biased. However, they are

inherently vulnerable in unseen target domain tests for two reasons. Firstly, they inevitably di-
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Figure 6.1: Comparison of disentanglement learning-based models and CDVM model. (a). Dis-

entangled representation learning-based methods solely utilize domain-invariant knowledge ren-

dering them less robust to cross-view appearance variations unique to different target domains.

(b). CDVM explores cross-domain variations to mimic the style discrepancy of an identity cap-

tured by different cameras. A model trained with cross-view augmented features further improves

model robustness against domain shift in unseen target domains.

minish contextual information and sacrifice the discrimination of the identity representation [17].

Secondly, models trained without accounting for cross-view style variations lack the robustness

to extract a generic domain-invariant representation owning to subtle distribution shifts in the

test environment [8]. To construct a model with the capacity to learn representations that are

simultaneously context-aware discriminative and domain-agnostic generic, a straightforward so-

lution is to collect more cross-camera pairwise samples for each identity, and from more people.

However, this is not only too expensive to be realistic but also intrinsically prohibitive due to

privacy concerns. Another solution is to increase training data by augmentation, such as random

perturbation [81] or adversarial diversification [138]. However, current data augmentation meth-

ods lack the assurance of diversified per-identity cross-camera style variations, and may lead to

the deterioration of pedestrian-specific information following augmentation.

In this chapter, we introduce a new CDVM model to overcome these limitations. The idea

of CDVM is shown in Figure 6.1 (b). The central concept behind the CDVM approach is to

enhance the diversity of per-identity instances through the introduction of cross-view style vari-

ations across different domains. The objective is to expand the cross-view style inherent to

individual identity to learn a generalizable ReID representation that is more robust under the

presence of such cross-view style variations. Specifically, we first learn a domain-agnostic (gen-

eralizable) identity prototype by exploiting the consensus of identities regardless of their specific

domain annotations. Secondly, we enhance the model’s robustness by mitigating the covariance
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Figure 6.2: An overview of the CDVM model. The overall objective is to enhance the model’s

robustness against domain shift when applied to an unseen environment. This is achieved by

exploring cross-domain variations to mimic the style discrepancy of an identity as captured by

different cameras. Throughout model training, an identity representation undergoes progress re-

finement as follows: (a) Learning disentangled representations via the coordinated global and

local encoders, supervised by the disentanglement objective (Eq. (6.5)). (b) Employing cross-

domain variations on the domain-invariant ID representation to facilitate multi-view augmenta-

tion (Eq. (6.8)). (c) Estimating the significance of the augmented representation and imposing

constraints on the intra-domain discrimination and cross-domain consistency (Eq. (6.11)). The

block index s is omitted for the sake of simplicity in notation.

stemming from cross-view style variations. This involves augmenting the prototype with cross-

domain variations through multi-view augmentation, to simulate the style discrepancy for one

identity between query and gallery views. Thirdly, we highlight person-specific attributes to in-

crease the feature discrimination while maintaining the overall consistency across all pedestrians.

Our contributions are: 1. To our knowledge, our method pioneers the use of cross-domain varia-

tions to implicitly explore per-identity multi-view augmentation, so to encourage model learning

to maximize invariant representations subject to cross-camera identity retrieval. 2. We formu-

late a principled mechanism CDVM to learn a context-aware generalizable ReID model sensitive

to domain-specific cross-camera person-wise variations, optimizing jointly two competing crite-

ria of generalizability and specificity. 3. The proposed new model outperforms existing SOTA

methods by a large margin on a wide range of benchmarks.
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6.2 Methodology

Assuming that there is a sample space that D = {Dk}K
k=1 available for training, each domain is

composed of numerous labeled image pairs Dk = {(xk
i ,y

k
i )}Nk

i=1, where Nk is the number of images

in the domain Dk. The label space for the domain Dk is formulated by all the identity labels as

Yk = {1,2, · · · ,Mk}, where Mk is the number of identities in Dk. The label spaces for different

domains are completely disjoint, e.g Y i ̸= Y j if i ̸= j. The objective of generalizable ReID is

to learn a feature extraction model fθ that is capable of extracting discriminative representations

fθ (x) for retrieval among different identities. This inherently constitutes a heterogeneous zero-

shot task due to the disjoint label spaces in training and testing.

6.2.1 Domain-invariant Knowledge Disentanglement

One premise of a generalizable model is the capacity to extract a domain-agnostic representation

for the pedestrian image captured under arbitrary conditions. We fulfill this premise by deriving

a global-local correlation module to explore the applicable consensus of identities among dif-

ferent domains. Specifically, the global-local module consists of numerous parallel branches: a

global encoder applied for all the domains to learn the domain-invariant representation, and K

local encoders specific to each domain to model domain-specific knowledge. The global-local

encoders are designed as a plug-and-play component and incorporated into the feature extractor

by replacing the final layer in each block. To ensure the local and global encoders learn distinct

information, we propose to maximize the discrepancy of the parameter spaces. Specifically, as

illustrated in Figure 6.2, assuming an intermediate feature Fk
s ∈RBk,C,H,W extracted in the block

s for the minibatch of samples X k from domain Dk, it is fed into simultaneously two branches to

disentangle the domain-invariant and domain-specific knowledge as

Fk
inv,s = f(g,s)(F

k
s ), Fk

spe,s = f k
(l,s)(F

k
s ). (6.1)

where f(g,s) and f k
(l,s) are the functionalities corresponding to the global and local branches at s-th

block. The global and local branches are in the same structure with different parameter initial-

ization. The global-local encoders are trained with the following constraints: (1) To disentangle

the intermediate representation, they are constrained to learn distinct information by maximizing

their discrepancy as

Lws =
1

KS

K

∑
k=1

S

∑
s=1

cosine(θ(g,s),θ
k
(l,s)), (6.2)
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where θ(g,s) and θ k
(l,s) are the learnable parameters respectively for f(g,s) and f k

(l,s). (2) To ensure

the disentangled output from the global branch is domain-agnostic, we adopt adversarial training

with a domain discriminator to maximize the likelihood of domain label from the latent repre-

sentation Fk
inv, s, while f(g,s) aims to learn domain-invariant feature to fool the discriminator. This

is performed by solving the following min-max game:

Linv =−1
S

S

∑
s=1

min
θD(c,s)

max
θ(g,s)

k logD(c,s)( f(g,s)(F
k

inv,s)), (6.3)

where D(c,s) is the domain classifier parameterized by θD(c,s) . This is realized by applying a Gra-

dient Reverse Layer (GRL) [28] on the domain-invariant knowledge to fool the domain classifier.

(3) To ensure the disentangled output from the local branch is domain-specific, we maximize the

probability predictions of domain label from Fk
spe,s by optimizing the following objective:

Lspe =−1
S

S

∑
s=1

k logD(c,s)( f k
(l,s)(F

k
spe,s)). (6.4)

The final disentanglement objective is formulated as

Ldise = Lws +Linv +Lspe. (6.5)

The global encoder is specifically designed to extract a disentangled domain-agnostic prototype

Fk
inv,s, as defined by Eq. (6.1). However, considering the potential for significant style shifts in

testing samples, the prototype might exhibit limited robustness and discrimination, thereby re-

stricting its ability to effectively represent a single identity in this case. Normalization techniques,

e.g BN and IN, have been widely employed in recent generalizable ReID models to mitigate per-

identity style disparities. Nevertheless, we contend that such approaches overlook the diverse

style variations offered by samples from other domains which could be beneficial in learning a

more robust model. Instead, we perform per-identity multi-view style augmentation using cross-

domain normalization statistics. This is equivalent to introducing additional instances for one

identity but in different styles mimicking the style variations present in query and gallery views.

Specifically, given the domain-specific knowledge Fk
inv,s, we derive the per-domain style char-

acteristic by pooling the instance normalization statistics [64] over the current minibatch as:

µ
k
s =

1
BkHW

Bk

∑
b=1

H

∑
h=1

W

∑
w=1

Fk
s (b,h,w),

(σ k
s )

2
=

1
BkHW

Bk

∑
b=1

H

∑
h=1

W

∑
w=1

(
Fk

s (b,h,w)−µ
k
s

)2
,

(6.6)
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where Bk represents the number of samples in a mini-batch drawn from domain Dk. The statistical

moments µk
s and (σ k

s )
2 encode the characteristics of domain Dk. These statistics are modeled at a

mini-batch level rather than instance-level, to offset the potential disruptions caused by outliers,

e.g an image without a person. Instead of treating each of them as a determined point, to consider

the randomness of the combinations, we further build a Gaussian distribution N (µ̂k
s , σ̂

k
s

2
) with

the µ̂k
s to indicate the expansion direction and σ̂ k

s for the intensity as

µ̂k
s =

1
K −1

K

∑
i=1,i̸=k

µ
k
s + εµδ (µk

s ),

σ̂ k
s =

1
K −1

K

∑
i=1,i̸=k

σ
k
s + εσ δ (σ k

s ).

(6.7)

where εµ and εσ are sampled from the normal distribution to vary the expansion direction and

intensity. Moreover, δ (·) calculates the variance to measure the diversity of the cross-domain

statistics. The expanded cross-domain statistics µ̂k
s and σ̂ k

s encodes diverse style information

sampled over disjoint domains. Therefore, the style information in Fk
spe, s is modified by substi-

tuting the feature statistics as

Fk
sty,s = σ̂

k
s

Fk
spe, s −µk

s

σ k
s

+ µ̂
k
s . (6.8)

Subsequently, the modified style information is fused with invariant ID knowledge through a

Fully-Connected (FC) layer as

F̂k
s = FC

(
cat
(

Fk
inv,s,F

k
sty,s

))
, (6.9)

where cat(·) is the concatenation operator functions on the channel dimension, and FC(·) rep-

resents the FC layers which reduces the channel dimension of the concatenated representation

from 2C to C. Therefore, the identity representation is expanded in various directions to achieve

multi-view augmentation.

6.2.2 Local Hierarchical and Global Consistent Constraint

Given the augmented representation F̂k
s , we group it into subspaces, with the assumption that each

group corresponds to specific characteristics essential for representing an identity. Intuitively,

certain attributes, such as facial appearance and body structure, play a more dominant role in

identifying a person compared to others. By emphasizing these influential characteristics, we

aim to enhance the discriminative power of the learned representation. To this end, we introduce
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a subspace constraint that considers two critical aspects: (1) Per-identity local hierarchy: For

one identity, the significance of characteristics should be weighted differently so as to emphasize

different aspects of the feature that contribute to identity identification. (2) Cross-domain global

consistent: Considering the universally applicable explanatory of pedestrians regardless of the

domain annotation, the dominant characteristics in one domain should retain their importance

when considering any other domain. We implicitly realize this constrain by slicing the augmented

representations into subspaces (groups) along the channel dimension, and feeding them into a

hyper-network to estimate the significance of each group with a set of predictions W = {wv}V
v=1,

where V is the number of subspaces. This constrain is mathematically formulated as

Lv =
1

V × (V −1)

V

∑
m=1

V

∑
n ̸=m

[m1 −∥wm −wn∥2]
2
+,

Lc =
1

B× (B−1)

B

∑
i=1

B

∑
j ̸=i
[∥Wi −W j∥2 −m2]

2
+,

(6.10)

where B is the number of samples in a minibatch, and Wi is the importance prediction for the

pedestrian i. The two hyperparameters m1 and m2 are the margins. The final characteristic

constraint is the combined as

Lattr = Lc +Lv. (6.11)

6.2.3 Model Training

Training Objectives The proposed CDVM is jointly trained with various objectives, including

the conventional cross-entropy loss Lce, triplet loss Ltri, center loss Lcent, the feature disentan-

glement loss Ldise, and the proposed attribute constraint Lattr.

L= Lce +Ltri +Lcent +αLdise +βLattr, (6.12)

where α and β are the hyperparameters to balance the importance of the corresponding learning

objective.

Training Pipeline To improve the generalizability of the proposed model, we adopt the meta-

learning algorithm as the training strategy to simulate the training-testing discrepancy. Given K

source domains available during training, samples in K−1 domains are used as the meta-training

set and the remaining domain is used as a meta-testing set. The parameters of the entire network

are updated by the second-order gradient with respect to the meta-test loss.
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6.3 Experiments

6.3.1 Experimental Settings

Datasets and protocols. We conducted multisource domain generalization on a wide range of

9 benchmarks, including five large-scale datasets: Market1501 (M) [179], MSMT17 (MT) [147],

CUHK02 (C2) [84], CUHK03 (C3) [86], CUHK-SYSU (CS) [154], and four small-scale datasets:

PRID [47], GRID [99], VIPer [34], and iLIDs [180]. For CUHK03, we used the “labeled” subset

to keep a fair comparison with the State-of-the-Art (SOTA) competitors [156, 17, 177]. mean

Average Precision (mAP) and Cumulative Matching Characteristics (CMC) accuracy on R1 are

adopted as evaluation metrics.

Table 6.1: Performance comparisons of CDVM on under protocol-1. The best results are in bold.

→PRID →GRID →VIReR →iLIDs Average
Source Method

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

DIMN [129] 52.0 39.2 41.1 29.3 60.1 51.2 78.4 70.2 57.9 47.5

SNR [64] 66.5 52.1 47.7 40.2 61.3 52.9 89.9 84.1 66.4 57.3

RaMoE [18] 67.3 57.7 54.2 46.8 64.6 56.6 90.2 85.0 69.1 61.5

D+M+C2

+C3+CS

DMG-Net [4] 68.4 60.6 56.6 51.0 60.4 53.9 83.9 79.3 67.3 61.2

QAConv50 [90] 62.2 52.3 57.4 48.6 66.3 57.0 81.9 75.0 67.0 58.2

M3L [177] 65.3 55.0 50.2 40.0 68.2 60.8 74.3 65.0 64.5 55.2

MetaBIN [17] 70.8 61.2 57.9 50.2 64.3 55.9 82.7 74.7 68.9 60.5

META [156] 71.7 61.9 60.1 52.4 68.4 61.5 83.5 79.2 70.9 63.8

Protocol-1:

M+C2+

C3+CS

CDVM 74.1 64.8 66.1 56.0 69.6 63.6 87.7 83.1 74.4 66.9

Implementation Details. Following the conventional settings [167, 102, 177], we used ResNet50 [40]

with IBN [115] pre-trained on ImageNet to bootstrap the feature extractor. The batch size for each

domain was set to 64, including 32 randomly sampled identities and 2 images for each identity.

All images were resized to 256×128. We augmented the training data by random erase, flipping,

and color jitter. The proposed CDVM was trained for 120 epochs with an SGD optimizer [67],

and the warm-up strategy was adopted in the first 10 epochs to stabilize model training. The

learning rate was initialized as 0.01 and decay to 5e− 5 by Cosine Annealing. The balancing

factors λ and β in Eq. (6.12) were both set to 0.5. The margins m1 and m2 in Eq (6.11) were set

to 0.1. The dimension of the ID representation is conventionally set to 2048. All the experiments

were conducted on the PyTorch [116] framework with four A100 GPUs.



6.3. Experiments 103

6.3.2 Comparative Evaluations

Comparison under Protocol-1. One established evaluation protocol [18, 64, 129], is to train on

five large-scale datasets, i.e DukeMTMC [183], Market1501, CUHK02, CUHK03, and CUHK-

SYSU and test on four small-scale datasets, i.e PRID, GRID, VIPeR, and iLIDs. However, due

to the widely used DukeMTMC dataset was officially taken off due to privacy issues, recent

works [156, 167] proposed a new protocol by removing DukeMTMC and using the remaining

four datasets (M+C2+C3+CS) for training, called Protocol-1. Under this protocol, all the sam-

ples, regardless of the original training/testing splits, are used for training. We made a fair com-

parison with the SOTA competitors by performing 10-trial evaluations [64, 129] on the random

split query/gallery sets, and reported the averaged results in Table 6.1. Compared to the other

SOTA models trained with the same datasets, our model shows clear advantages and outperforms

the latest SOTA model META [156] by 5.5% in mAP and 5.0% in Rank1 scores. Compared with

the other SOTA methods trained including the DukeMTMC dataset, our method remains com-

petitive.

Table 6.2: Performance comparisons of CDVM on under protocol-2.
M+MS+CS→C3 M+CS+C3→MS M+CS+C3→M Average

Setting Method Reference
mAP R1 mAP R1 mAP R1 mAP R1

SNR [64] CVPR20 8.9 8.9 6.8 19.9 34.6 62.7 16.8 30.5

QAConv50 [90] ECCV20 25.4 24.8 16.4 45.3 63.1 83.7 35.0 51.3

MetaBIN [17] CVPR21 28.8 28.1 17.8 40.2 57.9 80.1 34.8 49.5

M3L [177] CVPR21 34.2 34.4 16.7 37.5 61.5 82.3 37.5 51.4

ACL [167] ECCV22 41.2 41.8 20.4 45.9 74.3 89.3 45.3 59.0

META [156] ECCV22 36.3 35.1 22.5 49.9 67.5 86.1 42.1 57.0

Protocol-2:

Training Sets

CDVM Ours 41.7 42.8 20.7 46.4 74.8 89.8 45.4 59.7

Comparison under protocol-2 and protocol-3. The proposed CDVM model was further evalu-

ated on four large-scale datasets with a leave-one-out strategy, i.e using three domains for training

and the left one for testing. Note that due to all the identities in CUHK-SYSU are captured by the

same camera, it was only used for training. For protocol-2, only the train splits of these datasets

were leveraged for training. In contrast, for protocol-3, all the available labeled samples, regard-

less of the original splits, were used in training. We reported the comparison results in Table 6.2

and Table 6.3. It can be observed that the proposed CDVM model achieves superior performance

when generalizing to CUHK03 and Market1501 and remains competitive when MSMT17 was
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Table 6.3: Performance comparisons of CDVM on under protocol-3.
M+MS+CS→C3 M+CS+C3→MS M+CS+C3→M Average

Setting Method Reference
mAP R1 mAP R1 mAP R1 mAP R1

SNR [64] CVPR20 17.5 17.1 7.7 22.0 52.4 77.8 25.9 39.0

QAConv50 [90] ECCV20 32.9 33.3 17.6 46.6 66.5 85.0 39.0 55.0

MetaBIN [17] CVPR21 43.0 43.1 18.8 41.2 67.2 84.5 43.0 56.3

M3L [177] CVPR21 35.7 36.5 17.4 38.6 62.4 82.7 38.5 52.6

ACL [167] ECCV22 49.4 50.1 21.7 47.3 76.8 90.6 49.3 62.7

META [156] ECCV22 47.1 46.2 24.4 52.1 76.5 90.5 49.3 62.9

Protocol-3:

Full Sets

CDVM Ours 50.9 50.7 22.6 50.1 77.6 90.8 50.4 63.9

leveraged as the target domain. This illustrates that the CDVM model can benefit more when

more identities are available to provide abundant style variations in training.

6.3.3 Ablation Study

Table 6.4: Components analysis. The proposed components were progressively incorporated into

the baseline to study the individual contribution.

Components CUHK03 MSMT17 Market1501

Ldent faug Lattr mAP R1 mAP R1 mAP R1

✗ ✗ ✗ 33.9 34.2 17.5 43.1 69.5 87.2

✓ ✗ ✗ 36.6 37.1 18.1 44.3 71.6 88.2

✓ ✓ ✗ 40.9 41.6 19.5 45.7 73.4 88.9

✓ ✓ ✓ 41.7 42.8 20.7 46.6 74.8 89.8

Components analysis. We investigated the individual contribution of different components in

the CDVM model to study its effectiveness. As shown in Table 6.4, the performance was progres-

sively improved by incorporating the proposed constraints. Specifically, introducing the disen-

tanglement loss Ldent can reduce the domain gap compared with the baseline model. Further per-

forming cross-domain style augmentation improved the model’s robustness against the potential

style variations and so to make the representations more robust to cross-camera view variations

in specificity. Finally, employing the attribute constraint further improved the discrimination

capacity of the learned representation.

Global-Local Discripency Constraint. One premise for decoupling the domain-invariant and

domain-specific knowledge from the learned representation is that the global and local branches
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are learning distinctive information. To achieve this goal, we designed the constraint Lws to

explicitly enlarge the discrepancy of the learnable parameters between the global and local en-

coders. We ablated its effectiveness in knowledge disentanglement. The comparison result is

shown in Table 6.5. By employing the discrepancy constraint Lws, the performance is consis-

tently improved on all the benchmarks. This shows the inadequacy of the conventional disentan-

glement design and the potential advantages of optimizing jointly both the generalizability and

specificity criteria by this discrepancy constraint.

Table 6.5: Effects of the discrepancy constraint in feature disentanglement.

CUHK03 MSMT17 Market1501
Components

mAP R1 mAP R1 mAP R1

w/o Lws 35.1 35.8 17.8 43.6 70.1 87.1

w Lws 36.6 37.1 18.1 44.3 71.6 88.2

Cross-Domain Variation Expansion. To encourage the model to be robust against style varia-

tion, we performed cross-domain multi-view feature augmentation by sampling the style factors

over the cross-domain statistics. We considered the randomness and combinations of the cross-

domain activations to achieve a more diverse augmentation. We validated the superiority of this

augmentation strategy over the vanilla counterpart, i.e treat the statistics as determined factors

without any expansion, and the results are reported in Table 6.6. We observed that (1) Consid-

ering the cross-domain variations improves the performance compared with the baselines, which

verifies our assumption that enhance the diversity of identity is beneficial for learning a robust

and generalization model. (2) Compared with taking the cross-domain variations as determined

factors, exploiting the elastic expansion with random direction and intensity can yield better re-

sults. This validates the superiority of the proposed cross-domain expansion strategy.

Table 6.6: Effects of different strategies in exploring cross-domain variations. “Determined”

takes variations as fixed factors, “Elastic” considers combinations and randomness.

CUHK03 MSMT17 Market1501
Method

mAP R1 mAP R1 mAP R1

Determined 37.3 38.1 19.0 45.1 72.0 88.3

Elastic 40.9 41.6 19.5 45.7 73.4 88.9
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（a) Baseline (b) Ours

Figure 6.3: T-SNE visualization of four ReID benchmarks. The target domain is set to MSMT17,

and the remaining three are used for training. The baseline model learns domain-biased repre-

sentations, while our model exploits cross-domain variations and extracts domain-invariant rep-

resentations.

Visualization. To further validate the effectiveness of the proposed model, we conducted t-

SNE visualization on the representations extracted by different models. The target domain was

MSMT17 and the other three domains were leveraged for training. We sampled 1000 instances

in each domain. Results are shown in Figure 6.3. From it, we observed that the baseline model is

prone to learning domain-bias representations while the proposed CDVM model is more robust

in extracting domain-invariant representation.

6.4 Summary

In this chapter, we presented a novel CDVM model to learn a generalizable ReID representation

that simultaneously optimizes model generalizability and specificity. The motivation of CDVM

model design is that the cross-domain variations can be used to perform multi-view augmenta-

tion on one identity, so as to simulate the style variations between the query and gallery views.

To achieve this goal, we first explored cross-domain consensus to learn a domain-agnostic pro-

totype which is then optimized with cross-domain variations for implicitly multi-view feature

augmentation. Moreover, we further boosted the discrimination of the augmented representa-

tion by formulating an identity attribute constraint to reassemble the representation considering

individual attribute significance. We validated the effectiveness of the proposed CDVM model

extensively on 9 benchmark datasets. We show that the proposed new model outperforms existing

SOTA methods by a notable margin.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

1. In Chapter 3, we introduced a Local-Global Associative Assembling (LOGA) method

for video person Re-Identification (ReID), which selectively assembles video frames of

diverse qualities to derive a more reliable and discriminative representation of a video

tracklet. This is achieved by assessing the frames’ quality based on the association of their

local part alignments and global appearance correlation, to avoid integrating undesired

visual information into the tracklet’s representation, thus preventing identity mismatch.

Unlike existing approaches that focus on either local or global information separately, our

LOGA method constructs a locally assembled global appearance prototype of a tracklet

to mitigate biased quality assessment resulting from identity-irrelevant misalignment or

spatially insensitive appearance miscorrelation. Extensive experiments on four benchmark

datasets demonstrate the performance advantages of LOGA over a wide range of State-of-

the-Art (SOTA) video ReID methods. Furthermore, detailed ablation studies are conducted

to provide in-depth discussions about the rationale and essence of different components in

our model design.

2. In Chapter 4, we introduced a regularization technique called Primary-Auxiliary Ob-

jectives Association (PAOA) to facilitate the learning of a generalizable ReID model ca-

pable of extracting domain-unbiased representations that are more adaptable to unseen

novel domains for person ReID. PAOA encourages the model to eliminate the influence of
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domain-specific knowledge and focus on learning discriminative pedestrian information

by associating the learning of an auxiliary pedestrian detection objective with a primary

instance classification objective. To address the challenges posed by noisy auxiliary la-

bels, we further developed a referenced-gradient calibration strategy to adjust the gradient

of the auxiliary object when it conflicts with the primary object. The PAOA framework is

task-agnostic, making it easily adaptable to other tasks by incorporating a related auxiliary

task and a shared learning module.

3. In Chapter 5, we presented a Feature-Distribution Perturbation and Calibration (PECA)

model to learn a generic yet discriminative representation across multiple source domains,

with the aim of generalizing to arbitrary unseen target domains for a more accurate person

Re-Identification (ReID) in unseen domains. PECA conducts simultaneous model regular-

ization on local per-domain feature distributions and global cross-domain feature distribu-

tions to achieve a better domain-invariant feature space representation. Leveraging diverse

features synthesized by local perturbation, PECA expands per-domain feature distribution

to enhance robustness to domain shifts. Through global calibration, feature distributions

of different domains are holistically represented and referenced in a shared feature space,

thereby ignoring domain-specific data characteristics (e.g mean and variance of feature

distributions) and resulting in higher model generalizability. Experiments on extensive

ReID datasets demonstrate the performance advantages of the proposed PECA model over

a wide range of SOTA competitors. Additionally, extensive ablation studies provide an

in-depth analysis of the individual components in the PECA model.

4. In Chapter 6, we presented a novel Cross-Domain Variations Mining (CDVM) model

aimed at learning a generalizable ReID representation that optimizes both model gener-

alizability and specificity simultaneously. The motivation of CDVM model is that cross-

domain variations can be leveraged to perform multi-view augmentation on a single iden-

tity, thereby simulating the style variations between query and gallery views. To achieve

this objective, we first explored cross-domain consensus to learn a domain-agnostic proto-

type, which is then optimized with cross-domain variations for implicit multi-view feature

augmentation. Furthermore, we enhanced the discrimination of the augmented representa-

tion by formulating an identity attribute constraint to reassemble the representation while

considering the significance of individual attributes. We extensively validated the effec-
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tiveness of the proposed CDVM model on nine benchmark datasets, demonstrating that

our model outperforms existing SOTA methods by a notable margin.

7.2 Future Work

1. Enhancing Discriminative Frame Selection with Optical Flow In Chapter 3, we evalu-

ated frame quality by jointly analyzing local region alignment and global appearance corre-

lation. This approach filters out low-quality frames, thereby improving the discriminative

power of aggregated tracklet-level representations. However, this strategy presupposes

that the network is capable of establishing temporal correlations through the learning pro-

cess by integrating information from individual frames. However, DNNs might struggle

to fulfill this objective when the frame rate is relatively low, potentially failing to utilize

contemporary information from adjacent frames. To address this, a promising direction

for future research is to investigate optical flow [92] to identify pedestrian movement pat-

terns. By leveraging optical flow as a guide to discern movement-induced occlusions, so

as to enhance scene change detection and further refine the discriminative frame selection

process.

2. Promotive Multitask Learning by Mixture of Auxiliary Experts In Chapter 4, we de-

signed a primary-auxiliary learning framework termed as PAOA. In this framework, the

auxiliary task is designed as a pedestrian saliency detection task for which labels are gen-

erated on the fly by a pretrain saliency detection model. However, such labels may not

be reliable, particularly when pedestrians are obscured by large objects or when multiple

pedestrians are present in the image simultaneously. To solve this issue, one possible so-

lution is to leverage the advancements in large-scale foundational models, like Grounding

DINO [94] for object localization and SAM [68] for semantic segmentation. By integrat-

ing additional auxiliary tasks into our model structure, we can create an auxiliary-expert

joint learning framework to provide multifaceted deep image priors, and inherently refine

inaccurate labels.

3. Learnable Feature Distribution Local Perturbation In Chapter 5, we developed the

local feature perturbation module to expand the feature space within each local domain,

which is complemented by a global calibration process that aligns the cross-domain rep-

resentations into a unified feature space. The local perturbation module utilizes a Gaus-
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sian distribution to introduce variations within the overall feature distribution. However,

this Gaussian distribution may not accurately reflect the actual diversity within domains

in real-world scenarios, which could potentially deteriorate feature representation. A po-

tential remedy to mitigate this problem is to employ a trainable meta-network [110] that

captures the diversity within domains, based on which to expand per-domain feature dis-

tribution, thereby preserving the discriminative while enhancing the diversity.

4. Open-vocabulary ReID with Pretrained Vision-Language Models In Chapter 6, we in-

troduced the CDVM model to improve its robustness against domain shift. by CDVM

exploring cross-domain variations to mimic the style variations of an identity captured by

different cameras. However, CDVM is a closed-vocabulary approach where the model

is trained with a pre-defined set of identities known with limited attribuduring training.

This restricts the model’s ability to adapt to new or unseen identities encountered in real-

world scenarios and makes it less effective in handling open-vocabulary situations where

the identities are not predefined or known beforehand. To address this limitation, a promis-

ing solution is to leverage large-scale pretrained vision-language models [93, 77] trained

on vast amounts of data across different domains and modalities. These models encode

rich semantic information from images and textual descriptions, enabling them to infer

relationships between identities and adapt to new or unseen identities encountered dur-

ing inference. Therefore, it can enhance the model’s ability to handle open-vocabulary

scenarios by providing more comprehensive and discriminative representations.
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