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ABSTRACT
No-reference image quality assessment (NR-IQA) has garnered significant attention due to its critical role in various image 
processing applications. This survey provides a comprehensive and systematic review of NR-IQA methods, datasets, and chal-
lenges, offering new perspectives and insights for the field. Specifically, we propose a novel taxonomy for NR-IQA methods based 
on distortion scenarios and design principles, which distinguishes this work from previous surveys. Representative methods 
within each category are thoroughly examined, with a focus on their strengths, limitations, and performance characteristics. 
Additionally, we review 20 widely used NR-IQA datasets that serve as benchmarks for evaluating these methods, providing de-
tailed information on the number of images, distortion types, and distortion levels for each dataset. Furthermore, we identify and 
discuss key challenges currently faced by NR-IQA methods, such as handling diverse and complex distortions, ensuring general-
isation across datasets and devices, and achieving real-time performance. We also suggest potential future research directions to 
address these issues. In summary, this survey offers a comprehensive and systematic examination of NR-IQA methods, datasets, 
and challenges, offering valuable insights and guidance for researchers and practitioners working in the NR-IQA domain.

1   |   Introduction

With the rapid evolution of information technology, vast 
amounts of multimedia data, particularly images, are being 
transmitted globally through various networks, making image 
quality a vital factor in effective communication. Digital im-
ages undergo multiple stages from acquisition to final display, 
including capture, storage, compression, transmission, and pro-
cessing. Each stage can introduce varying levels of distortions 
(Chandler  2013; Zhai and Min  2020). Beyond influencing the 
visual experience of users, image quality is crucial in determin-
ing the performance of various computer vision tasks (Dodge 
and Karam 2016; Lin and Wang 2018). Therefore, it is imperative 

to design precise algorithms or evaluation metrics to accurately 
quantify image quality degradation across both daily life and in-
dustrial applications.

Image Quality Assessment (IQA) is a fundamental research 
problem in human visual perception and computer vision, 
aiming to develop objective metrics and methods to evaluate 
image quality (Wang et al. 2004; Chen et al. 2023, 2022). The 
human visual system (HVS) excels at recognising high-quality 
images, making subjective assessments the most reliable in 
IQA. However, manual assessment is resource-intensive and 
impractical for real-world applications. Objective IQA methods, 
developed to automatically predict visual quality by simulating 
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HVS, are classified into three types based on the availability 
of reference information: (1) Full-Reference IQA (FR-IQA), 
(2) Reduced-Reference IQA (RR-IQA), and (3) No-Reference 
IQA (NR-IQA). Although existing FR-IQA (Kim and Lee 2017; 
Zhang, Isola, et al. 2018; Ding et al. 2020; Lao et al. 2022) and 
RR-IQA methods (Wu et al. 2013; Liu et al. 2014; Xu et al. 2015; 
Wu et al. 2016) have achieved satisfactory results by leveraging 
reference information, their usability is typically limited, as 
many distorted images lack corresponding references in real-
world scenarios. In contrast, NR-IQA methods are more widely 
applicable across various practical applications, as they do not 
rely on reference images for quality assessment.

Recent decades have seen the emergence of various NR-IQA 
methods, demonstrating significant progress. Consequently, 
there are several surveys systematically review these studies 
across various aspects. In 2015, Manap and Shao  (2015) pre-
sented a survey of general-purpose NR-IQA methods, primarily 
reviewing contemporary hand-crafted approaches. They cate-
gorised these methods into two types: natural-scene statistics 
(NSS)-based and learning-based. This study also examined their 
performance and limitations, and presented research trends to 
address these limitations. After that, Xu, Jiang, and Min (2017) 
comprehensively reviewed the fundamental developments in 
NR-IQA methods, covering both distortion-specific and general-
purpose approaches. They provided a detailed discussion on 
techniques for feature extraction and quality prediction within 
general-purpose approaches. Additionally, they evaluated per-
formance on three IQA benchmark datasets and highlighted 
challenges in NR-IQA development. In their 2019 survey, Yang, 
Li, and Liu  (2019) emphasised the progress in DNN-based 
NR-IQA methods, systematically analysing these approaches 
based on the role of DNNs and comparing their performance 
on four synthetic datasets and one authentic dataset. Moreover, 
they described emerging challenges and directions for future 
investigations.

In 2023, Yang, Sturtz, and Qingge  (2023) reviewed NR-IQA 
methods, covering well-known traditional and recent DNN-
based approaches. They evaluated these competitive methods on 
six public IQA datasets and suggested potential future research 
directions based on their findings. These NR-IQA surveys 
have examined the field from various perspectives, primarily 
focusing on methods applicable to natural images. However, 
they encounter challenges in thoroughly exploring image qual-
ity models due to three key factors. First, the proliferation of 

non-traditional image types has created unique challenges. The 
increasing prevalence of immersive and interactive media, such 
as omnidirectional images, light field images, and screen con-
tent images, presents distinct distortion types and viewing con-
ditions that are not adequately addressed by methods originally 
developed for natural images. Second, NR-IQA is finding appli-
cations in numerous domains, including image super-resolution, 
multi-exposure fusion, and tone-mapping. Each of these fields 
introduces specific requirements and constraints for image 
quality assessment. Conducting a comprehensive review is es-
sential to understand how NR-IQA methods are being adapted 
or need to be adapted for these diverse scenarios. Third, the 
rapid progress in deep learning (DL) is revolutionising NR-IQA 
methodologies. These advancements enable more sophisticated 
feature extraction and better leveraging of large-scale datasets. 
Furthermore, techniques like meta-learning, contrastive learn-
ing, and multi-modal learning have been utilised to boost the 
generalisation performance of NR-IQA methods. A thorough 
examination of latest DL-based approaches is crucial for under-
standing the current state-of-the-art (SOTA) and identifying fu-
ture research directions. These factors highlight the urgent need 
for a comprehensive survey to systematically identify novel di-
rections and key challenges in the rapidly evolving field of NR-
IQA. Figure 1 presents a concise timeline of the development of 
NR-IQA methods.

In this review, we offer a comprehensive examination of NR-IQA, 
including hand-crafted-based methods, DL-based methods, and 
representative IQA datasets (e.g., synthetic and authentic dis-
tortion). Specifically, we categorise current NR-IQA methods 
into three groups based on their focus: (1) synthetic distortion-
oriented methods, which focus on artificial degradations; (2) al-
gorithm distortion-oriented methods, which deal with artefacts 
introduced by various image processing algorithms; and (3) 
authentic distortion-oriented methods, which are designed for 
assessing the quality of in-the-wild images. This categorization 
offers structured approach to analysing the diverse landscape of 
NR-IQA techniques, enabling a thorough examination of how 
different methods address various distortion types encountered 
in practical applications. We discuss the challenges faced by NR-
IQA methods in real-world scenarios and highlight the recent 
advancements in the field. Additionally, we offer insights into 
potential future research directions. This survey aims to provide 
researchers and practitioners with a comprehensive understand-
ing of the current NR-IQA landscape and inspire further innova-
tions in this fundamental field.

FIGURE 1    |    A brief history of NR-IQA methods. These directions have shaped both current research and potential future developments. Synthetic 
distortion-oriented (in orange); algorithm distortion-oriented (in green); authentic distortion-oriented (in red).
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The article is structured as follows: Section  2 provides a pre-
liminary overview of NR-IQA. Sections  3–5 review both past 
and SOTA NR-IQA methods, categorising them into synthetic 
distortion-oriented, algorithm distortion-oriented, and authen-
tic distortion-oriented approaches. Section  6.1 provides a de-
tailed review of 20 widely used public datasets and shows some 
examples. Section 7 explores the key challenges and outlines fu-
ture research directions in NR-IQA. Lastly, Section 8 concludes 
this article.

2   |   Preliminaries

NR-IQA seeks to predict the visual quality of a distorted image 
Id in the absence of its corresponding reference image Ir (Karray, 
Campilho, and Yu 2019). NR-IQA aims to obtain a quality score 
Q that aligns with human perceptual judgements. An NR-IQA 
model can be formally expressed as a function:

Here, f( ⋅ ) represents the quality prediction function and � rep-
resents the NR-IQA model parameters, learned from an IQA 
dataset containing distorted images and their correspond-
ing subjective quality scores. Early NR-IQA methods mainly 
targeted the evaluation of images with synthetic distortions. 
These images are created by artificially introducing distortions 
such as Gaussian noise, salt-and-pepper noise, and JPEG com-
pression artefacts to pristine or high-quality images. However, 
these methods often struggle to accurately evaluate real-world 
images, which exhibit more complex and diverse distortion 
characteristics. To overcome this limitation, researchers have 

shifted their focus towards developing NR-IQA methods spe-
cifically tailored for authentic distortions. The emergence of 
DL has greatly advanced progress in this area, enabling the 
development of more sophisticated and robust algorithms. 
Nevertheless, the scarcity of large-scale authentic distortion 
image quality assessment databases remains a significant 
challenge (Zhang, Ma, Yan, et al. 2018). Additionally, the com-
plex interplay between image content and distortion types in 
real-world scenarios further compounds the difficulties faced 
by current algorithms.

NR-IQA methods can be categorised into three main groups 
based on the distortion types they evaluate (Yang, Sturtz, and 
Qingge  2023): (1) synthetic distortion-oriented methods, which 
focus on artificial degradations; (2) algorithm distortion-oriented 
methods, which deal with artefacts introduced by various image 
processing algorithms; and (3) authentic distortion-oriented meth-
ods, which are developed to assess quality of in-the-wild images. 
This article intends to offer a comprehensive overview of the NR-
IQA research landscape, following the categorization illustrated 
in Figure 2. By examining the SOTA approaches in each category, 
we aim to showcase the current progress and challenges in NR-
IQA. Particularly, this article emphasises NR-IQA methods that 
target authentic distortions, which are pivotal for unlocking the 
potential of image quality assessment in practical applications.

3   |   Synthetic Distortion-Oriented NR-IQA

Synthetically distorted images refer to images whose visual 
quality has been degraded by artificially introducing noise or 
distortions. Common types of synthetic distortions include 

(1)Q = f
(

Id; �
)

FIGURE 2    |    The overall classification of NR-IQA methods. The second row divides the methods into three primary categories, which are further 
broken down into subcategories in the following row. The final row provides additional subdivisions based on specific image types, algorithm, and 
design principles.
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Gaussian noise, salt-and-pepper noise, and compression arte-
facts. Early studies primarily focused on analysing synthetic 
distortions, leading to the development of synthetic distortion-
oriented NR-IQA approaches, which can be broadly categorised 
into hand-crafted-based and DL-based methods. Figure 3 pro-
vides a concise illustration of the basic flowchart for these two 
types of methods. This section also covers emerging topics, such 
as NR-IQA methods for screen content images, light field im-
ages, and omnidirectional images.

3.1   |   Hand-Crafted-Based Methods

Hand-crafted-based methods rely on feature engineering, 
which involves handcrafted feature extraction combined with 
machine learning algorithms for quality prediction. Among 
these methods, Natural Scene Statistics (NSS) (Simoncelli 
and Olshausen 2001) is a widely used modelling approach in 
hand-crafted-based methods. NSS is based on the assump-
tion that pristine images exhibit specific statistical regulari-
ties, which are altered by distortions. Numerous NSS-based 
NR-IQA methods have been developed based on this theory. 
Mittal, Moorthy, and Bovik  (2012) introduced BRISQUE, 
which utilises local Mean Subtracted Contrast Normalised 
(MSCN) luminance coefficients. These coefficients are fitted 
to the generalised Gaussian distribution (GDD) and asymmet-
ric generalised Gaussian distribution (AGGD) to extract fea-
tures from distorted images (Liu et  al.  2019). Subsequently, 
Mittal, Soundararajan, and Bovik  (2012) expanded their ap-
proach by targeting the multivariate Gaussian (MVG) model 
and proposed a new method called NIQE. NIQE extracts NSS 
features from both distorted and natural images, fits them to 
MVG models, and calculates the distance between the models 
to assess image quality. Zhang, Zhang, and Bovik (2015) de-
veloped ILNIQE to enhance generalisation, extracting natural 
image statistical features from various perspectives, including 
local structure, orientation, and colour. These features are 
used to construct and fit a MVG model as reference one. Then, 
ILNIQE then evaluates distorted image quality by calculating 
the distances between patch MVG models and the reference 
model. Additionally, some algorithms extend beyond distance 
metrics and incorporate the probability values of the fitted 
distributions as quality features, such as Fang et  al.  (2014) 
and Saad, Bovik, and Charrier  (2012). However, the visual 
features of some images may not consistently conform to pre-
defined statistical regularities, which limits the applicability 
of these NSS-based modelling approaches (Ghadiyaram and 
Bovik 2017).

Unlike the above methods, some researchers have utilised 
dictionary learning to extract visual features from images 
for NR-IQA. Ye et al. (2012) introduced CORNIA, which em-
ploys K-Means clustering to construct a codebook from image 
patches and utilises soft assignment encoding and max pool-
ing for effective quality representation. Similarly, Xue, Zhang, 
and Mou  (2013) proposed a quality-aware clustering (QAC) 
model that first uses a full-reference quality assessment model 
(Zhang et al. 2011) to obtain quality scores for each patch of 
the input image. The QAC model then identifies cluster cen-
tres based on the quality variations among patches, using 
these centres as a codebook to evaluate the overall quality. 

Furthermore, Xu et  al.  (2016) adopted a codebook construc-
tion approach similar to CORNIA and proposed HOSA, which 
estimates image quality by comparing the high-order statis-
tics of local patch features with cluster centres. However, 
manually designed feature descriptors have limited capacity 
for representation, as they can only capture certain specific 
distortion types. Consequently, these hand-crafted-based 
methods are constrained in achieving better consistency with 
human perception.

3.2   |   DL-Based Methods

DL-based methods eliminate the need for manually designed 
features and instead employ DNNs or other DL tools to ex-
tract image features and predict image quality directly, offer-
ing substantial improvements in feature representation and 
thereby outperforming traditional hand-crafted-based meth-
ods. For instance, Kang et al.  (2014) introduced CNNIQA, a 
CNN-based NR-IQA model. The architecture includes a con-
volutional layer, a pooling layer, two fully connected layers 
for feature extraction, and a linear regression layer for quality 
prediction. Despite its relatively simple architecture, CNNIQA 
outperforms most traditional hand-crafted methods on the 
LIVE dataset (Sheikh, Sabir, and Bovik 2006). To enhance fea-
ture representation, Bianco et al. (2018) utilised a pre-trained 
CNN on image classification tasks for feature extraction and 
employed a support vector regression (SVR) model for quality 
prediction. Kim, Nguyen, and Lee  (2018) proposed DIQA, a 
two-stage NR-IQA approach that first trains a CNN on nor-
malised image patches to learn objective error maps and then 
fine-tunes the CNN to predict image quality. To overcome the 
limited training data, Liu, van de Weijer, and Bagdanov (2017) 
introduced RankIQA, which creates a large synthetic data-
set of distorted images with relative quality labels and uses 
a Siamese network for quality-based image ranking. After 
ranking, one branch of the Siamese network is fine-tuned for 
quality prediction. Wu, Ma, et al. (2020) proposed the CaHDC 
model using cascaded CNNs. They first constructed a large-
scale image quality assessment dataset using synthetic distor-
tions and assigned pseudo-labels to all distorted images based 
on five classical full-reference metrics. The CaHDC model is 
then trained on this extensive dataset.

FIGURE 3    |    The basic flowchart of hand-crafted-based and DL-
based NR-IQA methods.
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Unlike the above works, Lin and Wang  (2018) integrated a 
generative adversarial network (GAN) with a CNN to pro-
posed Hallucinated-IQA. Hallucinated-IQA comprises three 
components: quality-aware generative, quality discrimina-
tion, and a quality regression network. The generative net-
work creates pseudo-reference images corresponding to the 
distorted ones, the discrimination network differentiates 
between real and pseudo-reference images, and the regres-
sion network evaluates the quality of distorted images based 
on the discrepancy between the pseudo-reference and dis-
torted images. Meanwhile, Ren, Chen, and Wang (2018) also 
introduced RAN, a GAN-based NR-IQA method. Unlike 
Hallucinated-IQA, the RAN model leverages the compar-
ison between restored and distorted images to predict qual-
ity more accurately. To better evaluate the quality of images 
with synthetic distortion, some researchers have explored 
incorporating multi-task learning into NR-IQA. For instance, 
Ma, Liu, et al. (2017) proposed MEON built on multi-task op-
timization. MEON employs a dual-sub-network architecture 
to tackle two related tasks simultaneously: predicting distor-
tion types and assessing image quality. These sub-networks 
share parameters in their primary layers, improving both per-
formance and efficiency. First, the distortion type prediction 
sub-network is trained on a distorted image dataset. Then, the 
quality prediction sub-network is jointly trained, benefiting 
from the learned distortion features to enhance predictive ac-
curacy. Similarly, Yang, Jiang, et al. (2019) proposed SGDNet 
(Saliency-Guided Deep neural Network), which takes saliency 
prediction as an auxiliary task to augment image quality pre-
diction. This model employs a shared feature extractor for 
both saliency and quality prediction tasks during the initial 
training stages, leveraging the interdependency of these tasks 
to improve overall assessment accuracy. The aforementioned 
deep learning-based methods demonstrate excellent perfor-
mance in assessing synthetically distorted images, but their 
focus on 2D natural images means that they are not effective 
for other emerging image and distortion types.

3.3   |   Emerging Topics

As multimedia technology has advanced, the diversity in image 
types and formats has significantly increased, prompting re-
searchers to expand the scope of IQA beyond traditional 2D nat-
ural images. Current research in IQA now consider a variety of 
specialised image formats, such as screen content images (SCIs), 
light field image (LFIs), and omnidirectional image (OIs). Each 
of these formats presents unique challenges and necessitates tai-
lored assessment techniques.

SCIs refer to images displayed on electronic devices, such as 
mobile phones and computer monitors, which mainly contain 
both pictorial and textual content. Popular screen content syn-
thetic distortion image quality assessment datasets include 
SIQAD (Yang, Fang, and Lin 2015), SCID (Ni et al. 2017), and 
QACS (Wang et al. 2016; Shi et al. 2015). To effectively assess 
the quality of SCIs, several no-reference screen content image 
quality assessment (NR-SCIQA) methods have been developed. 
For example, Gu et al. (2017) extracted visual features from four 
key aspects: complexity, content statistics, global brightness, 
and detail sharpness, and then employed a quality regression 

model for prediction. Fang et  al.  (2017) leveraged the HVS's 
heightened sensitivity to brightness and texture to model and 
extract brightness statistical features and high-order reciprocal 
texture features in SCIs. Zheng et al. (2019) introduced an NR-
SCIQA approach that segments SCIs into sharp and non-sharp 
edge regions using local standard deviation. Local features, such 
as entropy, contrast, and local phase consistency, are extracted 
from the sharp edge regions using the grey-level co-occurrence 
matrix, while brightness statistics across the entire image are 
used to derive global features. Chen, Shen, et al. (2018) proposed 
a naturalisation module that uses interpolation to minimise the 
characteristic differences between natural images and SCIs, 
bridging the gap between them. They also tailored a quality 
prediction model, PICNN, specifically for SCIs. To address the 
unsupervised domain transfer problem in NR-SCIQA, Chen 
et al. (2021) jointly trained the model by maximising the aver-
age difference, employing rank learning, and minimising mean 
squared error, enhancing the knowledge transfer from natu-
ral images (source domain) to SCIs (target domain) for quality 
prediction.

LFIs distinct from both natural images and SCIs, are cap-
tured by light field cameras that record comprehensive data 
on the angle and position of light rays. Existing representa-
tive datasets for light field image quality assessment include 
MPI-LFA (Kiran Adhikarla et  al.  2017), VALID (Viola and 
Ebrahimi  2018), and Win5-LID (Shi, Zhao, and Chen  2019). 
LFIs contain rich scene information, making it more chal-
lenging to assess their quality. Therefore, relatively few NR-
IQA methods have been proposed for LFIs. One pioneering 
approach is BELIF (Shi, Zhao, and Chen  2019), which uses 
tensor theory to process LFIs by transforming a raw LFI into 
a circular image tensor and applying Tucker decomposition 
for feature extraction. The extracted features, namely tensor 
spatial features and tensor structure change indices, assess 
spatial quality and angular consistency, respectively. Another 
innovative method is (Tian et  al.  2020) that utilises multi-
scale log-Gabor features from different planes to represent the 
quality of LFIs.

As a key form of VR media content, OIs significantly affect the 
visual experience of VR users. Xu, Zhou, and Chen (2020) pro-
posed a viewport-oriented model called VGCN, which selects 
high-probability viewports as graph nodes and models the re-
lationships between different viewports. The VGCN employs a 
graph convolution network for graph inference and integration 
to compute the overall image quality score. Duan et al.  (2018) 
constructed an OI quality dataset that includes non-uniform 
distortions, user viewing conditions, and viewing behaviours. 
Utilising this dataset, they trained an NR-OIQA model consist-
ing of a multi-scale feature extraction module and a module for 
perceptual quality prediction. Zhou et al. (2021) employed multi-
task learning and introduced a distortion identification task to 
enhance the quality prediction of OIs, improving the model's 
performance.

4   |   Algorithm Distortion-Oriented NR-IQA

Apart from common synthetic distortions, many image pro-
cessing algorithms could produce new distortions during the 
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process, which leads image quality degradation. Meanwhile, 
there are also numerous algorithms aimed at removing distor-
tions in images to improve their quality. To analyse the charac-
teristics of different image processing algorithms and evaluate 
the quality of images after algorithmic processing, algorithm 
distortion-oriented NR-IQA methods have been gradually de-
veloped. These methods primarily focus on image enhancement 
algorithms, such as super-resolution, multi-exposure fusion, 
tone mapping, and various image restoration algorithms. In the 
following section, we briefly introduce the NR-IQA methods de-
signed for these algorithms.

4.1   |   NR-IQA for Super-Resolution

Super-resolution (SR) focuses on reconstructing high-resolution 
(HR) images from low-resolution (LR) inputs, thereby enhancing 
image quality. Due to the differences in the techniques and pro-
cessing methods employed by existing SR algorithms, the quality 
and visual effects of the reconstructed HR images vary consider-
ably. To better analyse and compare different SR algorithms, it is 
essential to perform quality assessment on the images generated 
by these algorithms. To facilitate the quality assessment of SR 
images, researchers have constructed various SR image quality 
assessment datasets, including SRID (Wang et  al.  2017), NID 
(Chen, Xu, et al. 2018), QADS (Zhou et al. 2019), SISR-Set (Shi, 
Wan, et al. 2019), SISAR (Zhao et al. 2021), and SUPE (Köhler 
et al. 2019). Based on these datasets, extensive research on SR 
images have been proposed. For example, Ma, Yang, et al. (2017) 
propose designing low-level statistical features in spatial and 
frequency domains to quantify super-resolved artefacts and 
learning a two-stage regression model from visual perceptual 
scores to predict quality scores. To further enhance the preci-
sion of SR image quality prediction, Zhang et al. (2019) adopted 
the same feature extraction approach as Ma, Yang, et al. (2017) 
and proposed a refined quality prediction model that cascades 
AdaBoost decision tree regression and ridge regression. Beron, 
Benitez-Restrepo, and Bovik (2020) proposed two NR-IQA mod-
els for SR images by selecting the most optimal quality-aware 
features. Unlike hand-crafted feature extraction methods, Fang 
et al. (2018) extract high-level representation features from each 
patch, utilising local information to predict SR image quality. 
Zhou et al.  (2020) proposed DeepSRQ based on a dual-stream 
CNN. DeepSRQ takes distorted SR images and their texture 
structures as inputs, extracting discriminative features through 
the dual-stream architecture.

4.2   |   NR-IQA for Tone-Mapping

Tone mapping is the process of converting high dynamic range 
(HDR) images into low dynamic range (LDR) images using spe-
cific operators, enabling HDR content to be better displayed on 
standard monitors. However, different tone-mapping operators 
introduce varying degrees of distortion when processing HDR 
images. Several datasets and algorithms have been developed to 
assess tone-mapped image quality. The main datasets include 
TMID (Yeganeh and Wang 2012) and ESPL_LIVE HDR (Kundu 
et  al.  2017). In terms of algorithms, Gu et  al.  (2016) proposed 
BTMQI, which assesses tone-mapped images by measuring 
their information entropy and integrating natural statistics with 

structural fidelity. Kundu et  al.  (2017) proposed HIGRADE, 
which extracts spatial NSS and gradient features from tone-
mapped images to evaluate their quality. BLIQUE-TMI (Jiang 
et al. 2017) models visual, local structural, and natural statistical 
information from tone-mapped images, employing an extreme 
learning machine for assessment. Chen et al. (2019) introduced 
a method based on luminance segmentation, which leverages 
the HVS's varying sensitivity to different luminance regions to 
quantify quality. VQGC (Fang, Yan, et al. 2020) utilises gradient 
and chromatic statistical information from tone-mapped images 
to predict quality. In DL-based approaches, Deep-TMI (Ravuri 
et al. 2019) first utilises a CNN to generate a quality map of the 
tone-mapped image, selects feature parameters using the AGGD 
model, and finally employs a SVR to predict quality scores from 
these features.

4.3   |   NR-IQA for Image Restoration

Image restoration refers to the process of recovering and recon-
structing a relatively high-quality image from a distorted one 
using image restoration algorithms. Common image restoration 
algorithms like denoising, deblurring, deraining, and dehazing. 
The inputs to these restoration algorithms differ, leading to sig-
nificant variations in the quality of the restored images.

For denoised images, Kong et  al.  (2013) assumes that noise is 
independent of the pristine image and seeks to maximise the 
SSIM between the noise image and the estimated noise in both 
homogeneous and highly structured regions. The linear correla-
tion coefficient between the two SSIM maps is then computed to 
quantify quality. Zhang, Cheng, and Hirakawa (2018) proposed 
CRIQA that uses a corrupted reference image instead of a high-
quality one and achieves results consistent with full-reference 
methods.

For deblurred images, Narvekar and Karam  (2011) proposed 
a method according to how humans perceive blur at varying 
contrast levels. This approach first uses a probabilistic model to 
estimate the likelihood of edge blur in the image, and then ag-
gregates this data by cumulatively integrating the blur detection 
probabilities. Li et al. (2015) proposed BIBLE, which estimates 
Tchebichef moments from the gradients of the blurred image, 
then calculates the variance-normalised moment energy guided 
by a visual saliency model to assess image blur. Subsequently, 
based on BIBLE, they utilised NSS to model the multidimen-
sional features of blurred images in both spatial and frequency 
domains (Li et  al.  2017). To accurately measure image blur, 
Li, Li, et  al.  (2020) extracted multi-scale features and motion 
blur characteristics from blurred images, and fused these fea-
tures through an attention module. Finally, they employed two 
stacked fully connected layers to obtain prediction scores.

To effectively analyse the quality of derained images, Wu 
et al. (2019) first constructed a derained image dataset and then 
proposed B-GFN based on bidirectional controlled fusion. B-
GFN can adaptively extract and integrate multi-scale features 
to describe artefacts in derained images. Furthermore, Wu, 
Wang, et al. (2020) integrated global perception and local differ-
ence features into B-GFN and proposed the B-FEN model (bi-
directional feature embedding network).
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Considering the characteristics of dehazed images, Choi, You, 
and Bovik  (2015) introduced FADE based on NSS theory and 
haze-aware statistical features. FADE estimates the perceived 
haze density globally and provides a local index for each image 
block. Min et al. (2018) established a dehazed image dataset for 
quality assessment and proposed a NR-IQA index called DHQI 
by extracting and fusing dehazing, structure preservation, and 
enhancement features.

To summarise, the necessity to evaluate the performance of var-
ious image restoration algorithms has driven the development 
of NR-IQA methods specifically designed for restored images. 
These methods typically extract features that capture the spe-
cific characteristics of each restoration algorithm and use them 
to predict the quality of the restored images. The availability of 
dedicated datasets for each restoration algorithm has further fa-
cilitated the advancement and validation of these methods. As 
image restoration algorithms continue to evolve, it is expected 
that more advanced and specialised NR-IQA methods will be 
proposed to meet the growing demands for accurate and reliable 
quality evaluation in various application scenarios.

5   |   Authentic Distortion-Oriented NR-IQA

Unlike synthetic distortions and algorithm distortions, authen-
tic distortions refer to various types and intensities of distortions 
introduced into images during acquisition due to factors such as 
the acquisition device, acquisition method, and acquisition envi-
ronment. Authentically distorted images often come from vari-
ous real-world scenes, making their content and distortion types 
more complex. Hence, quantifying the degree of degradation 
in these images is challenging. Early NR-IQA methods, such 
as BRISQUE (Mittal, Moorthy, and Bovik 2012), NIQE (Mittal, 
Soundararajan, and Bovik 2012), CORNIA (Ye et al. 2012), and 
HOSA (Xu et  al.  2016), have good evaluation capabilities and 
interpretability for specific distortion types. However, these 
methods struggle to accurately assess the quality of authenti-
cally distorted images. To accurately and effectively assess the 
quality of various authentically distorted images, a growing 
number of researchers have started developing specific models 
or algorithms tailored for authentic distortions. Similarly, exist-
ing authentic distortion-oriented NR-IQA methods can also be 
divided into hand-crafted-based and DL-based. In this section, 
we begin with a brief overview of hand-crafted-based NR-IQA 
methods designed for authentic distortions.

The core idea of hand-crafted-based NR-IQA methods for au-
thentically distorted images is to model image features through 
manually designed approaches. Specifically, Li et  al.  (2016) 
proposed a NR-IQA method called NRSL that uses statistical 
structure and luminance features. This method extracts percep-
tual structure features from the distorted image by utilising the 
distribution of local binary patterns. Additionally, it extracts lu-
minance features by calculating the distribution of normalised 
luminance magnitudes. After extracting the structure and lu-
minance features, a SVR model is employed to predict the qual-
ity of the image. Liu and Liu (2017) proposed WPDSE based on 
a model selection algorithm. WPDSE models image features 
from various aspects such as luminance, contrast, colour, and 
texture, and trains corresponding quality regression models. 

It then simplifies the overall model using a model selection al-
gorithm and finally obtains the image quality by integrating 
the prediction results of all quality regression models. Zhang 
et al. (2020) used colour moments and log-Gabor layers to assess 
authentically distorted images. They first convert the distorted 
image to the HSV colour space to extract colour moments and 
then use log-Gabor filters to divide the image into four layers 
and extract texture features from each layer. Liu et  al.  (2020) 
proposed a non-subjective-aware NR-IQA method that designs 
a set of NSS features and HVS perception-related features to rep-
resent image quality. The method uses an MVG model learned 
on a collection of original images as a reference and infers the 
quality of a new image by computing the difference between the 
MVG model of the test image and the reference MVG model. Hu 
et al. (2021) used low-level attribute features, including bright-
ness, saturation, contrast, noise, sharpness, and naturalness, 
along with high-level semantic features to describe the quality 
of authentically distorted images. By leveraging the complemen-
tarity of these low-level and high-level features, more accurate 
quality prediction is achieved when assessing image quality. 
Liu et al. (2019) proposed an unsupervised method called SNP-
NIQE based on image structure, naturalness, and perceptual 
quality changes. SNP-NIQE captures structural changes by 
analysing deviations in image phase congruency and gradient 
distribution. It characterises naturalness changes using the dis-
tribution of MSCN coefficients and their adjacent pair products. 
Finally, the quality of the distorted image is represented by cal-
culating the distance between the MVG models of the distorted 
image and natural images. DFE (Yang, An, and Shen  2022) 
employed a data-driven transform-based method to enhance 
features and combines hand-crafted features with learned fea-
tures. This method extracts image structure information from 
the Karhunen–Loéve transform (KLT), phase congruency, and 
gradient magnitude coefficients, and then derives NSS features 
from local normalised coefficients. KLT is used as a feature en-
hancement process to improve the structure and NSS features. 
Finally, the distribution of transform coefficients across all fre-
quency bands is modelled using the Weibull and generalised 
Gaussian distributions to achieve image quality perception. Due 
to the complexity of distortions in real-world scenarios, these 
methods often struggle to perform well on authentically dis-
torted images.

Existing DL-based NR-IQA methods for authentically distorted 
images can be roughly divided into three categories according 
to their implementation approaches and the techniques used: (1) 
network structure and loss function; (2) learning paradigm and 
training data; (3) network input and output. Figure 4 provides 
an illustration of three design pipelines for DL-based authentic 
distortion-oriented NR-IQA methods.

5.1   |   Network Structure and Loss Function

DL-based IQA methods generally train DL models through 
specified loss functions, extract image features end-to-end, 
and learn the map between features and quality scores. The 
representational capabilities of different DL models also vary, 
and it is necessary to perform fine-grained network structure 
design to effectively represent various authentically distorted 
images. For example, Bosse et al. (2017) proposed WaDIQaM 
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8 of 20 Expert Systems, 2025

based on a weighted average and patch-wise joint optimization 
model. The feature extraction network of this model follows 
the structure of VGG16 and has been extended. WaDIQaM si-
multaneously realises FR-IQA and NR-IQA and can learn the 
relative importance of local to global quality. Sun et al. (2023) 
designed a step-wise feature extraction network that inte-
grates multi-levels information extracted by the CNN into a 
comprehensive quality-aware representation in a hierarchi-
cal and step-wise manner. You and Korhonen (2021) applied 
the visual Transformer to the NR-IQA task and proposed the 
TRIQ model. TRIQ directly uses the encoder of the ViT model 
to process the visual features from CNN and designs an adap-
tive position encoding method to allow the model to assess 
images of arbitrary resolution. The MUSIQ (Ke et  al.  2021) 
takes multi-scale images as input and designs hash-based 
two-dimensional spatial embedding and scale embedding to 
accommodate multi-scale feature representations, enabling 

the model to effectively capture image quality at different 
scale. Golestaneh, Dadsetan, and Kitani  (2022) designed a 
hybrid feature extraction framework called TReS. TReS first 
utilises a CNN to extract local structural details, then uses a 
Transformer network to model the extracted global informa-
tion, and finally the local and global features are integrated to 
assess image quality.

In addition to methods that focus on designing the overall 
network structure, there are also research works that aim to 
improve the expressive power of features by designing feature 
fusion modules or attention modules. For example, since the 
HVS has different visual perceptions for various distortions, 
VIDGIQA (Guan et  al.  2017) utilises a regression network 
to estimate the visual significance of different local regions 
within the image. The entire framework is jointly optimised 
based on distortion information and quality scores. Su 

FIGURE 4    |    A summary of three design pipelines for DL-based authentic distortion-oriented NR-IQA methods, which include network struc-
tures, loss functions, learning paradigms, and input–output strategies.
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et al.  (2020) proposed HyperIQA, which decomposes quality 
assessment into three phases: content analysis, perceptual 
rule adaptation, and quality estimation. Initially, a CNN ex-
tracts both semantic and multi-scale content features from the 
image. These semantic features are passed into the hypernet-
work, which dynamically adjusts perceptual rules to produce 
weights for the quality estimation module. Subsequently, the 
local distortion perception module aggregates the multi-scale 
content and semantic features into feature vectors. Finally, 
these vectors are utilised to predict the image quality. Li, 
Zhang, and Cosman  (2021) introduced MMMNet, which 
leverages multi-scale and multi-hierarchy fusion, drawing on 
the characteristics of human visual system (HVS) attention. 
The network uses a multi-scale feature extraction module 
(MSFE) to hierarchically fuse saliency and quality features. 
Furthermore, a saliency detection task is incorporated to en-
hance the quality estimation process through saliency fusion, 
with both tasks being jointly optimised using a multi-task 
learning framework. Pan, Zhang, et  al.  (2022) proposed the 
DACNN model, which comprises three key modules: distor-
tion perception, distortion fusion, and quality prediction. The 
distortion perception module is further divided into two com-
ponents: synthetic and authentic distortion perception. The 
synthetic distortion perception network is pre-trained using 
a Siamese architecture, while the authentic distortion percep-
tion network is pre-trained on classification dataset. These 
networks extract features corresponding to synthetic and au-
thentic distortions, respectively. The fusion module employs 
a weight-adaptive fusion strategy to combine the extracted 
distortion features, enabling the model to focus on the most 
relevant information. Finally, the fused features are used to 
estimate image quality. Chen et  al.  (2024) proposed TOPIQ 
that mimics the HVS perception process from global to local. 
This method first extracts multi-scale features and employs a 
gated local pooling module to remove redundant information. 
Then, TOPIQ employs self-attention module and cross-scale 
attention mechanisms in a top-down approach, progressively 
fusing global semantic features into local distortion features 
layer by layer. This enables the network to concentrate on dis-
tortion areas that are semantically more significant.

When making quality predictions, DL-based NR-IQA methods 
generally need to use max or average pooling to convert the 
extracted image features into feature vectors. However, these 
simple pooling methods cannot capture higher-order statistical 
information of the feature descriptors. Jiang et  al.  (2020) pro-
posed Deep-DEN to address this issue. The Deep-DEN inte-
grates dictionary encoding within a single trainable layer, which 
is used to extract higher-order statistical information of the fea-
tures and then use the higher-order statistical information to 
assist in image quality prediction. To tackle the issue that GAP 
can only extract first-order statistics, Zhou, Xu, et al. (2022) em-
ployed second-order global covariance pooling (GCP) to aggre-
gate feature maps. By combining GCP and GAP, they obtained 
a global representation that is more sensitive to distortions. Gu 
et  al.  (2019) proposed a learnable pooling mechanism that fa-
cilitates the simultaneous learning of local quality and impor-
tance weights while dynamically assigning visual priorities and 
predicting overall quality. Additionally, the network regulates 
training by penalising cases where the quality of more promi-
nent regions significantly deviates from the overall score.

Loss functions are an indispensable part of DL models. During 
the training procedure, DL models need to be guided by loss 
functions. Choosing or designing appropriate loss functions for 
different tasks speed up model convergence and improve over-
all performance. Therefore, some researchers have designed 
specialised loss functions for IQA to enhance the evaluation 
capabilities of the models. For example, Wu et  al.  (2017) pro-
posed a regression model with rank regularisation to tackle the 
issue that MSE loss fails to accurately rank image quality. This 
model is achieved by introducing ranking constraints into the 
maximum margin-based regression framework. Ou et al. (2021) 
proposed CLRIQA, which first models overexposure and un-
derexposure as inverse functions based on the Weber-Fechner 
law using an imaging heuristic approach. Next, it simulates au-
thentic distortions and produces ranked image samples via a fu-
sion strategy and compression. A controllable list-wise ranking 
(CLR) loss function is also proposed, where ranking bounds are 
defined, and an adaptive margin is introduced to fine-tune the 
intervals between ranks. Finally, the CNN is trained using both 
the produced samples and the CLR loss. Golestaneh, Dadsetan, 
and Kitani  (2022) measured the distances between images in 
every batch to capture their ranking relationships and proposed 
a ranking loss based on these comparisons. Additionally, they 
formulated a self-consistency loss by leveraging the consistency 
between images and their augmented versions. Li, Jiang, and 
Jiang (2020) proposed a Norm-in-Norm Loss by computing the 
discrepancy between normalised predictions and normalised 
labels. It has been theoretically proven that this loss function 
improves gradient stability and accelerates model convergence. 
Li and Huo (2024) proposed REQA that employs global and local 
features to perceive distortions at multi-scales. It gradually per-
ceives distortions by introducing a feedback mechanism consis-
tent with the HVS. Additionally, coarse and fine-grained losses 
are introduced to refine the perception. The coarse-grained 
ranking and gradient losses are employed to ensure consistency 
in both ranking and gradients between the predicted quality and 
the labels (Jiang et  al.  2021). Simultaneously, the fine-grained 
multi-level tolerance loss follows a curriculum learning strategy 
for fine-grained prediction.

5.2   |   Learning Paradigm and Training Data

Designing learning paradigms and training data refers to im-
proving the model's perceptual ability for authentic distortions 
by adopting other learning paradigms and different training 
data construction methods. Many new learning paradigms, 
such as transfer learning, reinforcement learning, meta-
learning, contrastive learning, and domain adaptation, have 
been successfully applied in various tasks. Researchers have 
investigated different learning paradigms for NR-IQA. For 
example, Zhu et al. (2020) proposed MetaIQA, which applies 
meta-learning to address the limited generalisation ability of 
existing IQA methods that rely on pre-trained CNNs for eval-
uating diverse distortions. This approach first acquires prior 
knowledge shared across different distortions, then trans-
fers this knowledge to authentic distortions by fine-tuning 
the quality prior model. Tang et  al.  (2021) employed super-
vised contrastive learning to capture effective quality-aware 
representations. During training, sample pairs with shared 
quality labels are generated via data augmentation, and a 
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quality-aware contrastive loss is applied. This loss function 
clusters samples with similar quality in the embedding space 
while pushing apart those with differing quality. Similarly, 
Madhusudana et  al.  (2022) adopted elf-supervised learning 
to obtain quality-aware representations, with distortion type 
and intensity prediction as auxiliary tasks. Contrastive losses 
are constructed to distinguish the type and intensity of syn-
thetic distortions and the quality of authentically distorted 
images. A CNN is pre-trained on an unlabeled mixed data-
set. In the quality assessment stage, the pre-trained CNN is 
frozen, and only the quality prediction model is fine-tuned to 
map features to labels. Saha, Mishra, and Bovik  (2023) pro-
posed a mixture of experts framework called Re-IQA and 
trained two independent CNN encoders based on this frame-
work. Specifically, Re-IQA leverages the MoCo-v2 frame-
work to train a quality-aware encoder for low-level quality 
features and a content-aware encoder for high-level content 
features. These features are then concatenated and fed into a 
single-layer regressor for quality prediction. Zhao et al. (2023) 
hypothesized that patches within a single distorted image 
should have similar quality, whereas patches from different 
distorted images should display distinct quality levels. Based 
on this premise, they introduced a quality-aware contrastive 
loss. Moreover, a complex image degradation scheme was 
designed to simulate the real degradation process of images. 
This scheme includes mixed distortion degradation, shuffling 
order, higher-order degradation, and skip operations, forming 
a degraded image space of approximately 2 × 107 in size. To 
fully exploit the quality-aware information concealed within 
the vast quantity of degraded images, a NR-IQA model called 
QPT was trained using a self-supervised contrastive learning 
approach. Agnolucci, Galteri, et al. (2024) developed ARNIQA 
that uses contrastive learning to increase the similarity be-
tween image patches affected by the same type of degrada-
tion. Wang, Chan, and Loy (2023) employed a prompt learning 
method based on the CLIP model. By designing a prompt 
pairing strategy to leverage the prior knowledge in the CLIP 
model, quality-aware and abstraction-aware perceptions of im-
ages were achieved, while realising zero-sample image quality 
assessment. Recent research (Huang et  al.  2024; Agnolucci, 
Galteri, and Bertini 2024; Wu et al. 2023; Chen et al. 2025) has 
shifted towards the application of large multi-modal (LMM) 
models for IQA, as these models integrate visual and text in-
formation to capture complex relationships between image 
content and quality and achieve results that better align with 
human perception.

The data used for training DNNs also has a significantly influ-
ences on their performance and generalizability. To address 
the issue of insufficient samples in existing datasets, various 
approaches have been progressively developed, emphasising 
the design of training data. Zhang et  al.  (2021) presented a 
multi-dataset mixed training method and proposed UNIQUE. 
This method initially selects image pairs from various quality 
assessment datasets and computes the likelihood that the first 
image in each pair possesses superior quality. Subsequently, 
the proposed model undergoes optimization using a substan-
tial number of image pairs by employing the fidelity loss. 
Simultaneously, the uncertainty estimation is regularised 
during the optimization process through the enforcement of a 
hinge constraint. Sun et al. (2023) proposed a step-structured 

feature extraction network, and trained the network on a 
mixed distortion dataset. With the mixed training strategy, 
the assessment capability and generalisation ability of the 
model are enhanced from two perspectives: improving the 
effectiveness of features and increasing the diversity of con-
tent and distortions in the training samples. Yue et al. (2022) 
proposed SSLIQA based on a dua-branch CNN with semi-
supervised learning strategy, which transfer sample predic-
tion consistency from the teacher CNN to the student CNN. 
Subsequently, a substantial number of unlabeled training 
samples are utilised to enhance the effectiveness and general-
izability of the model.

5.3   |   Network Input and Output

Designing the input and output of the network refers to im-
proving the model's assessment ability by designing the input 
images, input branches, output features, or output tasks. For 
DNNs, in addition to the network structure, network modules, 
loss functions, learning paradigms, and training data, the input 
and output are also very important. Therefore, some research-
ers have focused on this direction from multiple perspectives 
to design NR-IQA methods. For instance, Zhang, Ma, Yan, 
et al. (2018) proposed DBCNN, which consists of two branches 
to separately address synthetic and authentic distortions. The 
synthetic branch is pre-trained on a large-scale dataset using 
distortion type and intensity classification. Meanwhile, the au-
thentic branch leverages a pre-trained VGG16 network. After 
pre-training, the features from both branches are fused through 
bilinear pooling, and the model is fine-tuned on IQA datasets. 
Zhou, Lang et al. (2022) used three different CNNs to extract dif-
ferent image features, where a modified VGG19 network and a 
VGG16 network are used to extract bottom texture information 
and edge local information, respectively, and extract high-level 
semantic information with a ResNet50 network. Subsequently, a 
feature fusion module leveraging attention mechanisms is em-
ployed to integrate the three types of features for predicting qual-
ity scores. Zhang, Shao, and Li (2022) introduced a GAN-based 
approach consisting of a quality-aware network and a quality 
regression network to address the challenge of handling vary-
ing distortions with a single model. The quality-aware network 
simulates the distortion information, while the quality regres-
sion network learns the mapping from features to quality scores. 
Pan, Yuan, et al. (2022) proposed VCRNet, a visual compensa-
tion restoration network composed of two main components: a 
visual restoration network and a quality estimation network. 
To accurately reconstruct restored images, the visual resto-
ration network integrates a visual compensation module and an 
asymmetric residual block (Lin and Wang 2018), and is trained 
using a hybrid loss function based on error maps. The quality 
estimation network then utilises the features extracted by the 
visual restoration network to predict image quality. Inspired by 
the HVS's global and local perceptual abilities, Yao et al. (2022) 
and Zhou et al. (2024) proposed OLN, which consists of a global 
distortion perception module and a local distortion observa-
tion module. The global distortion perception module obtains 
a global perception of image quality by classifying the distor-
tion category and level of the image, while the local distortion 
observation module extracts local information of the image by 
simulating the observer's approach. During quality prediction, 
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bilinear pooling is used to fuse the global perception and local 
information to achieve accurate perception of image quality.

The above methods are all designed for the input branches of the 
network. Next, we introduce methods designed for the input im-
ages. Ma et al. (2021) proposed AIGQA, which employs a GAN 
network to build an active inference module and incorporates 
both semantic consistency and structural integrity during opti-
mization to predict the primary content of the image. Then, using 
a multi-stream CNN analyzes scene information, distortion 
types, and content degradation to ultimately estimate the quality 
score. Yin et al. (2022) proposed CVRKD-IQA using knowledge 
distillation technology, which comprises a full-reference teacher 
branch and a non-aligned reference student branch. First, the 
full-reference teacher model is trained, and then non-aligned 
reference images are introduced in the non-aligned reference 
branch, and knowledge distillation is employed to transfer the 
learned distribution differences to the student branch.

In addition to designing input images and input branches, some 
methods also focus on designing the network's output or out-
put tasks. For example, Jiang et al. (2019) argued that the single 
scalar quality score output by existing models cannot reveal the 

subjective diversity of images that may receive multiple opinion 
scores. To tackle this issue, they used the empirical score dis-
tribution (ESD) to obtain a more informative vectorized label. 
By simultaneously predicting the quality score and ESD, the 
model's quality perception ability is improved. Yan, Bare, and 
Tan  (2019) introduced NSS feature output in addition to the 
quality score output, and simultaneously performed quality 
score prediction and NSS feature prediction through multi-task 
learning. Gao et al. (2022) proposed an NR-IQA method using 
fuzzy theory to predict image quality score distributions. The 
method includes three stages: feature extraction with VGG16, 
feature fuzzification to model cognitive uncertainty, and fuzzy 
propagation to predict score distributions. To enhance the accu-
racy of predictions, the method introduces a loss function based 
on the cumulative distribution function and quantiles, which 
helps capture the subjective uncertainty in opinion scores.

In summary, existing DL-based NR-IQA methods for authenti-
cally distorted images focus on addressing challenges through 
advancements in these three key areas. Developments in net-
work structure and loss functions aim to enhance the ability 
of models to capture complex distortions and align better with 
human perception. Innovations in learning paradigms and the 

TABLE 1    |    Summary of basic statistics for 20 widely used IQA databases.

Category Dataset Reference Distortion Type Level Resolution

LIVE (Sheikh, Sabir, and Bovik 2006) 30 779 5 5 or 4 768 × 512

TID2008 (Ponomarenko et al. 2009) 25 1700 17 4 512 × 384

TID2013 (Ponomarenko et al. 2015) 25 3000 24 5 512 × 384

CSIQ (Larson and Chandler 2010) 30 866 6 5 or 4 512 × 512

IRCCyN/IVC (Le Callet and Autrusseau 2005) 10 54 4 5 512 × 512

MICT (Horita et al. 2011) 14 168 2 6 768 × 512

A57 (Chandler and Hemami 2007) 3 54 6 3 512 × 512

Synthetic WED (Ma et al. 2016) 4744 94,880 5 — —

KADID-10K (Lin, Hosu, and Saupe 2019) 81 10,125 25 5 512 × 384

WIQ (De Simone et al. 2009) 7 80 — — 512 × 512

VCL@FER (Sazzad, Kawayoke, 
and Horita 2008)

23 552 4 6 683 × 512

ESPL (Kundu and Evans 2015) 25 50 5 4 512 × 512

LIVEMD (Jayaraman et al. 2012) 15 405 2 — 1280 × 720

MDID2013 (Gu et al. 2014) 12 324 — — 768 × 512, 
1280 × 720

MDID2016 (Sun, Zhou, and Liao 2017) 20 1600 — — 512 × 384

CID2013 (Virtanen et al. 2014) 0 480 — — 1600 × 1200

CLIVE (Ghadiyaram and Bovik 2015) 0 1162 — — 500 × 500

Authentic KonIQ-10K (Hosu et al. 2020) 0 10,073 — — 1024 × 768

SPAQ (Fang, Zhu, et al. 2020) 0 11,125 — — 960 × 720–
4608 × 3456

FLIVE (Ying et al. 2020) 0 39,810 — — 500 × 500–
6144 × 4096
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12 of 20 Expert Systems, 2025

design of training datasets contribute to more robust and gener-
alised models. Lastly, optimising network input and output en-
sures more accurate and interpretable quality predictions.

6   |   NR-IQA Datasets and Metrics

6.1   |   Datasets

Databases are essential for developing and evaluating NR-IQA 
algorithms. High-quality databases provide varying distortion 
types and levels, enabling researchers to train and test their al-
gorithms effectively. A comprehensive database can help to con-
struct more robust and generalised NR-IQA models. We present 
an in-depth review of 20 widely used databases in NR-IQA. These 
databases cover a broad spectrum of image content, distortion 
types, and subjective rating methodologies, catering to the di-
verse needs of researchers and practitioners. Table 1 summarises 
some representative datasets. Figures 5 and 6 show some exam-
ples of general synthetic and authentic distortions, respectively.

−	 LIVE (Sheikh, Sabir, and Bovik  2006) consists of 779 
distorted images, derived from 29 high-quality images 
degraded by 5 types of distortions: JPEG2000 compression 

(JP2K), JPEG compression (JPEG), white noise (WN), 
Gaussian blur (GB), and fast fading (FF). Each distortion 
type is applied at 4 or 5 intensity levels. The resolution 
of most images is 768 × 512.

−	 TID2008 (Ponomarenko et al. 2009) contains 25 reference 
images and 1700 distorted images across 17 distortion 
types, including additive JP2K, GB, JPEG, and Gaussian 
noise (GN). Each type is applied at 4 levels of severity. The 
resolution is 512 × 384.

−	 TID2013 (Ponomarenko et al. 2015) is an extended version 
of the TID2008, which consists of 3000 images syntheti-
cally degraded from 25 reference images with 24 distortion 
types. The resolution is the same as that of TID2008.

−	 CSIQ (Larson and Chandler 2010) consists of 30 reference 
images and 866 distorted images, spanning 6 types of dis-
tortion: JPEG, JP2K, GB, global contrast decrements, and 
additive pink GN. Each type is applied at 4–5 levels of se-
verity. The resolution is 512 × 512.

−	 IRCCyN/IVC (Le Callet and Autrusseau 2005) comprises 
10 high-quality reference images, each with a resolution of 
512 × 512 pixels. From these reference images, a total of 235 
distorted images have been generated using four distinct 

FIGURE 5    |    An illustration of four general synthetic distortions types. All samples are from CSIQ (Larson and Chandler 2010) dataset.
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13 of 20

processes: JPEG, JP2, LAR coding, and blurring. Each 
distortion type have been optimised in order to uniformly 
cover the whole range of quality.

−	 MICT (Horita et al. 2011) consists 14 reference images and 
168 distorted images. This dataset introduces two distor-
tion types: JPEG and JP2K, each applied at six different 
compression levels. The resolution is 768 × 512.

−	 A57 consists three reference images and 54 distorted im-
ages. This database have six distortion types with 3 levels: 
GB, JPEG, JP2K, quantization noise, JPEG transmission er-
rors, and JPEG2000 transmission errors. The resolution is 
512 × 512.

−	 WED (Ma et al. 2016) includes 4744 reference images and 
94,880 distorted images corrupted by JPEG, JP2K, GB, and 
WN, with 5 levels. The database consists of images with 
diverse resolutions. Although the dataset does not include 
human opinion scores, the authors propose a set of novel 
test criteria to comprehensively evaluate the performance 
of IQA models.

−	 KADID-10K (Lin, Hosu, and Saupe  2019) contains 81 
high-quality reference images and 10,125 distorted im-
ages, covering 25 distortion types such as compression 

artefacts, blurring, noise, and colour distortion. Each dis-
tortion type has five different severity levels. The resolu-
tion is 512 × 384.

−	 WIQ (De Simone et al. 2009) is a unique dataset designed 
specifically for evaluating NR-IQA algorithms in wireless 
image transmission. It contains seven reference images and 
80 distorted images, captured using a wireless link simu-
lator. The distortions in the WIQ database are caused by 
wireless channel errors, which sets it apart from other NR-
IQA datasets that focus on compression and noise-related 
distortions. The resolution is 512 × 512.

−	 VCL@FER (Sazzad, Kawayoke, and Horita 2008) contains 
23 reference images and 552 distorted images. The dataset 
covers four common distortion types with six different dis-
tortion levels. The resolution is 683 × 512.

−	 ESPL (Kundu and Evans 2015) contains 25 reference im-
ages and 500 distorted images, covering five distortion 
types: JPEG, JP2K, WN, GB, and FF, with four different 
distortion levels. The resolution is 512 × 512.

−	 CID2013 (Virtanen et al. 2014) is a comprehensive NR-IQA 
benchmark dataset consisting of 474 reference images and 
1786 distorted images. The CID2013 contains six distortion 

FIGURE 6    |    An illustration of four general authentic distortions types. All samples are from CLIVE (Ghadiyaram and Bovik 2015) dataset.
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types: GN, GB, JEPG, JP2K, contrast change (CC) and col-
our saturation change, with five different distortion levels. 
The resolution is 800 × 600.

−	 LIVEMD (Jayaraman et al. 2012) is an NR-IQA dataset for 
multi-distortion image quality assessment. The LIVEMD 
contains 15 high-quality images and 450 distorted images, 
covering two multiple distortion combinations with three 
distortion levels: blur+JPEG and blur+noise. The resolu-
tion is 1280 × 720.

−	 MDID2013 (Gu et  al.  2014) has 12 reference images and 
324 distorted images. Each reference image is progressively 
degraded by GB, WN, and JPEG. The resolution is 768 × 512 
or 1280 × 720.

−	 MDID2016 (Sun, Zhou, and Liao 2017) 1600 distorted im-
ages generated by applying 5 types of synthetic distortions 
(i.e., WN, GB, JPEG, JP2K, and CC) to 20 reference images. 
Distortions are applied in a defined sequence: GB or CC is 
introduced first, followed by JPEG or JP2K compression, 
and finally, WN is added. The image resolution is 512 × 384.

−	 CLIVE (Ghadiyaram and Bovik  2015) includes 1162 au-
thentically distorted images gathered from a variety of 
sources in real-world scenarios. The resolutions range from 
500 × 500 pixels to 640 × 960 pixels, reflecting the diversity 
of images in the real world.

−	 KonIQ-10K (Hosu et al. 2020) comprises 10,073 authenti-
cally distorted images collected from the Internet. Unlike 
other datasets, KonIQ-10k covers a wide range of real-world 
distortions naturally present in various scenes. The image 
resolution is 1024 × 768.

−	 SPAQ (Fang, Zhu, et al. 2020) is a unique NR-IQA dataset 
designed to assess image quality in smartphone photogra-
phy. It comprises 11,125 images captured using 66 different 
smartphone cameras, covering a broad range of real-world 
scenes, illumination conditions, and photography attrib-
utes. The resolutions range from 960 × 720 to 4608 × 3456 
and representing the diversity of smartphone camera speci-
fications and settings. SPAQ provides a comprehensive plat-
form for evaluating NR-IQA algorithms in the context of 
smartphone photography, considering both technical and 
aesthetic aspects of image quality.

−	 FLIVE (Ying et  al.  2020) is a large-scale, authentic dis-
tortion NR-IQA dataset sourced from the Flickr website. 
It consists of 39,810 images encompassing a broad spec-
trum of content, including landscapes, portraits, and ob-
jects, with resolutions ranging from 500 × 500 pixels to 
6144 × 4096. The FLIVE dataset focuses on real-world dis-
tortions naturally introduced during the capture, process-
ing, and transmission stages, such as motion blur, defocus 
blur, overexposure and compression artefacts.

6.2   |   Metrics

The performance of NR-IQA models is typically evaluated from 
three perspectives: prediction accuracy, monotonicity, and con-
sistency. These aspects correspond to three evaluation met-
rics (Antkowiak et  al.  2000): the Pearson Linear Correlation 

Coefficient (PLCC), the Spearman Rank-Order Correlation 
Coefficient (SRCC), and the Root Mean Square Error (RMSE).

PLCC is employed to assess the prediction accuracy of IQA mod-
els. Before calculating PLCC, a nonlinear regression is typically 
performed on the objective and subjective scores. The logistic 
function used for nonlinear regression is defined as follows:

In Equation (2), Q represents the original objective quality score, p 
denotes the regressed objective quality score, and �1, �2, �3, �4 and 
�5 are the model parameters. The PLCC is then calculated as:

In Equation (3), si and pi represent the subjective quality score 
and the objective quality score of the i-th image, respectively. 
s and p denote the mean subjective quality score and the mean 
objective quality score, respectively. SRCC is used to measure 
the monotonicity of the prediction results of IQA models. Its cal-
culation formula is expressed as:

In Equation (4), N represents the total number of samples, and di 
denotes the difference between the subjective quality score rank 
and the objective quality score rank of the i-th image.

RMSE is used to evaluate the consistency of the predictions 
made by IQA models. Its calculation formula is expressed as:

7   |   NR-IQA Challenges and Future Directions

Thanks to the emergence of DL and the availability of specific 
datasets, NR-IQA has undergone substantial advancements in 
recent years. However, despite these advancements, several 
challenges remain to be addressed to make NR-IQA meth-
ods more robust, reliable, and practically applicable. These 
challenges span various aspects of image quality assessment, 
from the diversity and complexity of real-world distortions to 
the reliability and consistency of subjective quality ratings. 
Moreover, the lack of generalisation ability across different 
datasets and devices, the high computational complexity of 
existing methods, and the need for effective integration with 
other image processing tasks pose additional hurdles in the 
development and deployment of NR-IQA methods. In this sec-
tion, an analysis of these challenges and potential future re-
search directions are provided.

1.	 Diversity and complexity of real-world distortions. 
Real-world images often experience multiple forms 
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distortions. These distortions can occur individually or 
in combination, leading to complex and diverse distor-
tion patterns. Moreover, the severity and distribution of 
distortions may vary significantly across different images 
and devices. Existing NR-IQA methods often struggle to 
capture the intricate characteristics of these real-world 
distortions, as they are typically trained on datasets 
with limited distortion types and levels. Developing al-
gorithms capable of efficiently modelling and evaluating 
the images with diverse and complex distortions remains 
a significant challenge. Future works should construct 
more comprehensive and representative datasets that 
cover a wider range of real-world distortions. This can 
be achieved by collecting images from social media plat-
forms, online image databases, and real-world capture 
devices. Moreover, researchers should consider incorpo-
rating novel distortion types, such as those arising from 
emerging technologies like virtual and augmented real-
ity, to ensure the relevance of NR-IQA methods in the 
swiftly evolving multimedia field. Regarding algorithm 
development, future efforts should investigate more so-
phisticated and flexible architectures, such as attention 
mechanisms, graph neural networks, and transformers, 
which have exhibited immense potential in capturing 
intricate and long-range dependencies in visual data. 
Additionally, incorporating prior knowledge of HVS 
with the statistical properties of natural images can help 
in developing more perceptually-aligned and interpreta-
ble NR-IQA models.

2.	 Reliability and consistency of subjective quality 
ratings. Subjective quality assessment serve as the foun-
dation of NR-IQA, as it provides the ground truth for al-
gorithm development and evaluation. However, obtaining 
reliable and consistent subjective quality ratings is a non-
trivial task. For image quality, human perception is in-
herently subjective and can be swayed by various factors, 
including individual preferences, viewing conditions, and 
cultural backgrounds. Designing subjective quality assess-
ment experiments that can effectively control these factors 
and minimise bias is crucial for collecting high-quality 
subjective data. Moreover, the choice of rating scales, such 
as discrete or continuous scales, and the number of rating 
levels can also impact the reliability and discriminatory 
power of subjective ratings. To improve the reliability and 
consistency of subjective quality ratings, future research 
efforts should prioritise the development of more sophisti-
cated experimental designs and data collection protocols. 
This can include the use of adaptive rating scales, which 
can dynamically adjust the rating levels in accordance 
with the perceived quality range of the images being as-
sessed. Moreover, incorporating anchor images with 
known quality levels can help in calibrating the subjec-
tive ratings and reducing inter-subject variability. Another 
promising direction is the development of crowdsourcing 
frameworks that can effectively aggregate the opinions of 
a vast number of diverse subjects while simultaneously en-
suring the quality and consistency of the collected data. 
Furthermore, exploring the nature of physiological sig-
nals, such as eye tracking and brain activity, can provide 
additional insights into the subjective perception quality 

and help in developing more reliable and objective quality 
assessment methods.

3.	 Cross-dataset and cross-device generalisation. The ef-
ficacy of NR-IQA algorithms is often assessed using specific 
datasets that may exhibit limited diversity in image content, 
distortion types, and distortion degrees. As a result, algo-
rithms that perform well on one dataset may fail to general-
ise to other datasets or real-world scenarios. This deficiency 
in generalisation capability impedes the practical applicabil-
ity of NR-IQA methods across diverse real-world scenarios. 
Future research should concentrate on devising algorithms 
capable of learning more robust and transferable features 
to improve the generalisation ability. This can be achieved 
through techniques such as adversarial learning, where the 
model is insensitive to domain variations while preserving 
the quality-related information. Moreover, incorporating 
unsupervised and self-supervised learning approaches can 
help in learning more generic and task-agnostic features that 
can generalise well to new datasets and devices. Another 
promising direction is the development of meta-learning 
frameworks, which can adapt the model parameters to 
new domains with only a few examples, thus reducing the 
need for extensive fine-tuning. Additionally, future works 
should explore domain adaptation techniques, such as fea-
ture alignment and instance weighting, to bridge the gap 
between different datasets and devices.

4.	 Computational efficiency and real-time performance. 
Most NR-IQA algorithms, especially those DL-based meth-
ods, have high computational complexity due to their large 
model sizes and the need for extensive feature extraction. 
This high computational overhead hinders their deployment 
in real-time scenarios, such as live streaming services and 
real-time camera quality monitoring systems. To address the 
computational challenges of NR-IQA methods, upcoming 
research efforts should focus on the development of more 
streamlined and lightweight models. This can be achieved 
through techniques such as network pruning, where the re-
dundant and less informative connections in the model are 
removed, resulting in a more compact and efficient architec-
ture. Moreover, exploring the use of quantization and bina-
rization techniques can mitigate the memory requirements 
and computational complexity of these models, thereby 
enhancing their suitability for deployment on devices with 
limited resources. Another promising direction is the de-
velopment of adaptive inference frameworks, where the 
model can dynamically adjust its complexity based on the 
input image and the available computational resources. This 
can be achieved through techniques such as early exit and 
dynamic routing, which can selectively activate different 
model components based on the intricacy of the input image.

5.	 Integration of quality assessment with other tasks. 
NR-IQA is closely related to various low-level image pro-
cessing tasks. The main goal of these tasks is to enhance 
the visual quality of images. By integrating quality as-
sessment metrics as optimization targets or performance 
evaluation criteria, the effectiveness of these tasks can be 
significantly augmented. Nevertheless, incorporating NR-
IQA methods into these tasks presents a complex challenge, 
as it necessitates a profound comprehension of the intricate 
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relationship between image quality and the particular task 
under consideration. To effectively integrate NR-IQA meth-
ods with other image processing tasks, future research 
should prioritise the development of more comprehen-
sive and integrated learning architectures that facilitate 
seamless end-to-end processing. This can be achieved by 
jointly optimising the image processing and quality assess-
ment components, allowing them to learn complementary 
and task-specific features. Moreover, exploring the use of 
quality-aware objective functions can help in guiding the 
image processing algorithms towards generating visually 
pleasing results that are consistent with human perception. 
Another promising direction is the development of multi-
task processing frameworks, where the model can simul-
taneously learn to perform multiple related tasks. This can 
help in learning more robust and generalizable features 
that can benefit all the tasks involved. Additionally, future 
efforts should investigate attention mechanisms and feed-
back loops to enable more dynamic and interactive integra-
tion of quality assessment with image processing tasks.

8   |   Conclusion

This survey provides a comprehensive overview of the current state 
of NR-IQA, focusing on methodologies, datasets, and challenges 
in the field. To provide a structured framework for comprehend-
ing the most advanced NR-IQA techniques, we have developed 
an original categorization system that classifies these methods 
according to their underlying design principles and the types of 
distortions they address. Additionally, we review 20 widely used 
NR-IQA datasets, detailing their size, distortion types, and levels, 
which serve as critical benchmarks for evaluating these methods. 
We also discuss key challenges faced by NR-IQA methods, includ-
ing handling diverse and complex distortions, achieving robust 
generalisation across datasets and devices, and meeting real-time 
computational requirements. To address these challenges, we 
propose several future research directions, such as developing 
distortion-agnostic models, leveraging large-scale datasets with 
realistic distortions, and improving model efficiency.
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