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a b s t r a c t 

Single image super-resolution (SISR) technology can reconstruct a high-resolution (HR) image from the 

corresponding low-resolution (LR) image. The emergence of deep learning pushes SISR to a new level. 

The successful application of the recursive network motivates us to explore a more efficient SISR method. 

In this paper, we propose the deep recursive up-down sampling networks (DRUDN) for SISR. In DRUDN, 

an original LR image is directly fed without extra interpolation. Then, we use the sophisticated recur- 

sive up-down sampling blocks (RUDB) to learn the complex mapping between the LR image and the HR 

image. At the reconstruction part, the feature map is up-scaled to the ideal size by a de-convolutional 

layer. Extensive experiments demonstrate that DRUDN outperforms the state-of-the-art methods in both 

subjective effects and objective evaluation. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Limitations of optical sensors lead to the difficulty of ob-

aining an image with the ideal resolution. Single image super-

esolution (SISR) technology can reconstruct a high-resolution (HR)

mage from the corresponding low-resolution (LR) image. SISR has

een employed in various applications, such as surveillance [1] ,

edicine [2] and object recognition [3] . However, since an LR im-

ge may be corrupted via various degradation operations, SISR is

ften regarded as an ill-posed problem. The key for SISR is to learn

he mapping between LR and HR image pairs. 

To reconstruct an HR image, numerous SISR methods have been

eveloped. Among them, interpolation based methods are the most

riginal and the simplest SISR methods. These methods require a

ittle running time but also lead to blurring and jaggy artifacts

ear the edges of the recovered images. Moreover, to learn the

apping between LR and HR image pairs, some example-based

ethods are proposed. They can be roughly categorized into in-

ernal example-based methods [4–7] and external example-based

ethods [8–13] . Generally, internal example-based methods learn

he mapping via the LR image itself, while external example-based

ethods learn the mapping via an external dataset. Some machine

earning algorithms are widely employed for SISR, such as sparse
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epresentation [8,9] , random forest [10] , neighbor embedding [11] ,

nd neighborhood regression [12,13] These methods significantly

mprove the SISR performance. However, these are still some draw-

acks remained to be settled, such as high computational costs,

ong running time and huge model size. 

Recently, deep learning (DL), as an important branch of machine

earning algorithms, has achieved great success in many computer

ision tasks, such as object detection, image segmentation, face

ecognition and image retrieval [14–17] . DL also plays an impor-

ant role in SISR as reviewed in [18] . 

Dong et al. (SRCNN) [19] first introduced the convolutional neu-

al network (CNN) to SISR. In their method, a CNN with lightweight

tructure was employed to model the mapping so as to generate

he recovered image. The effectiveness of their method demon-

trates the feasibility of DL and provides a theoretical basis for

he future works. Liu et. al [20] combined sparse prior with DL to

enerate the recovered image. This method also utilized the prior

nowledge of the image, thus the recovered image can be obtained

n a more robot way. It’s a rule of thumb that the deeper net-

ork can obtain better performance. This was demonstrated by

GGnet [21] via winning the ImageNet image classification chal-

enge [22] . Inspired by this, Kim et al. increased the network depth

o 20 in VDSR [23] . By deepening the network, the performance is

ignificantly improved compared with SRCNN. However, very deep

eural network often faces gradient vanishing/exploding. To solve

his problem, VDSR adopted gradient clipping. Besides, skip con-

ections were employed, and the networks only needed to learn

https://doi.org/10.1016/j.neucom.2019.04.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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the residual component, rather than the whole image. Skip con-

nections and gradient clipping not only reduce the possibility of

gradient vanishing/exploding, but also accelerate the convergence

of the network. ResNet [24] is an effective network architecture. It

has been employed for SISR in many successful methods. Lim et al.

proposed EDSR [25] by use ResNet with removing some unneces-

sary component to improve the performance and boost the SISR

process. Even though, deep networks still require a lot of compu-

tational costs and running time. On this issue, Shi et al. [26] pro-

posed a real-time SISR method by using a compact convolutional

network model with the up-sample filter in the last layer to up-

sample the output image into an ideal size. By doing so, the com-

putational cost is efficiently reduced. Similarly, based on [19] , Dong

et al. [27] adopted deconvolution al layers with small convolutional

kernel size to accelerate the SISR process. Another efficient way to

reduce the computational cost is to use recursive blocks. Such as

DRCN [28] , DRRN [29] , and DSRN [30] . These methods generally

adopt a series of recursive blocks which are employed to learn the

residual component of the recovered image. Due to the parameters

are shared, these methods can reduce the parameter amount and

avoid overfitting. 

Generative adversary network (GAN) [31] provides another kind

of solutions for SISR. Generally, the recovered image obtained via

the generator is fed to discriminator, then discriminator will judge

if the input image is an ground-truth image or an generated im-

age. With such zero-sum game between generator and discrimina-

tor, the generated image can recover photo-realistic textures. Ledig

et al. [32] first applied GAN to SISR. Wang et al. [33] used spatial

feature transform layers following the GAN network to generate

the recovered image with realistic and visually pleasing textures.

Bulat and Tzimiropoulos proposed Super-FAN [34] which can ac-

curately improve the resolution of LR face images. Recently, Wang

et al. [35] won the PIRM2018-SR Challenge [36] using their ESR-

GAN, which well balances the trade-off between quantitative and

perceptual qualities. 

Loss function has a significant influence for DL based SISR

methods. The L2 loss, also named mean square error loss, is widely

deployed in some image restoration methods such as [19,27,37] .

For SISR, L2 is to calculate the L2 distance (i.e. Euclidean distance)

between generated image and HR image. However, using L2 often

leads to some undesirable artifacts, which is not suitable for the

human vision system (HVS). This is caused by that L2 assumes the

noise is independent of the local characteristics. To reduce the ar-

tifacts introduced by L2 loss, the L1 loss can converge more fast,

with an appropriate error penalization [38] which provides a sig-

nificant improvement compared with the L2 loss. HVS is sensitive

to local structural changes, thus structural similarity index (SSIM)

can be used to measure the difference between the generated im-

age and the HR image. Perceptual loss, as proposed by Johnson

et al. [39] , considers the correlations among high-level features. By

using perception loss, the recovered image can be more realistic.

Based on this, Ledig et al. [32] proposed the perceptual loss for

GAN, in which the adversarial loss is also considered. 

We propose a novel deep recursive up-down sampling networks

(DRUDN) for SISR. Unlike DRRN, which accept the LR images ob-

tained via bicubic interpolation as the input, we directly feed an

original LR image to our network. Then, by passing a number of

sophisticated recursive up-down sampling blocks (RUDB), a set of

feature maps with same width and height as the input LR image

are obtained. In the reconstruction part of our network, the LR im-

age is up-scaled to the ideal size by a de-convolutional layer. By

doing so, the reconstruction performance is significantly improved.

To sum up, there are mainly two contributions: 

1. We propose the deep recursive up-down sampling networks

(DRUDN) for SISR. Unlike DRRN, which accept the LR images
obtained via bicubic interpolations the input, we directly feed

the original LR images to our network. At the reconstruction

part, the feature maps are up-scaled to the ideal size by us-

ing a de-convolutional layer. Our network can obtain a highly

accurate recovered image. It outperforms other state-of-the-art

recursive SISR networks. 

2. We propose recursive up-down sampling blocks (RUDB) to con-

struct very deep trainable networks. Each RUDB consists of

multiple groups of de-convolutional layers and convolutional

layers. The de-convolutional layer can enlarge the size of fea-

tures thus make the features more representative. Then, these

features are further refined by the substantial convolutional

layer. Such RUDB significantly improves the representational

ability of the network. 

The rest of the paper is organized as follow. Section 2 briefly

eviews some representative recursive blocks structures and DRRN.

ection 3 describes the proposed DRUDN in detail. Section 4 analy-

es the experimental results. Finally, Section 5 concludes the paper.

. Related work 

In this section, some classical recursive block structures are

riefly reviewed at first. Besides, due to our method can be de-

ned as an improvement of DRRN, thus we also briefly review the

RRN at second. 

Recursive blocks are widely deployed in some state-of-the-art

ISR methods, such as DRCN [28] , DRRN [29] , and DSRN [30] . The

implified recursive block structures of these methods are shown

n Fig. 1 . It’s rule of thumb that deeper network can better use

he characteristic of the features, thus a better performance can

e achieved. These recursive networks are deepened by stacking

 number of recursive blocks, thus it can better model the map-

ing between LR and HR image pairs. Besides, the weight sharing

echanism not only reduces the parameter amount but also avoid

verfitting. As shown in Fig. 2 , the architecture of these recursive

etworks can be generally divided into three parts, namely feature

xtraction part, recursive part, and reconstruction part. 

.1. Recursive block 

Among the three parts, the recursive part plays the most im-

ortant role since it enhances the representations of the input fea-

ure map by using the recursive blocks. Its working principle can

e summarized as Eq. (1) . 

 out = f B ( F in ) , (1)

here F in and F out are the input feature map fed to the recursive

art and the corresponding output feature map from the recursive

art, respectively. f ( • ) is the function of the recursive blocks. B is

he number of the recursion (i.e. the number of the employed re-

ursive blocks). 

Next, some representative recursive block structures and the

orresponding mathematical formulations will be simple reviewed.

or all these mathematical formulations below, F in denotes input

eature map, and f ( n ) ( F in ) denotes the feature map after n recur-

ions. For the sake of simplicity, we denote f ( n ) ( F in ) as f n . Partic-

larly, when n = 0 , the f 0 is equal to F in , and all the biases are

mitted. 

DRCN : As shown in Fig. 1 (a), the recursive block structure of

RCN consists of one convolutional layer with one ReLU [40] . Its

athematical formulation is shown in Eq. (2) . 

f n = ϕ( f n −1 ) = σ (Con v (W, f n −1 )) , (2)

here ϕ( • ) denotes the function of the recursive block of DRCN.

amely one convolution operation denoted as Conv ( • ) and one
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Fig. 1. Simplified recursive block structures of the DRCN, DRRN, DSRN, and our DRUDN. 

Fig. 2. Basic structure of recursive networks. 
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eLU activation denoted as σ ( • ). W denotes the weight for the con-

olutional layer, and all the biases are omitted for simplicity. f n −1 

enotes the output feature maps of (n − 1) th recursion. f n denotes

he output of the next recursion, namely the output of n th recur-

ion. 

DRRN : As shown in Fig. 1 (b), the recursive block structure of

RRN consists of two convolutional layers with two correspond-

ng ReLUs. It should be noted that DRRN adopts pre-activation

41] structure, which means the activation operation is performed

head of the convolutional layer. And batch normalization (BN)

42] is adopted before the activation units. Its mathematical for-

ulation is shown in Eq. (3) . 

f n = f 0 + ϕ( f n −1 ) 

= f 0 + Con v ( W 2 , σ (BN(Con v ( W 1 , σ (BN( f n −1 )))))) , (3) 

here ϕ( • ) denotes the function of recursive block of DRRN.

amely two convolution operation (with weight of W 1 and W 2 , re-

pectively) and two ReLU activation, BN ( • ) denotes the batch nor-

alization operation. 

DSRN : As shown in Fig. 1 (c), same as DRRN, DSRN employs

wo convolutional layers with two corresponding ReLUs to form

ts recursive block. However, DSRN utilizes post-activation on the

ontrary with pre-activation. Whats more, another difference from
RRN is DSRN combines the output of the last iteration as the local

esidual, while DRRN combines the global input (i.e., f 0 ). Its math-

matical formulation is shown in Eq. (4) . 

f n = f n −1 + ϕ( f n −1 ) = f n −1 + σ (Con v ( W 2 , σ (Con v ( W 1 , f 
n −1 )))) 

(4) 

here ϕ( • ) denotes the function of recursive block of DSRN. 

.2. DRRN 

The main idea of DRRN is to deepen the network by stacking a

eries of elaborate recursive blocks. Compared to traditional chain

ode, such design can prevent overfitting and reduce parameters.

RRN also aims to learn the residual component between LR image

nd HR image. As we described before, it can be roughly divided

nto three parts as shown in Fig. 2 . Here, we will explain DRRN

orm these three aspects. 

Feature extraction part : At the beginning of this part, the

iven LR image is first enlarged to ideal size by using bicubic in-

erpretation. Then, a single convolutional layer is applied to extrac-

ion the shallow feature, which would be the input to the following

art, namely recursive block parts. The feature extraction part can
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be formulated as Eq. (5) . 

F in = Con v ( W 0 , σ (x )) , (5)

where x is the interpolated input image, W 0 is the weight for the

convolutional layer. F in is the output feature map of the feature

extraction part, also is the input of the recursive part. 

Recursive part : The goal of this part is to learn the complex

mapping between the LR image and the corresponding HR image

by using these recursive blocks. This part is the core of the whole

network. As shown in Fig. 1 (b) the recursive block consists of two

convolutional layers and two ReLUs. Besides, it employs F in as the

identity branch for all the unfolded recursive blocks. This is the

difference between DRRN and other methods such as DSRN. This is

a benefit to gradient back-propagation during training. Combining

with the corresponding statement in Section 2.1 , we can denote

this part as Eq. (6) . 

F out = f B ( F in ) , (6)

where f B is the function of the recursive part with totally B recur-

rences. The detail function for the recurrence block can be seen in

Eq. (3) . F out is the output feature map in this part. 

Reconstruction part : Once F out is obtained, the last part is to

generate the recovered image. This part can be divided into two

small steps. First is to generate the residual image. The F out con-

tains a lot of representative features. Similar to the feature extrac-

tion part, a single convolutional layer with a ReLU is employed to

generate the learned residual. Finally, the recovered image can be

obtained via combining the learned residual with the global resid-

ual, namely the interpolated input image. The part can be formu-

lated as Eq. (7) . 

res = Con v (W out , σ ( F out )) , 

SR = x � res, (7)

where W out is the weight for the convolutional layer. res is the

learned residual image. � denotes the element sum operation, and

SR denotes the recovered image obtained by DRRN. 

3. Deep recursive up-down sampling networks 

In this section, we introduce our proposed deep recursive up-

down sampling networks (DRUDN). Different from other recur-

sive network, we design a sophisticated recursive block named

RUDB. Such block employs a series of convolutional layer and de-

convolutional layer pairs to enhance the representation ability of

the feature. By doing so, the learned mapping between LR and

HR is more robot and more reliable. Besides, rather than perform-

ing bicubic interpretation at the very beginning, we use a de-

convolutional layer to upsample the residual image at the last step.

This can efficiently improve the performance while maintaining

the computational cost. As shown in Fig. 3 , we also divide our

DRUDN into three parts as other similar state-of-the-art methods

do. The sophisticated recursive block is the core of our whole net-

work. Logically, we first introduce RUDB. Then, the structure of

DRUDN is presented in detail. 

3.1. Recursive block 

Here we introduce our recursive up-down sampling blocks

named RUDB. It consists of a series of groups of de-convolutional

layer and convolutional layer. Each group consists of one convolu-

tional layer and one de-convolutional layer with the correspond-

ing activation unit (except the last group which employs no ac-

tivation function after the convolutional layer). For the sake of

simplicity, we use a group as an example. The further study of

the group(G) can be seen in Section 4.2 . Besides, by stacking such
ecursive block for B times to form the recursive part, it is suf-

cient for extracting the representative features to learn complex

apping. Fig. 1 shows the structure of RUDB with G = 1, and it is

ompared with the recursive blocks in some other recursive blocks.

s Fig. 1 shows, given the input feature map F in , which is also

efined as the global residual, at the first recursive step, RUDB

p-sample and down-sample the feature map for several times.

ith the changing the size, the feature map is more representa-

ive. When G = 1, this step can be denoted as Eq. (8) . 

f n = F in + ϕ( f n −1 ) = f 0 + ϕ( f n −1 ) 

= f 0 + Con v ( W 2 , ϑ(Decon v ( W 1 , f 
n −1 ))) , (8)

here f n −1 denotes the inputs for the n th recurrence. It should

e noted that when n = 1 , namely the first recurrence, the f 0 is

qual to F in . ϕ( • ) is the function of RUDB. Deconv ( • ) and Conv ( • )
enotes the de-convolution operation and convolution operation,

espectively. W 1 and W 2 are the weights for the de-convolutional

ayer and convolutional layer, respectively. ϑ( • ) refers to the PReLU

43] activation function. 

From Fig. 1 and Eq. (8) , it can be seen that our RUDB is similar

o the recursive block of DRRN. However, the RUDB is an essen-

ial improvement. These are some great difference when compare

UDB with the recursive block of DRRN. First of all, their work-

ng mechanisms are different. The recursive block of DRRN learn

he mapping via adopting a series of convolutional layers, while

ur RUDB employs de-convolutional layer and convolutional layer

airs to enhance the representation ability. Second, RUDB directly

ccepts the feature map with the same size as LR as its input,

hile DRRN accepts the feature map with the same size as HR as

ts input. In this matter, RUDB requires less computational cost. Be-

ides, the learned feature is up-sampled by de-convolutional layer,

his also can further improve the performance. Moreover, the re-

ursive block of DRRN employs ReLU with ‘pre-activation’, while

UDB employs PReLU with normally ‘post-activation’. In particu-

ar, for the last convolutional layer of RUDB, we use no activation

unction. This setting is based on the experimental results. 

Moreover, our RUDB is inspired by DBPN [44] . However, in

BPN, the projection unit consists of an up-sample unit and

n down-sample unit. The two sample units achieve the error

eedback via computing the residual component. For every up-

rojection or down-projection unit, complicated calculation is re-

uired. By performing through numerous experiments, we argue

hat such over-complex design is completely unnecessary. (The de-

ail performance comparison is can be seen in Section 4.2 ). Such

esign can only increase the complexity of the calculation, which

as a side effect on the overall reconstruction effect. Thus, we to-

ally redesign the up-sample unit and down-sample unit to form

ur RUDB. Compared with the projection unit of DBPN, our RUDB

as two main benefits. First, we add residuals to the recursive unit,

hich facilitates the flow of gradients. Second, we can adopt mul-

iple combinations to design a more flexible recursive block. Under

he premise of ensuring the reconstruction performance, our block

s more stable. 

.2. Network architecture 

Analogous to other similar recursive SISR network, our DRUDN

an also be divided into three parts, namely feature extraction part,

ecursive part, and reconstruction part. Each part will be described

n detail in the rest of this section. 

Feature extraction part : Given the input LR patch, to ex-

ract the shallow feature, a convolutional layer with size of

 in × 3 × 3 × C f followed with PReLU is employed, where C in is the

umber of channels for input images, C f is a hyper-parameter de-

otes the number of channels of the output feature map. Here we

se a filter with the size of 3 × 3 since it can take the adjacent
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Fig. 3. Structure of deep recursive up-down sampling networks (DRUDN). 
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ixels into account. This part can be mathematically formulated

s Eq. (9) . 

 in = ϑ(Con v ( W 0 , x )) , (9)

here x denotes the input LR image. Conv ( • ) and W 0 denotes the

onvolution operation and the corresponding weight, respectively.

( • ) refers to the PReLU activation function. F in is the output feature

ap, also is the input for the following recursive part. 

Recursive part : This part plays the most important role in the

hole network, since it accepts the output shallow feature map

rom the previous part, and recursively utilizes the representative

haracteristics in the feature map to mine the inner relationship

etween LR and HR pairs. To achieve this goal, we design a sophis-

icated recursive block named RUDB. Similar to DRRN, the identity

ranch for all the un-folded blocks is F in . This is helpful for gra-

ient flows during training. An entire recursive part consists B re-

ursive blocks. All the B recursive blocks are connected in series.

ach recursive block consists of G pairs of convolutional and de-

onvolutional layers. A network equipped with x recursive blocks,

nd each block has y up-down sampling groups is called ‘G y B x ’.

ll the unfolded blocks share the weight to reduce the parame-

er amount and to avoid overfitting. For the network with B re-

ursive blocks, the entire process of this part can be summarized

s Eq. (10) . 

 out = f B ( F in ) , (10) 

here f B is the function of the recursive part with totally B blocks.

he detail function for the recurrence block can be seen in Eq. 8 .

 out is the output feature map in this part. 

Reconstruction part : Assuming the output feature map from

he previous part is size of C f × H × W , where C f is the channels

umber, and H and W are the height and width of the feature map,

t also the height and width for the input LR image, since with ap-

ropriate padding strategy, H and W will not change during the

ecursive part. For this reconstruction part, the first is to refine the

eature map convolutional layer with size of C f × 3 × 3 × C in . Then is

o combine the global residual with the F in to obtain the interme-

iate feature (IF) via element-wise summation. The third is to up-

ample the intermediate feature to a bigger size, which equals the

ize of the HR image, via a de-convolutional layer. Finally, the up-

ampled intermediate feature is refined via a convolutional layer

o be the recovered image. These four steps can be formulated as

q. (11) . 

IF = F in + ϑ(Con v (W 3 , F out )) , 

R = Con v ( W 5 , ϑ(Decon v ( W 4 , IF )))) , (11) 
here F out is the output of the recursive part, MR is the in-

ermediate image of the recovered image and the LR image.

onv ( • ), Deconv ( • ), ϑ( • ) and � are the convolution operation, de-

onvolution operation, PReLU, and element-wise summation op-

ration, respectively. W 3 , W 4 and W 5 are the weights for the

orresponding convolutional layer or the de-convolutional layer,

espectively. 

Give the input LR image x , our goal of our network is to learn

ecovered image which is close to the ground truth image HR. We

hoose L1 loss to train our network. There are two main reasons

or us to choose L1 loss rather than L2 loss. First, as described

n [38,45] , L2 loss is less suitable for human vision system of im-

ge quality. Human vision system is sensitive to texture and lo-

al structure in an image. However, L2 loss excessively penalties

arge errors, and tolerates small errors, destroying the underlying

extures and local structures. On the contrary, L1 loss treats er-

ors equally without discrimination, preserving abundant textures

nd local structures. Consequently, the model equipped with L1

oss can achieve a better reconstruction performance than L2 loss,

hich also has been proved in [25,38] . Second, as proved in [38] ,

1 loss can be easier to find a better minimum than L2 loss. Thus,

1 loss holds a better convergence process. 

Therefore, for N training samples, the loss function can be for-

ulated as 

(�) = 

1 

N 

N ∑ 

i =1 

∥∥H R 

(i ) − S R 

(i ) 
∥∥

1 
. (12) 

Moreover, we make a detailed comparison of the structure of

RUDN and DRRN as shown in Table 1 . It can be seen that DRUDN

emoves unnecessary BN operations compared to DRRN and a

ore elaborate network is designed. 

. Experimental results and analysis 

.1. Implementation details 

As introduced in Section 3.2 , for feature extraction, we use a

onvolutional layer with the size of C in × 3 × 3 × C f , where C in and

 f are the channels number of input LR image and the output fea-

ure map. In this paper, since we use the image in RGB space to

rain and to test our network, thus C in is set to 3. It’s a rule of

humb that more feature channels can obtain better performance.

owever, it is proved by experiments that 64 feature channel is

ufficient. Thus C f is set to 64. For the recursive part, different set-

ings are adopted for different scales as shown in Table 2 . To a

ertain extent, the convolutional layer in the reconstruction part
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Table 1 

Detailed comparison of the structure of DRUDN and DRRN. 

Method Input image Input image channel Feature extraction part Recursive part Reconstruction part Global residual location Loss function 

BN BN BN 

DRRN LR + bicubic Y ReLU ReLU ReLU HR space L2 

Conv Conv Conv 

Conv 

Deconv 

DRUDN LR RGB Conv PReLU PReLU 

PReLU Conv Deconv LR space L1 

PReLU PReLU 

Conv 

Table 2 

The settings of RUDB in different scale. 

Scale Filter size Stride Padding 

× 2 6 × 6 2 2 

× 3 7 × 7 3 2 

× 4 8 × 8 4 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Running time, model parameters and PSNR analysis for × 4 on datasets 

Set5 for various combinations and one projection unit in DBPN [44] of 48 

layers. 

Dataset G1B24 G2B12 G3B8 G4B6 DBPN unit 

Parameters (K) 827 1352 1445 1876 1445 

Running time (s) 0.011 0.013 0.013 0.015 0.014 

PSNR (dB) 32.07 32.14 32.15 32.13 32.13 

Fig. 4. Convergence visualization of 48 layers with scale factor × 4 on Set5. 

Table 4 

Average PSNR for × 4 on datasets Set5 for various combina- 

tions of G = 3 (1,445K parameters). 

Dataset G3B6 G3B8 G3B10 G3B12 

Running time (s) 0.013 0.013 0.015 0.016 

PSNR (dB) 32.15 32.15 32.12 32.17 
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can be regarded as a reverse of the one in the feature extrac-

tion part. The former turns the input LR image into C in channels,

and the latter turns the feature map into C f channels. Thus the

size of the convolutional layer in the reconstruction part is seen

to C f × 3 × 3 × C in . Besides, the size of the de-convolutional in the

reconstruction part is also set in accordance with Table 2 . The

weights are initialized based on [43] . 

The proposed DRUDN is trained on DIV2K dataset with 800 im-

ages [46] , which is commonly employed in recent literatures. We

first crop each training image into image patches with the stride

240. Each image patch is of size 480 × 480. There are 32208 im-

age patches totally. To form pairs of LR and HR image patches,

we employ imresize function with the option bicubic in MATLAB

to downsample each image patch. At training stage, we randomly

crop a 32 × 32 RGB LR image sub-patch from an LR image patch at

each iteration. At a corresponding position in an HR image patch,

an HR image sub-patch can be obtained with a specified scale fac-

tor. Such a pair of LR and HR image sub-patches is randomly aug-

mented (rotation or flipping), and is subtracted by RGB mean of

DIV2K dataset. The batch size is set to 16. We use Adam [47] with

the momentum of 0.9 as the optimizer. Our network is trained

on 100 epochs. For G3B12 (the G and B will be explained in the

following part), every epoch takes about 17 min. We use PyTorch

[48] with an NVIDIA 1080 Ti GPU to implement our model. Bicu-

bic down-sampling is employed to generate LR images for the test

phase. For a fair comparison with other methods, we also perform

shave operation according to the specified scale factor. For RGB im-

ages, the reconstruction results are tested on Y channel of YCbCr

space. The evaluation metrics we used are PSNR and SSIM. The

source code is available at https://github.com/liqilei/DRUDN . 

4.2. Study of B and G 

In this part, we first fix the recursive part to 48 layers, and

combine the two key parameters, namely G and B in different

ways. Then, we fix G to the 3 for investigating the influence of B

in various combinations. We use the performance of VDSR [23] as

a reference. 

At first, we fix the unfolded recursive part with 48 layers

(including convolutional layer and de-convolutional layer). Due

to each G consists two layer (a convolutional layer and a de-

convolutional layer), thus the combinations can be G1B24, G2B12,

G3B8, G4B6. We test their performances in Set5 and Set14 with

× 4 scale factor and the result is shown in Table 3 . Since the run-

ning time only has a minor change when the number of parameter
ncreases, we only take the parameters comparison as a consid-

ration. From Table 3 , we can see that PSNR value first increases

nd then decays a little as the network parameters increasing. This

eflects the over-fitting problem caused by redundant parameters.

esides, we also fix the unfolded recursive part of DBPN with 48

ayers to compare the performance. It can be seen that our net-

ork outperforms DBPN unit [44] while maintains the time and

pace complexity. The convergence process of these 5 combina-

ions is shown in Fig. 4 . 

Secondly, to study the influence of B, we fix G = 3. The num-

er of network parameters thus retains 1445 K. Experiments are

erformed on different combinations, namely G3B6, G3B8, G3B10,

3B12. The average PSNR of these combinations is shown in

able 4 , and the visualization of the convergence is shown in Fig. 5 .

rom Table 4 , it can be seen that with the increase of B, the over-

ll performance get a slight improvement and the execution time

https://github.com/liqilei/DRUDN
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Fig. 5. Study the influence of B in the case of G = 3 with scale factor × 4 on Set5. 

Fig. 6. Running time, the number of parameters and accuracy trade-off. The results 

are evaluated on Set5 with scale factor × 4. The bigger marker represents the larger 

number of parameters. 

r  

r  

t

4

 

c  

G  

o  

S  

s  

o  

p  

p  

t  

b  

t  

i  

M  

m

4

 

d  

(  

1  

s  

a  

a  

s  

A  

c  

T

 

o  

D  

o  

t  

r  

t  

w  

L  

w  

D  

a  

i  

i  

i  

w  

i

4

 

m  

R  

a  

R  

[  

[  

o  

Q  

×  

c  

i  

t  

t  

t  

a  

r  

s  

c  

t  

a  

d  

d  

g  

B  

d

 

F  

b  

f  

o  

a  

m  

p  

T  

1 https://www.healthcare.siemens.com/ . 
emains roughly the same. This is because our DRUDN has strong

epresentation capabilities and does not require complex structures

o meet the requirements of SISR task. 

.3. Model analysis 

We compare the running time and model parameters on the

omputer with 3.5 GHz Intel I7 (32G RAM) and an NVIDIA 1080 Ti

PU. These comparisons only consider deep learning based meth-

ds. To make a fair running time comparison, we re-implement

RCNN and FSRCNN on GPU which are only provided CPU ver-

ion officially. Other contrasting methods are evaluated using their

fficial codes. The trade-off among running time, the number of

arameters and accuracy is shown in Fig. 6 . Although our pro-

osed method holds a large number of parameters, the running

ime of our proposed method is faster than other deep learning

ased methods besides FSRCNN. The reason is that the compu-

ational cost will dramatically decrease by taking the original LR

mage as input instead of interpolating the LR image firstly [27] .

ore importantly, the reconstruction performance of our proposed

ethod surpasses other compared methods by a large margin. 

.4. Comparison with the-state-of-the-arts on gray image datasets 

We first evaluate our proposed method on three gray image

atasets: (a) natural image dataset, (b) medical image dataset, and

c) infrared image dataset. The natural image dataset (containing
9 images) is obtained by transforming Set5 and Set14 from RGB

pace to gray space. The medical image dataset (containing 13 im-

ges) is collected from SIEMENS official website 1 . The infrared im-

ge dataset (containing 49 images) is collected from TNO image fu-

ion dataset [49] . The compared state-of-the-art methods including

+ [12] , SRCNN [19] and DRRN [29] . We use G3B12 model for this

omparison. The quantitative and qualitative results are shown in

able 5 and Fig. 7 , respectively. 

The reconstruction results on these gray images exhibit the vig-

rous power of DRUDN in recovering the texture. The proposed

RUDN can restores the detail accurately, while other methods

ften lead to unsatisfying results with blurred detail or incorrect

ext direction. For instance, A+ and SRCNN fail to generate faithful

econstruction images. Even worse, the direction of the enlarged

exture in their ‘barbara’ image and the ‘Reek’ image are totally

rong. The proposed DRUDN can learn the mapping between the

R image and the HR image to precisely construct the SR image,

hich can be very close to the ground truth image. In other word,

RUDN can accurately recover the texture detail in nature image

nd the thermal radiation information in infrared image. These ev-

dences indicate that our DRUDN can obtain more representative

nformation than other methods. The quantitative results shown

n Table 5 reveals that out DRUDN achieve the top performance,

hich demonstrate the effectiveness of our DRUDN on the gray

mage SISR. 

.5. Comparison with the-state-of-the-arts on RGB image datasets 

The proposed method is compared with some state-of-the-art

ethods, including A+ [12] , SRCNN [19] , FSRCNN [27] , SelfExSR [4] ,

FL [10] , SCN [50] VDSR [23] , DRCN [28] , LapSRN [51] , DRRN [29] ,

nd DSRN [30] . The proposed method is tested on four standard

GB benchmark datasets, namely Set5 [11] with 5 images, Set14

52] with 14 images, B100 [53] with 100 images, and Urban100

4] with 100 images. The result of these contrast experiments are

btained from [30] . We use G3B12 model for this comparison.

uantitative evaluation : The average PSNR/SSIM for scale factor

2, × 3, × 4 on Set5, Set14, B100 dataset of DRUDN with other

ontrast methods is shown in Table 6 . The best results are shown

n bold and the second best results are underlined . It can be seen

hat our method has an obvious superiority in objective evalua-

ion indicators. Our DRUDN can generate satisfying results for all

he different scales. Moreover, one may notice that the advantages

t small scales (i.e., 2) are not obvious when compared with the

esults in larger scales (i.e., 3, 4). This is because the DRUDN up-

amples the recovered image to the ideal size by using the de-

onvolutional layer at the end, rather than performing bicubic in-

erpolation at the very beginning as other methods do. In detail, on

 small scale, bicubic interpolation can achieve better results than

econvolution. But on a large scale, interpolation will lose a lot of

etail, causing the image to be blurred. Which de-convolution layer

enerate a better recovered image through the complex mapping.

y comparing the data in Table 6 , the superiority of our method is

emonstrated. 

Subjective effect : Part of the recovered image as shown in

ig. 8 . First, we show the recovered results for ‘img_005’ in Ur-

an100 dataset, we can see that our method can generate a more

aithful recovered image which can recover most sharp lines. The

utline of the windows is the closest to the HR image, and no

ny other extra structure is introduced. However, other contrast

ethods fail to recover the detail information. What worse, DRRN

roduces obvious artifacts around the boundary of the windows.

he second group image named ‘comic’ comes from Set14. The

https://www.healthcare.siemens.com/
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Table 5 

Average PSNR/SSIM for scale factor × 4 on natural, medical and infrared image datasets of DRUDN with other contrast meth- 

ods. The best results are shown in bold . 

Method Natural image dataset PSNR/SSIM Medical image dataset PSNR/SSIM Infrared image dataset PSNR/SSIM 

Bicubic 25.85/0.698 28.58/0.831 34.94/0.884 

A + 28.18/0.780 32.07/0.895 37.37/0.912 

SRCNN 27.09/0.739 30.27/0.861 36.06/0.896 

DRRN 29.19/0.804 32.65/0.906 37.83/0.916 

DRUDN 29.34 / 0.806 33.05 / 0.908 37.99 / 0.917 

Fig. 7. Qualitative comparison of DRUDN with other state-of-the-art methods on gray image datasets. 
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Fig. 8. Qualitative comparison of DRUDN with other state-of-the-art methods on × 4 SISR. 
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Table 6 

Benchmark results. Average PSNR/SSIM for scale factor × 2, × 3, × 4 on Set5, Set14, B100, and Urban100 

datasets of DRUDN with other contrast methods. The best results are shown in bold and the second best 

results are underlined . 

Method Scale Set5 PSNR/SSIM Set14 PSNR/SSIM B100 PSNR/SSIM Urban100 PSNR/SSIM 

Bicubic 2 33.65 / 0.930 30.34 / 0.870 29.56 / 0.844 26.88 / 0.841 

A + 2 36.54 / 0.954 32.40 / 0.906 31.22 / 0.887 29.23 / 0.894 

SRCNN 2 36.65 / 0.954 32.29 / 0.903 31.36 / 0.888 29.52 / 0.895 

FSRCNN 2 36.99 / 0.955 32.73 / 0.909 31.51 / 0.891 29.87 / 0.901 

SelfExSR 2 36.49 / 0.954 32.44 / 0.906 31.18 / 0.886 29.54 / 0.897 

RFL 2 36.55 / 0.954 32.36 / 0.905 31.16 / 0.885 29.13 / 0.891 

SCN 2 36.52 / 0.953 32.42 / 0.904 31.24 / 0.884 29.50 / 0.896 

VDSR 2 37.53 / 0.958 32.97 / 0.913 31.90 / 0.896 30.77 / 0.914 

DRCN 2 37.63 / 0.959 32.98 / 0.913 31.85 / 0.894 30.76 / 0.913 

LapSRN 2 37.52 / 0.959 33.08 / 0.913 31.80 / 0.895 30.41 / 0.910 

DRRN 2 37.74 / 0.959 33.23 / 0.914 32.05 / 0.897 31.23 / 0.919 

DSRN 2 37.66 / 0.959 33.15 / 0.913 32.10 / 0.897 30.97 / 0.916 

DRUDN 2 37.68 / 0.959 33.31 / 0.915 32.02 / 0.897 31.53 / 0.922 

Bicubic 3 30.39 / 0.868 27.64 / 0.776 27.21 / 0.740 24.46 / 0.736 

A + 3 32.60 / 0.908 29.24 / 0.821 28.30 / 0.784 26.05 / 0.798 

SRCNN 3 32.76 / 0.908 29.41 / 0.823 28.41 / 0.787 26.24 / 0.800 

FSRCNN 3 33.15 / 0.913 29.53 / 0.826 28.52 / 0.790 26.42 / 0.807 

SelfExSR 3 32.63 / 0.908 29.33 / 0.823 28.29 / 0.785 26.45 / 0.809 

RFL 3 32.45 / 0.905 29.15 / 0.819 28.22 / 0.782 25.87 / 0.791 

SCN 3 32.60 / 0.907 29.24 / 0.819 28.32 / 0.782 26.21 / 0.801 

VDSR 3 33.66 / 0.921 29.77 / 0.834 28.83 / 0.798 27.14 / 0.829 

DRCN 3 33.82 / 0.922 29.76 / 0.833 28.80 / 0.797 27.15 / 0.828 

LapSRN 3 33.78 / 0.921 29.87 / 0.833 28.81 / 0.797 27.06 / 0.827 

DRRN 3 34.03 / 0.924 29.96 / 0.835 28.95 / 0.800 27.53 / 0.838 

DSRN 3 33.88 / 0.922 30.26 / 0.837 28.81 / 0.797 27.16 / 0.828 

DRUDN 3 34.25 / 0.925 30.20 / 0.838 29.01 / 0.802 27.89 / 0.846 

Bicubic 4 28.42 / 0.810 26.10 / 0.704 25.96 / 0.669 23.15 / 0.659 

A + 4 30.30 / 0.859 27.43 / 0.752 26.82 / 0.710 24.34 / 0.720 

SRCNN 4 30.49 / 0.862 27.61 / 0.754 26.91 / 0.712 24.53 / 0.724 

FSRCNN 4 30.71 / 0.865 27.70 / 0.756 26.97 / 0.714 24.61 / 0.727 

SelfExSR 4 30.33 / 0.861 27.54 / 0.756 26.84 / 0.712 24.82 / 0.740 

RFL 4 30.15 / 0.853 27.33 / 0.748 26.75 / 0.707 24.20 / 0.711 

SCN 4 30.39 / 0.862 27.48 / 0.751 26.87 / 0.710 24.52 / 0.725 

VDSR 4 31.35 / 0.882 28.03 / 0.770 27.29 / 0.726 25.18 / 0.753 

DRCN 4 31.53 / 0.884 28.04 / 0.770 27.24 / 0.724 25.14 / 0.752 

LapSRN 4 31.54 / 0.885 28.19 / 0.772 27.32 / 0.728 25.21 / 0.756 

DRRN 4 31.68 / 0.889 28.21 / 0.772 27.38 / 0.728 25.44 / 0.764 

DSRN 4 31.40 / 0.883 28.07 / 0.770 27.25 / 0.724 25.08 / 0.747 

DRUDN 4 32.17 / 0.894 28.56 / 0.780 27.54 / 0.734 25.99 / 0.783 
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shape of the headgear is well restored by our DRUDN. Although the

recovered results of the VDSR also restores the general outline, the

color has changed. For ‘119082’ in B100, our method can generate

the clearest recovered image which is the closest to the HR im-

age. From the enlarged images of ‘img_100’, the advantages of our

DRUDN are clearly demonstrated. In the recovered images obtained

from A+, DRCN, LapSRN, DRRN, the direction of the flag is wrong.

What’s more, although the VDSR has the correct direction, it has

serious discoloration and artificial effects, which is unacceptable.

However, the recovered image obtained by DRUDN better restores

the original details and does not introduce other structures. This

demonstrates that DRUDN can generate subjectively more satisfac-

tory recovered images. 

5. Conclusion 

In this paper, we propose a novel deep recursive up-down sam-

pling networks (DRUDN) for SISR. We design a sophisticated re-

cursive up-down sampling block (RUDB) to improves the repre-

sentational ability of the network. In the reconstruction part of

our network, the LR image is up-scaled to the ideal size by a

de-convolutional layer. By doing so, the features are more repre-

sentative. Then, these features are further refined by the substan-

tial convolutional layer. Extensive experiments demonstrate that
RUDN outperforms the state-of-the-art methods in both subjec-

ive effects and objective evaluation. 
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