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Abstract
Retinal fundus images play significant roles in the early detection and treatment of various ocular diseases. However, they are 
often suffered from low luminance in the process of shooting. To address this problem, we propose a Complexity Reduction 
Retinex (CR2 ) model for the enhancement of low luminance retinal fundus images. The proposed method enables the divided 
illumination component to be spatially smooth and the reflectance component to be piece-wise continuous. Meanwhile, 
to improve the computational efficiency, we divide the illumination and reflection components into two independent sub-
problems and solve them efficiently by Alternating Direction Minimizing (ADM) method. Comparative results demonstrate 
that the proposed method outperforms the state-of-the-art methods in terms of qualitative and quantitative evaluations.

Keywords  Medical image process · Retinal fundus image enhancement · Retinex decomposition · Alternating direction 
minimizing

1  Introduction

Medical imaging analysis plays the significant auxiliary role 
in the diagnosis of diseases and the formulation of treat-
ment plans. Especially for human retinal images, it has the 
potential to reveal important information about the retina, 
ophthalmology, and even systemic diseases such as diabetes, 
hypertension, and arteriosclerosis. However, there are degra-
dations in the captured medical images (Wu et al. 2016; Jeon 
et al. 2010), e.g., uneven and low brightness, which affect 
the diagnosis results and even lead to misdiagnosis. There-
fore, high-quality retinal fundus images are essential for the 
timely detection and treatment of eye diseases (Lai et al. 
2021). To this aim, the demand for an effective yet robust 
model for retinal fundus image luminance-level enhance-
ment is highly urgent.

The low luminance enhancement of retinal fundus images 
is a significant branch of low-light image enhancement. 
There are various methods to deal with low-light image 

enhancement problem, and they can be commonly classi-
fied as histogram equalization (HE) based methods (Ibrahim 
and Kong 2007), Retinex based methods (Lee et al. 2013), 
and learning based methods (Lore et al. 2017). The HE 
based methods enhance the visibility of low-light images 
by flattening the histogram via stretching the correspond-
ing dynamic range of the intensity (Singh and Dixit 2015). 
HE based methods can be further classified into global 
and local methods. Although these methods are effective 
for dynamic range enhancement, the enhanced image often 
exhibits unnatural details. The Retinex based methods 
enhance low-light images by image decomposition. These 
methods decompose an image into two separate compo-
nents, namely, reflectance and illumination. Then, the two 
decomposed components are further processed to obtain the 
enhanced results. The single-scaled Retinex (SSR) (Jobson 
et al. 1997a) method and multi-scaled Retinex (MSR) (Job-
son et al. 1997b) method are the pioneering works in this 
field. However, the estimation of the illumination and reflec-
tance components from the observed image is inherently an 
ill-posed problem. In order to make this problem tractable, 
some attempts are to transform the illumination or reflec-
tance decomposition into a statistical reasoning problem. By 
proposing different priors for illumination and reflectance 
and defining variational optimization, these methods seek 
the optimal solutions (Fu et al. 2015). The deep learning 
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based methods model the feature maps from the high visual 
quality images to enhance the low-light images. Although 
the deep learning based approaches have achieved remark-
able achievements, the enormous computational burden in 
practical application and the complex structure of the model 
limit their practical application.

In this paper, we aim to build an effective Retinex model 
combined with two constrains to make illumination map 
piece-wise smooth and reflectance component piece-wise 
continuous. The proposed method considers the whole 
update problem as two separate problems which are com-
puted independently. To reduce the computation cost and 
improve accuracy, an Alternating Direction Minimizing 
(ADM) based method is presented to solve the complex-
ity problem efficiently. Experiments on public datasets are 
conducted to prove the superiority of our method in low 
luminance retinal fundus image enhancement compared with 
other state-of-the-art methods.

The organization of this paper is as follows: In Sect. 2, 
the methods of low-light image enhancement are briefly 
reviewed. In Sect. 3, the proposed approach is described in 
detail. Experimental results are demonstrated in Sect. 4. The 
work is concluded in Sect. 5.

2 � Related work

The methods for retinal fundus image luminance-level 
enhancement can refer to the methods of low-light image 
enhancement which are divided into three categories, 
namely histogram equalization (HE) based method, deep 
learning based method and Retinex based method.

2.1 � Histogram equalization based method

The HE based methods enhance the image by stretching the 
dynamic range of the image according to its histogram (Pizer 
1990). These methods may result in unsatisfactory local illu-
mination and amplifying potentially strong noise. BBHE 
(Kim 1997) uses independent histogram equalization for two 
sub-images obtained by mean decomposition of the input 
image, and constrain the obtained equalized sub-images. 
Zuiderveld (1994) proposed a Contrast Limited Adaptive 
Histogram Equalization (CLAHE) algorithm, which can 
alleviates the block effect effectively and suppress the noise 
introduced in the process of enhancement. The BPDHE 
(Ibrahim and Kong 2007) algorithm smooth the histogram 
of the input image by single-dimensional Gaussian filter, 
and then segments the result histogram before the process 
of histogram equalization. Generally, the HE based methods 
are not pliable enough to adjust the visual attributes in the 
local areas, resulting in unsatisfactory local appearances.

2.2 � Deep learning based method

With the in-depth development of deep learning (Li et al. 
2019), the performance of low-light image enhancement 
has been significantly improved. Lore et al. put forward 
the first supervised low light level enhancement method, 
named LLNet (Lore et al. 2017) to illuminate the image 
with minimum pixel saturation. LLCNN (Tao et  al. 
2017) utilizes a specially designed convolution module 
to enhance the image via using multiscale feature map. 
Wei et al. (2018) proposed the Retinex-Net by assuming 
the consistency of reflectance components between nor-
mal lighting and low-light images and the illumination 
component is brightened, and the reflectance component 
is denoised. Built by Zhang et al. (2019), the Kindling the 
Darkness (KinD) network connects the characteristic level 
of illumination and reflectance in the decomposition step. 
The KinD is trained by the LOL dataset (Wei et al. 2018) 
with paired images. Zero-DCE (Guo et al. 2020) trains a 
zero reference curve estimation network to estimate pixel-
wise and high-order curves to dynamically adjust the range 
of input low-light images. Yang et al. (2020) presents a 
recursive band network and uses semi-supervised strategy 
for training. Jiang et al. (2021a) proposed an Enlighten-
GAN to get rid of the construction of pairwise datasets. 
There is no doubt that methods based on deep learning can 
play excellent performance in low-light image enhance-
ment, and these methods gradually occupy the mainstream 
in this domain. However, it is limited by many factors, 
such as the difficulty of acquiring high quality training 
data sets and the sharp increase of time cost and computa-
tion burden caused by model complexity.

2.3 � Retinex based method

Established by Land and McCann (Land 1977), Retinex 
theory can be viewed as a fundamental theory that models 
the human eye’s perception and color characteristic. The 
goal of the theory is to determine the reflectance property 
of the image by separating the effect of illumination. Pio-
neering works on Retinex, such as single-scaled Retinex 
(SSR) (Jobson et  al. 1997a) method and multi-scaled 
Retinex (MSR) (Jobson et al. 1997b) method consider the 
adjusted reflectance component as the final result, usually 
make the enhanced images over-enhanced and non-aes-
thetic. Sequentially, various enhancement methods based 
on the Retinex have been proposed (Ren et al. 2020; Guo 
et al. 2017; Gu et al. 2020). Kimmel et al. (2004) proposed 
a variational framework Retinex algorithm based on tran-
scendental assumptions. Based on this framework, the ill-
posed problem of illumination and reflectance component 
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estimation is transformed into an optimal quadratic pro-
gramming problem. Using two specially tailored bilat-
eral filters, Elad (2005) proposed a non-iterative Retinex 
algorithm to better process the edge information in the 
illumination component. Wang et al. (2013) proposed a 
bright-pass filter that combines the neighbor brightness 
information to preserve the natural brightness of the 
image. Proposed by Fu et al. (2016), the MF fuses the mul-
tiple derivatives of the initial illumination map to adjust 
the illumination. The Retinex based methods have obvious 
benefits, and they are easy to implement. These methods 
have prominent superiority in enhancing the contrast and 
brightness of images, as well as image color enhancement.

3 � Methodology

3.1 � Retinex theory

The traditional Retinex model elaborates the composition of 
low light image as,

where the symbol ⊙ means the element-wise multiply and 
O is the observed image. The reflectance component R 

(1)O = L⊙ R,

describes the intrinsic properties of the object in the scene, 
which should be consistent under diverse brightness condi-
tions. And the illumination component L represents the vari-
ous illumination corresponding to the object. The Retinex 
decomposition is often performed in HSV space, as the HSV 
space is in line with human visual perception (Jiang et al. 
2021b; Zhang et al. 2020). Furthermore, the V channel is 
naturally considered as the initial illumination component 
for Retinex decomposition. The final result is generated by 
converting the enhanced result from HSV space to RGB 
space.

Some approaches use the term of ‖O − L⊙ R‖2
F
 to esti-

mate the components R and L simultaneously. Specifi-
cally, one component is updated by considering the previ-
ous value of the other component as a constant. However, 
some degradations are often observed during the process, 
which lead to some error amplification. Besides, this kind 
of alternatively updated method is often suffered from 
complexity and computation burden. To improve the com-
putational efficiency, we consider the whole update prob-
lem as two separate problems, and solve them efficiently 
by Alternating Direction Minimizing (ADM) method. The 
overall architecture of the proposed model is shown in 
Fig. 1.

Retinex
decomposition

Reflectance map

V ChannelInput

Illumination map

Output

Fig. 1   The framework of the proposed model. Given the input low-
light RGB image, it is first converted into HSV space. The V channel 
is normalized and decomposed into illumination and reflectance com-
ponents. Then, these two components are estimated with the structure 

and texture constraints, respectively. The estimated illumination and 
reflectance components are integrated and the HSV space is trans-
formed to the RGB space to generate the final result
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3.2 � Illumination map estimation

The proposed sub-model for illumination component estima-
tion is formulated as

where ‖‖‖L − L̂
‖‖‖
2

F
 constrains the fidelity between the initial 

illumination map L̂ and the estimated illumination map L. 
The sx‖‖▽xL

‖‖
2

F
 and sy

‖‖‖▽yL
‖‖‖
2

F
 can make the illumination 

map piece-wise smooth and preserve major structure. The 
symbol ▽ means the first-order partial derivative. � is the 
regularization coefficient.

Inspired by the work of Xu et al. (2012), the weight matrix 
is formulated as

where G� is a Gaussian kernel with window size � = 3, and 
x/y means the weight matrix in the x-direction (horizontal) 
or the y-direction (vertical). The parameter � is the constant 
to avoid the zero denominator and � controls the smooth 
degree of the illumination map. The pixel q belongs to the 
region �(p) around the certain pixel p. Then, the relative 
total variation weight of each individual pixel is calculated. 
The objects of this operation are all pixels in the image, and 
the weights of the pixels constitute the structure information 
map of the image.

The augmented Lagrangian formation of (2) can be written 
as the follows,

where � is the positive penalty scalar and Z is the Lagran-
gian multiplier. The proposed optimization method based on 
the framework of Augmented Lagrangian Multiplier with 
Alternating Direction Minimizing (ALM-ADM). The ADM 
algorithm is commonly used to solve the convex problem 
(Lin et al. 2011; Hong and Luo 2017) such as Eq.(2). The 
solver updates one variable at a time by modifying other 
variables, and each step of the updating results in a closed-
form solution. We provide the solution to each sub-problem 
of various variables.

1)Solution to L  problem: The terms related to L in Eq.(4) 
are selected and formulated as

(2)argmin
L

‖‖‖L − L̂
‖‖‖
2

F
+ 𝛼(sx

‖‖▽xL
‖‖
2

F
+ sy

‖‖‖▽yL
‖‖‖
2

F
),

(3)s(x∕y) ←
∑

q∈�(p)

G�

|||∇x∕yL
|||

|||G�∇x∕yL
||| + �

�

(4)
�(L,B, Z) =‖L − L̂‖2

F
+ 𝛼(sx

��▽xB
��
2

F
+ sy

���▽yB
���
2

F
)

+ Z(B − L) +
𝜇

2
‖B − L‖2

F
, s.t. B = L

(5)argmin
L

‖L − L̂‖2
F
+ Z(B − L) +

𝜇

2
‖B − L‖2

F
.

Then, differentiate the respect to L in Eq. (5) and set the 
derivative result to 0, the estimated L of ( k + 1)-th iteration 
can be expressed as

where I is an identity matrix. Specifically, the initial illumi-
nation component L0 is set as the V channel.

2)Solution to B  problem: The terms related to B in 
Eq.(4) are collected and formulated as

Then, differentiate the respect to B in Eq. (7) and set the 
derivative result to 0, the estimated B of ( k + 1)-th iteration 
can be expressed as

where Dx and Dy are the Toeplitz matrices in horizontal and 
vertical directions.

3)Updating Z and � : The iteration problem of Z and � 
can be solved via

where � is the step size, which is used to update the penalty 
parameter.

3.3 � Reflectance map estimation

Once the estimated illumination map is obtained, the term 
of ‖O − L⊙ R‖2

F
 is used to constrain the fidelity between the 

observed image O and the reconstructed image L⊙ R . The 
formation of reflectance map estimation can be written as

where t(x∕y) ←
∑

q∈𝛺(p) 1⊘ (
����

G𝜎�∇x∕yR�
�G𝜎∇x∕yR�+𝜖

����

𝜆

+ 𝜀) . � is a con-

stant to avoid zero denominator ( � is set as 0.0001 in this 
work). � is a positive parameter to control the sharpness 
degree of the reflectance map. � is the regularization coef-
ficient. And the tx‖‖▽xR

‖‖
2

F
 and ty

‖‖‖▽yR
‖‖‖
2

F
 are the regulariza-

tion terms to enable the reflectance map piece-wise continu-
ous. The solution to Eq. (10) is

(6)Lk+1 =
𝜇Bk + Zk + 2L̂

(2 + 𝜇)I
,

(7)
argmin

B

�(sx
��▽xB

��
2

F
+ sy

���▽yB
���
2

F
) + Z(B − L)

+
�

2
‖B − L‖2

F
.

(8)Bk+1 =
�Lk+1 − Zk

2�(DT
x
sxDx + DT

y
syDy) + �I

,

(9)
Zk+1 ← Zk + 𝜇k

(
Bk+1 − Lk+1

)
,

𝜇k+1 ← 𝜇k𝜌, 𝜌 > 1,

(10)
argmin

R

‖O − L⊙ R‖2
F

+ 𝛽(tx
��▽xR

��
2

F
+ ty

���▽yR
���
2

F
),
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3.4 � Illumination adjustment

After obtaining the estimted components of the illumination 
L and the reflectance R, the goal is to adjust L to improve 
the visibility and brightness of the input image. To this aim, 
we adopt the Gamma correction (Pang et al. 2017; Wu et al. 
2020) to adjust the illumination component. The corrected 
illumination is written as

The enhanced result Ô is generated by

where � = 2.2 is an empirical value (Gu et al. 2020; Gao 
et al. 2018). Finally, the enhanced image is generated by 
reversing the space from HSV to RGB.

(11)R =
LTO

�
∑

d∈{x,y} D
T
d
tdDd + LTL

.

(12)L̂ = L
1

𝛾 .

(13)Ô = R⊙ L
1

𝛾 ,

4 � Experiments and discussion

4.1 � Experimental Settings

All experiments are carried out on MATLAB R2019b with 
32G RAM and Intel Core i7-9700K CPU @3.60GHz. The 
parameters � , � , � , and � , are set as 0.01, 0.5, 1.25 and 2.5, 
respectively. The step size � in Eq. (9) is set as 1.5 in this 
work. For retinal fundus image enhancement effectiveness 
evaluation, we verify the proposed method on the CHASE_
BD1 dataset (Zhang et al. 2016) which contains 28 color 
retinal fundus images ( 999 × 960 ), and a selected 40 samples 
( 4288 × 2848 ) from IDRiD dataset (Porwal et al. 2018).

4.2 � Qualitative evaluation

To assess the enhancement result of the proposed model, we 
carry out comparative comparisons with six state-of-the-
art (SOTA) methods, i.e., HE (González and Woods 1981), 
SSR (Jobson et al. 1997a), CVC (Çelik and Tjahjadi 2011), 
MSRCR (Rahman et al. 2004), Dong et al. (2011), and LIME 
(Guo et al. 2017). Figures 2, 3, 4, 5 show the comparative 
results among various methods. It can be noticed from the 
comparative results that, although some SOTA methods can 
brighten the low-light retinal fundus image, there are also 
still some unsatisfactory degradations, e.g., color distortion 

Fig. 2   Visual evaluation of an exemplar in CHASE_BD1  (Zhang 
et al. 2016) dataset with the SOTA methods. a Input b HE (González 
and Woods 1981), c SSR  (Jobson et  al. 1997a), d CVC (Çelik and 

Tjahjadi 2011), e MSRCR (Rahman et al. 2004), f Dong (Dong et al. 
2011), g LIME (Guo et al. 2017), h Ours
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and noise. For example, HE (González and Woods 1981) 
performs well in darkness brightening, as shown in Fig.4b, 
but this global enhancement method may cause color dis-
tortion and blurring effect, e.g., in Fig. 3b. The SSR (Job-
son et al. 1997a) may cause the artifacts and insufficient 
illumination enhancement in the results. In Figs. 4c and 
5c, the results generated by SSR (Jobson et al. 1997a) tend 

to be dislocated and ghosted. As stated in Figs. 4e and 5e, 
MSRCR (Rahman et al. 2004) can effectively improve the 
brightness, but results may tend to contain the color distor-
tion. Besides, the high amount of mingled noise is intro-
duced at the edge of eyes. CVC (Çelik and Tjahjadi 2011) 
method could enhance the low-light images with advisably 
detail preserved. Nevertheless, the enhanced images are 

Fig. 3   Visual evaluation of an exemplar in CHASE_BD1 Zhang et al. 
(2016) dataset with the SOTA methods. a Input b HE  (González 
and Woods 1981), c SSR  (Jobson et  al. 1997a), d CVC (Çelik and 

Tjahjadi 2011), e MSRCR (Rahman et al. 2004), f Dong (Dong et al. 
2011), g LIME (Guo et al. 2017), h Ours

Fig. 4   Visual evaluation of an exemplar in IDRiD dataset with the SOTA methods. a Input b HE (González and Woods 1981), c SSR (Jobson 
et al. 1997a), d CVC (Çelik and Tjahjadi 2011), e MSRCR (Rahman et al. 2004), f Dong (Dong et al. 2011), g LIME (Guo et al. 2017), h ours
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often suffered from color distortion and insufficient bright-
ness. Although, the method such as Dong et al. (2011) and 
LIME (Guo et al. 2017) achieve the same results with the 
proposed method in Fig. 2f and g, these two methods could 
also bring noise and obscure at the edge of eyes as shown 
in Fig. 5f and g. Compared with the aforementioned meth-
ods, the proposed method could achieve satisfactory visual 
quality with relatively more natural and aesthetics subjective 
perception.

4.3 � Quantitative evaluation

To verify the quantitative assessment, we employ three 
image quality assessment methods, namely natural image 
quality evaluator (NIQE) (Mittal et al. 2013), peak sig-
nal noise ration (PSNR) (Huynh-Thu and Ghanbari 2008; 
Wang et al. 2019), and structural similarity index measure 

(SSIM) (Wang et al. 2004). NIQE indicates the quality of 
the image by comparing the difference between the input 
image’s feature distribution and the specific feature distribu-
tion. This distribution utilizes measurable deviations from 
statistical laws observed in natural images. A lower NIQE 
value means that the gap between the enhanced image and 
the natural image is smaller and the quality of the image is 
better. PSNR quantifies the degree that how the image is 
affected by noise, approximating the human perception of 
the image. For PSNR, the bigger value represents the bet-
ter image quality. SSIM quantifies a measure or prediction 
of image quality relative to the original uncompressed or 
undistorted image as a reference. For SSIM, the bigger value 
represents the better image quality.

The quantitative comparative results among different meth-
ods on CHASE_BD1 and IDRiD are visible in Figs. 6 and 
7. The numbers in the vertical axis represent the values of 

Fig. 5   Visual evaluation of an exemplar in IDRiD dataset with the SOTA methods. a Input b HE (González and Woods 1981), c SSR (Jobson 
et al. 1997a), d CVC (Çelik and Tjahjadi 2011), e MSRCR (Rahman et al. 2004), f Dong (Dong et al. 2011), g LIME (Guo et al. 2017), h ours

Fig. 6   Quantitative comparisons among different methods on CHASE_BD1 dataset
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different competitors on the same quantitative assessment 
method. As demonstrated in Fig. 6, the CR2 outperforms the 
competitors on CHASE_BD1 dataset Zhang et al. (2016) in 
terms of NIQE, PSNR, and SSIM. In Fig. 7, it can be observed 
that the proposed method achieved the third-best score in 
NIQE, and the best score in PSNR and SSIM on IDRiD (Por-
wal et al. 2018) dataset, respectively. Although MSRCR (Rah-
man et al. 2004) achieves the best result in terms of NIQE 
on IDRiD (Porwal et al. 2018) dataset, it performs poorly on 
visual evaluation, as shown in Fig.5e.

As for the effectiveness verification of the proposed ADM 
optimization method, we measure the processing time of per 
single image in the CHASE_BD1 (Zhang et al. 2016) dataset. 
The CHASE_BD1 dataset consists of 14 pairs of retinal fundus 
images with a corresponding left (L) and right (R) label. We 
set the convergence condition as two-folds, 

	 (i)	 ‖‖Lk+1 − Lk
‖‖F∕‖‖Lk‖‖F ≤ 10−3,

	 (ii)	 The maximum iteration number K = 20.

The comparison of processing time between ADM optimiza-
tion method and alternative optimization method is shown in 
Fig. 8a. By comparing the processing speed, it can be observed 
that the proposed ADM optimization method can greatly 
reduce the time complexity.

The convergence curves of the illumination component 
on an RGB image from the CHASE_BD1 dataset is obtained 
by averaging the convergence error of ten times. The results 
are depicted in Fig. 8b. As demonstrated in Fig. 8b, with the 
increase of iteration number, the proposed ADM optimization 
method converges faster and reaches to a smaller error.

5 � Conclusion

In this paper, we proposed an effective Complexity Reduc-
tion Retinex (CR2 ) model to enhance the low luminance 
retinal fundus images. Unlike the traditional Retinex model, 
the regularization terms are adopted to ensure the spatial 
smoothness of the illumination map and the piece-wise con-
tinuousness of the reflectance map. We adopt the Alternat-
ing Direction Minimizing method to solve the complexity 
problem efficiently. Qualitative and quantitative evaluations 
on two public low luminance retinal fundus datasets have 
proven the superiority of the proposed method compared 
with the state-of-the-art methods.
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