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Abstract
Low-light image enhancement is a crucial yet challenging task in computer vision and mul-
timedia applications. Retinex-based approaches have been continuously explored in this
domain. However, the Retinex decomposition is an ill-posed problem, as the proper con-
straints of illumination and reflectance should be considered to regularize the solution space.
Aiming at a faithful enhancement, we develop a Structure and Texture Revealing Retinex
(STR2) model to accurately estimate the illumination and reflectance components. The pro-
posed STR2 model utilizes an exponential relative total variation method to draw structure
and texture maps by analyzing the difference in gradient distribution between the illumi-
nation and reflectance components. The resulting structure and texture maps are used to
regularize the illumination and reflectance components. With a tailored alternating opti-
mization algorithm, the STR2 model can jointly update the illumination and reflectance
efficiently to produce a faithful enhanced image. Experimental results on several public
datasets verify the effectiveness of the proposed model in low-light image enhancement.

Keywords Low-light image enhancement · Retinex decomposition ·
Illumination adjustment · Structure estimation · Texture estimation

1 Introduction

The images acquired in low-light scenarios, e.g., in the darkness or nighttime, suffer from
the absence of pleasing visual aesthetics and enormous amount of mingled noise, low
contrast and color distortions. The low-light images hider the performance of subsequent
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computer vision applications. Besides, with the boom and prevalence of portable imag-
ing devices, the demand for high-quality images with clear details and satisfied brightness
becomes extremely imperative. Hence, it is crucial to develop an effective and robust
algorithm for low-light image enhancement under various realistic scenes.

The existing enhancement methods can be divided into three categories, namely
histogram equalization-based methods [1, 21], Retinex decomposition-based methods
[32, 47], and deep learning-based methods [40, 53]. The histogram equalization (HE)
methods are global illumination-adjusted methods that enhance the images by stretching
the entire dynamic range of the image. However, these methods are lame in adjusting
the local information. Developed by Land and McCann [29], Retinex theory decomposes
the image into illumination and reflectance components and enhances them separately. It
builds a robust and flexible baseline framework for low-light image enhancement [8]. The
variational Retinex approaches are used to enforce the continuous on reflectance layer
and piece-wise smooth on illumination layer [10, 28]. Recently, a robust Retinex model
has been proposed by Li et al. [34]. However, they simply assumed that the illumination
component is sufficient enough that no further processing is required, which results in
observable noise appearing in the reflectance component when this assumption is not met.
Besides, deep learning-based methods have also been widely studied. Since the pioneering
work of Bychkovsky et al. [3], more efforts have been focused on investigating learning-
based approaches. The data-driven low-light image enhancement methods utilize either the
traditional machine learning techniques such as LTR [62], or deep neural networks Deep-
Exposure [64], DeepBL [14], KinD [67], and SID [6]. However, learning-based methods
requires a huge amount of training samples for modeling the mapping, which is not quite
easy to satisfy in many real-world applications.

In this paper, we conduct an effective method to accomplish the structure and texture
estimation during the Retinex decomposition. The proposed model is based on two highly
correlated hypotheses, i.e., the illumination component should be piece-wise smooth, while
the reflectance component should contain as much detail as possible. To this aim, we build
a Structure and Texture Revealing Retinex (STR2) model. This model can achieve remark-
able achievement in low-light image enhancement. The overall architecture of the proposed
model is shown in Fig. 1. In a nutshell, the contributions of this paper are as follows:

1. We develop a Structure and Texture Revealing Retinex (STR2) model which can
accurately estimate the illumination and reflectance components by building weight
matrices for structures and textures.

2. The proposed STR2 model utilizes an exponential relative total variation method to
draw structure and texture maps by analyzing the difference in gradient distribution
between the illumination and reflectance components.

3. Experiments on several challenging benchmarks prove the effectiveness of the proposed
STR2 model in Retinex decomposition and low-light image enhancement.

The organization of this paper is as follows: In Section 2, the methods of low-light
image enhancement are reviewed. Section 3 introduces the theoretical background, includ-
ing the basic Retinex theory and structure-texture decomposition. In Section 4, the proposed
approach is detailed. Experimental results are demonstrated in Section 5. The work is
concluded in Section 6.
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Fig. 1 The framework of the proposed STR2 model. Given the input low-light RGB image, it is first con-
verted into HSV space. The V channel is normalized and decomposed into illumination and reflectance
components. Then, these two components are adjusted by calculating the structure and texture weight
matrix, respectively. The adjusted illumination component and reflectance component are integrated and the
enhanced HSV image is transformed into the RGB space to obtain the final output result

2 Related work

In this section, the methods for low-light image enhancement are briefly reviewed. These
methods can be generally divided into three categories, namely histogram equalization-
based [45], Retinex decomposition-based [32], and learning-based models [39].

Histogram equalization (HE)-based methods improve the visibility of low-light images
by flattening the histogram via stretching the corresponding dynamic range of the inten-
sity [51]. HE-based methods can be further classified into global HE-based methods and
local HE-based methods. As for global HE-based methods [25, 65], the total histogram is
utilized to enhance the dynamic range of low-light image and improve the brightness. How-
ever, these methods may cause significant detail information lost and noise amplified during
enhanced processing. Instead of manipulating the total histogram, the local HE-based meth-
ods [38, 52, 54] enhance the local region which is divided from the entire histogram. The
local HE-based methods perform better on low-frequency information processing than the
global counterparts, but the computational complexity is significantly increased. In order to
degrade the complexity of computation, some researchers proposed parametric HE-based
methods [36, 37]. Although these methods are particularly effective for contrast or dynamic
range enhancement, the enhanced image often exhibits unnatural details.

Retinex decomposition-based methods enhance low-light images by image decompo-
sition. These methods decompose the images into two components, namely reflectance
and illumination components. Then, these two components are further processed to obtain
enhanced results. The single-scaled Retinex (SSR) [23] method and multi-scaled Retinex
(MSR) [24] method are the pioneering works in this field. Subsequent methods consider
both the illumination and reflectance layers to improve the performance [34, 49]. However,
it’s inherently an ill-posed problem to estimate illumination and reflectance components
from a single image. In order to make the problem trackable, some attempts to transform the
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illumination or reflectance decomposition into a statistical reasoning problem and seek the
most suitable solutions by proposing different priors for illumination and reflectance and
defining variational optimization [10, 46]. Kimmel et al. [28] proposed a variation method to
estimate the illumination component solely and postulated that it should be varied smoothly.
Subsequently, a total variational (TV) Retinex decomposition model considering both the
reflectance and illumination components was proposed [43]. However, this approach can
result in over-smoothing in the reflectance map owning to the by-product of logarithmic
transformations. To address this problem, Fu et al. [12] proposed a linear domain model to
improve the representation of the prior information. Recently, some methods revisited the
local variance model to draw structure and texture maps [4]. Proposed by Xu et al. [61], the
STAR utilized the exponential local variance constraints to reveal the structure and texture
in illumination and reflectance maps. These methods perform well in stretching image con-
trast and noise removal. However, due to the poor adaptability of the method and related
prior, they may produce undesirable results when applied to large-scale datasets [39].

Learning-based methods model the feature maps from the high visual quality images
to enhance the low-light images. Lore et al. [40] first enhanced the low-light images by
stacking sparse auto-encoders. Subsequently, different networks and diversified losses were
proposed [7, 27, 66]. In addition, Retinex theory joins up with deep learning methods for
low-light enhancement. Wei et al. [57] proposed the Retinex-Net with two subnets. First,
a Decom-Net decomposes an image into reflectance and illumination components. Then,
the estimated illumination is enhanced by Enhance-Net. Besides, adversarial learning was
introduced to obtain visual attributes beyond traditional metrics [22, 26]. Jiang et al. [22]
proposed an EnlightenGAN to get rid of the construction of pairwise datasets. Although the
deep learning-based approaches have achieved remarkable achievements in the domain of
low-light image enhancement, the enormous computational burden in practical application
and the complex structure of the model limit their popularity on mobile devices. Moreover,
the learning-based methods rely heavily on plenty of high-quality images.

3 Theoretical background

3.1 Retinex theory

The Retinex theory [2] postulates that the input low-light image I ∈ R
n×m can be

represented as the product of the illumination L ∈ R
n×m and the reflectance R ∈ R

n×m:

I = L � R, (1)

The symbol � means element-wise multiplication. The decomposed components can be
converted back by estimating them alternatively by

L = I � R, R = I � L, (2)

where � represents the element-wise division.
Retinex theory introduces a valuable derivative property [29], i.e., variation of the

reflectance component usually results in the larger derivative value in the image, while the
smaller derivative value is due to the smooth distribution of the illumination. According
to the properties of the image in the gradient field, the prior variational Retinex methods
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generally utilize a variational objective function to estimate the illumination and reflectance
components. The objective function is formulated as

min
L,R

‖I − L � R‖2F + N1(L) + N2(R), (3)

where N1 and N2 are regularization terms for illumination L and reflectance R,
respectively.

3.2 Structure and texture preserving

Since the Retinex decomposition is an ill-posed problem, constraints, i.e.,N1 andN2 in (3),
are imposed to estimate the illumination and reflectance maps with specific information
revealing [35, 43]. The illumination is assumed to be piece-wise smooth due to the shape
of objects. The large-scale variations, e.g., structure of the object, are captured in the illu-
mination layer, which results in the small gradient of the layer. Meanwhile, the reflectance
layer is assumed to be piece-wise continuous due to the intrinsic property of the object. The
small-scale variations, e.g., texture, are captured in the reflectance layer, which results in the
large gradient of the layer. To this aim, some researchers imposed structure preserving con-
strain to estimate the illumination component and exponential decay structure-preserving
constrain to estimate the reflectance component [4].

4 Methodology

4.1 ERTV-based constraints for decomposed components

As mentioned above, the illumination and reflectance components should be estimated
with appropriate constraints. To this end, we put forward diverse exponential relative
total variation methods to conduct different constraints for illumination and reflectance
components.

The previous relative total variation method mainly considers the relationship between
the central pixel and the neighbor pixels by using the window-based total variation and
inherent variation [59]. The windowed total variation Px and Py of the central pixel in
vertical and horizontal directions are formulated as

Px/y =
∑

q∈R(p)

Gσ ∗ ∣∣∇x/yIq

∣∣ . (4)

And the windowed inherent variationQx andQy are defined as

Qx/y =
∣∣∣∣∣∣

∑

q∈R(p)

Gσ ∗ ∇x/yIq

∣∣∣∣∣∣
. (5)

Where I is the input image,∇x/y is partial derivative in the horizontal or vertical direction
and Gσ is a Gaussian kernel with window size σ = 3. The symbol ∗ is a convolutional
operator. R(p) is a rectangular region centered on the pixel p and the pixel q belongs to
R(p).

However, the previous relative total variation mainly focuses on the relatively small vari-
ance suppression to extract the structure, which is easily affected by texture. To address this
issue, diverse exponents are introduced to conduct novel constraints. The proposed structure
constraint is to enforce spatial smoothness on the illumination layer while preserving the
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main structure. And the proposed texture constraint is to enforce the reflectance component
to be piece-wise continuous. The formulation of the structure constrains is given as

S(I ) = (
Px(I )

Qx(I ) + ε
+ Py(I )

Qy(I ) + ε
)γs . (6)

Since the previous relative total variation method is used as the structure-preserving
constrain, the texture constrain is proposed by exponential decay and formulated as

T (I ) = 1 � (

∣∣∣∣
Px(I )

Qx(I ) + ε
+ Py(I )

Qy(I ) + ε

∣∣∣∣
γt

+ ε). (7)

Where ε=0.001 and ε=0.005. γs and γt are the structure and texture perception
coefficients.

4.2 STR2 model

The proposed Structure and Texture Revealing Retinex (STR2) model is formulated as,

argmin
L,R

‖I − L � R‖2F + α ‖S � ∇L‖2F + β ‖T � ∇R‖2F + λ ‖L − B‖2F , (8)

where α, β and λ are the parameters that control the importance of different terms in object
function. In this paper, given the input low-light RGB image, it is first converted into HSV
space. Then, the V channel is normalized and decomposed into illumination and reflectance
components. Thus, the observed image I is regarded as V channel. The role of each term is
interpreted as follows:

• ‖I − L � R‖2F constraints the fidelity between the observed image I and the recon-
structed image L � R;

• ‖S � ∇L‖2F and ‖T � ∇R‖2F are regularization terms to compute the weight of
structure and texture;

• ‖L − B‖2F minimizes the distance between estimated illumination L and the initial
illumination B.

The second and third regularization terms in (8) are meant to extract the structure and
texture maps by distinguishing the difference in the distribution of gradients between the
illumination and reflectance components. The flowchart to demonstrate the principle of
low-light image enhancement is shown in Fig. 2.

The smooth illumination results in the smaller gradient [29], while the larger gradient
is due to the piece-wise continuous reflectance. The formulations of the second and third
terms in the (8) are denoted as

‖S � ∇L‖2F = sx ‖∇xL‖2F + sy
∥∥∇yL

∥∥2
F

, (9)

‖T � ∇R‖2F = tx ‖∇xR‖2F + ty
∥∥∇yR

∥∥2
F

, (10)

where

sx/y = (
Px/y(L)

Qx/y(L) + ε
)γs , (11)

tx/y = 1 � (

∣∣∣∣
Px/y(R)

Qx/y(R) + ε

∣∣∣∣
γt

+ ε). (12)

The extracted structure and texture maps by the proposed model are depicted in Fig. 3.
It can correctly reflect the general outline of the object (e.g., the horn and beard), and the
details (e.g., the spot and the eyes) can be revealed.
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Low-light image

Color space conversion

Illumination map Reflectance map

Retinex decomposition

Iterative solution to sub-problem

of reflectance

Iterative solution to sub-problem 

of illumination

Final illumination map Final reflectance map

Enhanced image

Retinex composition

Iteration

Gamma correction

Fig. 2 The flowchart of the STR2 for low-light image enhancement

4.3 Optimization algorithm

Lk and Rk are the illumination and reflectance components at the k-th iteration (k =0, 1,
2,..., K), respectively. K is the maximum number of iterations. Two separated sub-problems
are iteratively cycled through. The solutions to the sub-problems are presented as follows.

1) L Sub-problem Neglecting the terms unrelated to L and initializing L0 = I , the
solution to update (k + 1)-th iteration Lk+1 is formulated as

Lk+1 = argmin
Lk

‖I − Lk � Rk‖2F
+α(sx ‖∇xLk‖2F + sy

∥∥∇yLk

∥∥2
F
) + λ ‖Lk − B‖2F . (13)

To solve (13), the loss function to the matrix notation form is rewritten as

Lk+1 = (Lk � Rk − I )T (Lk � Rk − I )

+α(LT
k DT

x SxDxLk + LT
k DT

y SyDyLk) + λ(Lk − B)T (Lk − B), (14)

where Dx and Dy are the Toeplitz matrices in horizontal and vertical directions. Sx =
diag(sx) and Sy = diag(sy). Then, the solution to (13) is:

Lk+1 = RT
k I + λB

RT
k Rk + α(DT

x SxDx + DT
y SyDy) + λ1

, (15)
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Fig. 3 Structure and texture extracted by the STR2 model. The first row represents the input image and the
enhanced result, the second row depicts the structure map and texture map, and the third row shows the details

where 1 is an identity matrix.

2) R Sub-problem We initialize the R0 = I/L1 and update R while fixing L. The terms
unrelated to R are neglected, and the solution to update (k + 1)-th iteration Rk+1 is
derived as

Rk+1 = argmin
Rk

‖I − Lk+1 � Rk‖2F + β(tx ‖∇xRk‖2F + ty
∥∥∇yRk

∥∥2
F
). (16)

Then, the loss function to the matrix notation is reformulated as

Rk+1 = (Lk+1 � Rk − I )T (Lk+1 � Rk − I )

+β(RT
k DT

x TxDxRk + RT
k DT

y TyDyRk), (17)

where Tx = diag(tx) and Ty = diag(ty).
The solution to (16) is

Rk+1 = LT
k+1I

LT
k+1Lk+1 + β(DT

x TxDx + DT
y TyDy)

. (18)
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The cycled optimization continues until the convergence conditions [61] are satisfied or
the rounds of iteration reach a pre-defined threshold. A summary of the optimization method
for the proposed STR2 model is demonstrated in Algorithm 1.

Algorithm 1 The optimization of the proposed STR2 model.

To verify the convergence of the Algorithm 1, the convergence analysis is carried out
on the VV dataset1. The errors of ‖Lk+1 − Lk‖F / ‖Lk‖F and ‖Rk+1 − Rk‖F / ‖Rk‖F are
calculated, and their curves are drawn in Fig. 4. It shows that both of them drop below 0.005
after 20 iterations. Thus, three optional convergence conditions for Algorithm 1 are derived
as follows.

• ‖Lk+1 − Lk‖F / ‖Lk‖F ≤ 0.005
• ‖Rk+1 − Rk‖F / ‖Rk‖F ≤ 0.005
• The iteration number K = 20

4.4 Illumination adjustment

Since the brightness information is contained by the illumination component of the image,
it is possible to adjust the illumination component to generate a visually satisfying result
for a low-light image. After obtaining the enhanced components of the illumination L and
the reflectance R, the goal is to adjust L to improve the visibility and brightness of the
input image. Therefore, in this paper, we adopt the Gamma correction [44, 58] to adjust the
illumination component. The corrected illumination is written as

L̂ = L
1
γ . (19)

1https://sites.google.com/site/vonikakis/datasets
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Fig. 4 Convergence analysis on VV dataset. The curves are obtained by averaging ‖Lk+1 − Lk‖F / ‖Lk‖F

and ‖Rk+1 − Rk‖F / ‖Rk‖F in the iterative process

The enhanced result Ô is generated by

Ô = R � L
1
γ , (20)

where γ = 2.2 is an empirical value [13, 16]. Finally, the enhanced image is generated by
reversing from HSV to RGB.

5 Experimental results and analysis

In this section, the experiment settings and implementation details are given first. Then the
comparison results with the state-of-the-art (SOTA) methods are presented in both subjec-
tive and objective aspects. Subsequently, we perform ablation studies to assess the impact
of the key parameters. Finally, we discussed the computational complexity of the proposed
method.

5.1 Experiment settings and implementation details

The experiments are performed on a PC with an Intel i5-10400 CPU, 2.90GHz and 16GB
memory. We set the parameters as γs = 1.0, γt = 0.75, α = 0.001, β = 0.0001, δ = 0.005,
and λ = 0.25. For a fair comparison, the results of the competitors are reproduced by official
codes.

Comparative experiments are performed on 7 benchmark datasets, i.e., LIME [20],
DICM [30], MEF [41], NPE [56], LOL [57], LOE [63] and VV2. Meanwhile, we carry
out experiments on 35 challenging images with different lighting conditions collected from
previous works [10–12, 20, 50, 56]. The proposed STR2 are compared with 14 com-
petitors, including HE [15], Dong [9], CVC [70], LDR [31], SSR [23], MSRCR [48],

2https://sites.google.com/site/vonikakis/datasets
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(a) (b) (c) (d)

Fig. 5 The Retinex decomposition results by the STR2. (a) low light images, (b) illumination maps, (c)
reflectance maps, (d) enhanced results

NPE [56], MF [11], LIME [20], Jiep [4], STAR [61], SGZ [69], RetinexDIP [68], and
ZERO-DCE++ [33].

5.2 Retinex decomposition analysis

The results of the Retinex decomposition of STR2 are shown in Fig. 5. As mentioned in
Section 1, the illumination map should be piece-wise smooth while maintaining the struc-
ture of objects. Considering the illumination map in the first row, it contains the edge of
the packing boxes and maps the illumination distribution across the wall and desk. The
reflectance map in the second row extracts the texture of trees properly. Overall, the STR2

could generate appropriate Retinex decomposition results.

(a) (b) (c)

(d) (e) (f)

Fig. 6 Images for the qualitative evaluation under different low-light conditions
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(a) (b) (c) (d)

(h)(g)(f)(e)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 7 Visual evaluation of an image with the SOTA methods. (a) Input (b) HE [15], (c) Dong [9], (d)
CVC [70], (e) LDR [31], (f) SSR [23], (g) MSRCR [48], (h) NPE [56], (i) MF [11], (j) LIME [20], (k)
Jiep [4], (l) STAR [61], (m) RetinexDIP [68], (n) SGZ [69], (o)ZERO-DCE++ [33], (p) Ours

5.3 Qualitative evaluation

In this subsection, we provide a subjective evaluation of the proposed method. Numer-
ous images under different low-light conditions are tested, among which six representative
images with backlighting, low-light and non-uniform illumination are shown in Fig. 6. The
enhanced results are depicted from Figs. 7, 8, 9, 10, 11 and 12.

As stated by Chen et al. [5], image enhancement methods should avoid dramatic alter-
nation of lighting conditions to the scene, and should not introduce additional artifacts or
amplify hidden distortions of images. The ambiance of the image (warm or cold color
impression) should not be changed greatly after enhancement. Following the criteria, we
take the compare between visual evaluation examples. Based on the criteria above, the
subjective results are analyzed as follows.

The results based on HE [15] tend to be under the same illumination level globally,
which causes the enhancement of the image. In Fig. 12 (b), the image is overly enhanced,
and the hidden noise is amplified. Dong [9] is effective in improving the brightness, but the
details of the enhanced images are under excessive enhancement. For example, the text on
the packing box in Fig. 7 (c) and the outline of the flowers in Fig. 9 (c) are overly bold. The
HE-based methods LDR [31] and CVC [70] perform well in preserving the details, but can-
not improve the brightness effectively. For example, in Fig. 7 (d), the brightness is barely
enhanced compared with the original image. The results based on the SSR [23] suffer from
distortions, e.g., unrealistic edges, strongly boosted noise, and color distortion. In Fig. 12
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a cb d

i j k l

he gf

m n o p

Fig. 8 Visual evaluation of an image with the SOTA methods. (a) Input (b) HE [15], (c) Dong [9], (d)
CVC [70], (e) LDR [31], (f) SSR [23], (g) MSRCR [48], (h) NPE [56], (i) MF [11], (j) LIME [20], (k)
Jiep [4], (l) STAR [61], (m) RetinexDIP [68], (n) SGZ [69], (o)ZERO-DCE++ [33], (p) Ours

(f), the lighting condition is dramatically alternated, and the color is distorted. MSRCR [48]
can improve the brightness of the image while maintaining clear details, but it changes the
ambiance of the image greatly. For instance, in Fig. 11 (g), the details such as the distant
buildings outside the window and patterns on the walls have been well-preserved, but the
color of the whole picture is severely distorted. LIME [20] may cause over-enhancement
and noise amplification in enhanced results. For instance, the building captured through the
window is blurred in Fig. 8 (j) and the noise in the dark background is amplified in Fig. 8
(j). ZERO-DCE++ [33] could generate bright and detail-maintained enhanced results, but
the ambiance of the image is destroyed. For example, in Fig. 9 (m) and (n), the color of
the flower is distorted. RetinexDIP [68] could achieve the effective lightness enhancement
of dark background, e.g., in Fig. 12 (m) the people and the table in the background are
brightened. But in Fig. 8, the dark front region tends to be blurry. SGZ may generate unsat-
isfactory results on images with large differences in brightness distribution, e.g., Figs. 8 (n)
and 12 (n). Comparatively speaking, the methods of NPE [56], MF [11], JieP [4], STAR [61]
and the proposed STR2 can achieve acceptable visual quality in the images.

Different enhancement methods may produce different subjective results. The quality of
the results depends largely on the individual’s subjective judgment. Thus, it is difficult to
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 (a)

 (f)

 (b)

 (g)

 (i)

 (c)

 (e)  (h)

 (d)

 (j)  (l) (k)

 (m)  (n)  (p) (o)

Fig. 9 Visual evaluation of an image with the SOTA methods. (a) Input (b) HE [15], (c) Dong [9], (d)
CVC [70], (e) LDR [31], (f) SSR [23], (g) MSRCR [48], (h) NPE [56], (i) MF [11], (j) LIME [20], (k)
Jiep [4], (l) STAR [61], (m) RetinexDIP [68], (n) SGZ [69], (o)ZERO-DCE++ [33], (p) Ours

compare the enhancement effect on the enhanced images, especially for the subtle differ-
ence. Therefore, we conduct quantitative analysis and comparison of the enhanced images
generated by the SOTA methods in Section 5.4.

5.4 Quantitative evaluation

Since the evaluation of enhanced images is highly correlative to human visual perception,
it’s a dilemma to employ a general method to evaluate the quality of an image. Gener-
ally speaking, the methods of image quality assessment (IQA) can be divided into two
categories, i.e., full reference-based methods and no reference-based methods [17, 19].
Considering that there is a rare ground truth image in the dataset, we employ two non-
reference-based IQAs (i.e., Natural Image Quality Evaluator (NIQE) [42] and the sharpness
metric in the autoregressive parameter space (a.k.a. “ARISMC”) [18]).

The NIQE indicator evaluates the difference in feature distribution between a natural
image dataset and a testing dataset [42]. A lower NIQE value means that the gap between
the enhanced image and the natural image is smaller and the quality of the image is better.
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Fig. 10 Visual evaluation of an image with the SOTA methods. (a) Input (b) HE [15], (c) Dong [9], (d)
CVC [70], (e) LDR [31], (f) SSR [23], (g) MSRCR [48], (h) NPE [56], (i) MF [11], (j) LIME [20], (k)
Jiep [4], (l) STAR [61], (m) RetinexDIP [68], (n) SGZ [69], (o)ZERO-DCE++ [33], (p) Ours

The formula of NIQE is given as:

NIQE (v1, v2, ξ1, ξ2) =
√

(v1 − v2)
T

(
ξ1 + ξ2

2

)−1

(v1 − v2), (21)

where v1, v2, ξ1, ξ2 represent the mean of the specific natural image dataset and the test
image and their corresponding variances. However, the NIQE indicator solely focuses on
whether the texture information is consistent with the characteristics of the natural image,
and the color ambiance information (e.g., warm and cold) is often ignored. To address this
issue, we choose ARISMC as an auxiliary indicator. Based on the parameter analysis of the
classical auto regressive (AR) image model, ARISMC is to estimate the image sharpness
considering both luminance and chromatic components [18]. The formula of ARISMC is
given as:

ARISMC =
∑

k∈�

�k · ρk, (22)

where Ψ = {
E,C,Ebb, Cbb

}
. E, C,Ebb, andCbb are the local sharpness estimation, local

contrast estimation, block-based sharpness estimation and block-based contrast estimation,
respectively. The sharpness score is computed by averaging the largestQk% values in the k

2337Multimedia Tools and Applications (2024) 83:2323–2347



(a)

(f)

(b)

(g)

(i)

(c)

(e) (h)

(d)

(j) (l)(k)

(m) (n) (o) (p)

Fig. 11 Visual evaluation of an image with the SOTA methods. (a) Input (b) HE [15], (c) Dong [9], (d)
CVC [70], (e) LDR [31], (f) SSR [23], (g) MSRCR [48], (h) NPE [56], (i) MF [11], (j) LIME [20], (k)
Jiep [4], (l) STAR [61], (m) RetinexDIP [68], (n) SGZ [69], (o)ZERO-DCE++ [33], (p) Ours

(
k ∈ {

E, C,Ebb, Cbb
})

map. Qk% is overall sharpness average parameter. Θk is the posi-
tive constant used to adjust the relative importance of each component. A smaller ARISMC
value means an image with higher sharpness, less blur, and higher quality.

Quantitative comparisons in terms of NIQE and ARISMC are shown in Tables 1 and 2,
respectively. The best, second-best and third-best results are highlighted in red, blue and
green, respectively. As reported in Table 1, the STR2 ranks first place on the LIME dataset,
the second-best place on 35 image datasets, and the third-best place on LOL datasets,
respectively. Although the proposed method does not achieve the top-3 results on the other
four datasets, it can be comparable to the deep learning-based methods, i.e., RetinexDIP,
SGZ and ZERO-DCE++. Overall, the STR2 achieves the third-best in average score, which
outperforms the deep learning-based methods and the STAR. Table 2 reports the results
among the competitors in terms of ARISMC. It shows that the STR2 ranks second-best
place on LIME and LOE datasets, and third-best place on LOL, MEF and VV datasets,
respectively. The proposed method achieves an average score of 1.1893 which ranks the
third-best place. It outperforms the deep learning-based methods, and it is very close to the
STAR (1.1818).

5.5 Impact of key parameters

We compare the influence of different groups of parameter choices on Retinex decomposi-
tion and enhancement results to evaluate the impact of key parameters. In ablation studies,
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Fig. 12 Visual evaluation of an image with the SOTA methods. (a) Input (b) HE [15], (c) Dong [9], (d)
CVC [70], (e) LDR [31], (f) SSR [23], (g) MSRCR [48], (h) NPE [56], (i) MF [11], (j) LIME [20], (k)
Jiep [4], (l) STAR [61], (m) RetinexDIP [68], (n) SGZ [69], (o)ZERO-DCE++ [33], (p) Ours

the illumination map is expected to be smooth while the structure is maintained. For the
reflectance component, the texture information should be extracted.

1) γs and γt . Since the coefficients of γs and γt in (6) and (7) play a decisive role on
structure and texture awareness in the proposed model, it’s pivotal to determine the reason-
able values of them. Figure 13 demonstrates the subjective comparisons of the illumination
and reflectance with different pairs of (γs , γt ). It shows that the illumination map is getting
smoother along with the increase of γs . On the contrary, with the increase of γt , the pro-
posed STR2 performs better on the extraction of texture information. In order to achieve
mutually satisfactory effects, these two parameters should be balanced against each other.
In Fig. 13, the model with γs = 1.25 and γs = 1.5 can barely distinguish the structure
from illumination or extract the texture from reflectance. In Fig. 13 (a) and (b), the model
with γs = 0.75 fails to enhance the spatial smooth of illumination. Overall, the model with
γs = 1.0 and γt = 0.75 (Fig. 13 (c)) will achieve satisfied results.

2) α and β. The coefficients of α and β are the weight parameter of illumination and
reflectance components. To determine reasonable values of these two parameters, Retinex
decomposition experiments are performed on the ‘building’ image.

The illumination and reflectance components of the STR2 Retinex decomposition with
different values of α and β (α, β ∈ {0.1, 0.01, 0.001, 0.0001}) are shown in Fig. 14. It shows
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(c) γs=1.0,  γt=0.75 (d) γs=1.0,  γt=1.5

(a) γs=0.75,  γt=0.5

(e) γs=1.25,  γt=0.5 (f)  γs=1.5,  γt=1.5

(b)  γs=0.75,  γt=1.25

Fig. 13 Comparison of decomposition component and enhanced result with different (γs , γt ) on the image
“Venice” from MEF dataset

(b) α =0.1,  β=0.0001

(c) α =0.01,  β=0.1 (d) α =0.01,  β=0.0001

(e) α =0.001,  β=0.1 (f) α =0.001,  β=0.0001

(g) α =0.0001,  β=0.1

(a) α =0.1,  β=0.1

(h) α =0.0001,  β=0.0001

Fig. 14 Comparison of decomposition component and enhanced result with different α and β on the
‘building’ image from the LIME dataset

that the decomposition results are more sensitive to the variation of α than β. In Fig. 14 (a)
and (b), the illumination maps tend to be obscure, and the reflectance maps fail to extract
the texture information. In Fig. 14(g), there is little difference between the illumination
component and the V channel. We observe that the model with α = 0.001 and β = 0.0001
produces optimal results.
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Fig. 15 Failure cases of the proposed STR2 model. The first row is the low-light image, and the second row
is the enhanced result

5.6 Computational complexity

The computational time is calculated by averaging the process time of ten images which
are resized to 960×720 and the results of comparison are depicted in Table 3. It shows
that the proposed method requires more running time than the majority of the methods, but
the enhanced results of the proposed method achieve satisfied qualitative and quantitative
effects. It is worth mentioning that the processing is simply iterated without optimization in
this paper, and it can be accelerated by adopting optimization algorithms such as alternating
direction minimizing (ADM) [55, 60]. Furthermore, the processing speed of the MATLAB
code can be accelerated by adopting C/C++ programming and employing GPUs.

5.7 Failure case study

In some cases, the performances of the proposed STR2 are not very satisfactory. Some
failure examples are shown in Fig. 15. In these examples, the low-light images have dark
backgrounds and numerous light sources. At the same time, these abounded light sources
often introduce halo effects in low-light images. The structure prior can’t handle such severe
distortion of the illumination map. Besides the aforementioned reasons, numerous bright
and dark boundary between the light source and the dark background makes the structure
prior fail to deal with the gradient of the illumination component. In the follow-up work,
more efforts are expected to solve this problem.

Table 3 Comparison of time cost (in second)

Method Dong [9] CVC [70] SSR [23] MSRCR [48] NPE [56]

Time 2.62 0.79 2.17 6.67 28.71

Method MF [11] LIME [20] Jiep [4] STAR [61] Ours

Time 2.31 14.11 13.43 21.80 18.90
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6 Conclusion

In this paper, we build a Structure and Texture Revealing Retinex (STR2) model for low-
light image enhancement. We explore the structure and texture constraints to enforce the
spatial smooth on the illumination layer and piece-wise continuous on reflectance layer,
respectively. The key idea is to accurately estimate the structure and texture maps via
analysing the difference of gradient distribution in illumination and reflectance layers. To
this aim, an alternative update algorithm is developed to solve the model. The effectiveness
of the proposed model is verified on public benchmarks, and comparative results show that
our method performs favorably against many state-of-the-art methods in terms of low-light
image enhancement.
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