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Abstract
Since the limitation of optical sensors, it’s often hard to obtain an image with the ideal res-
olution. Image super-resolution (SR) technology can generate a high-resolution image from
the corresponding low-resolution image. Recently, deep learning (DL) based SR methods
draw much attention due to their satisfying reconstruction results. However, these methods
often neglect the diversity of image patches. Therefore, the reconstruction effect is limited.
To fully exploit the texture variability across different image patches, we propose a univer-
sal, flexible, and effective framework. The proposed framework can be adopted to any DL
based methods. It can significantly improve the SR accuracy while maintaining the run-
ning time. In the proposed framework, K-means is employed to cluster image patches into
different categories. Multiple CNN branches are designed for these different categories to
reconstruct the SR image. Each branch is weighted in accordance with the Euclidean dis-
tance to the cluster centers. Experimental results demonstrate that by applying the proposed
framework, performance of the DL based SR method can be significantly improved.
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1 Introduction

An image with high-resolution facilitates human perception and computer analysis [28].
However, due to the limitation of optical sensors, it’s often difficult to obtain an image
with the desired resolution. Besides, for some critical engineering applications, such as geo-
graphic information system [16] and surveillance system [39], it is even harder to obtain
an HR image because of the imaging speed requirements. Though the HR image can be
obtained by setting up a more sophisticated optical sensor, this not increase the cost, but
also harmful to real-time imaging. To address the problem, single image super-resolution
(SR) [15], which is a classical task in computer vision, aims to reconstruct a high-resolution
(HR) image from a corresponding low-resolution (LR) image. Due to an LR image may
be corrupted via multiple degradation operations, SR is usually classified as a type of ill-
posed problem. To date, various SR methods have been proposed, and they can be generally
divided into three categories: interpolation based methods, statistic based methods, and
learning based methods.

Interpolation [43] based methods estimate the pixels of HR image by using a base func-
tion or an interpolation kernel. Among the interpolation based methods, linear interpolation
method (Linear) and bicubic interpolation method (Bicubic) are two most original and most
representative SR methods. To further optimize the SR results, lanczos filter [5] has been
applied to calculate the relationship between LR image and HR image. Besides, some para-
metric [13] and non-parametric [22, 23, 48] interpolation methods also have been adopted
to estimate HR images from the LR images. These interpolation based methods are effi-
cient in time due to the algorithms are not complex. However, these methods perform poorly
on modeling the complex mapping from LR images to HR images, causing the blurring
and jaggy artifacts near the edges of the HR images. Moreover, the HR images obtained
via the interpolation based methods often suffer overly-smooth regions in the complex
areas.

Different from the form, statistic based methods calculate the SR image by using the
statistical edge information of corresponding LR image. Raanan et al. [7] took the advantage
of distinctive edge dependency between LR and HR to upsample the LR image. Sun et
al. [33] learned prior knowledge of the gradient profiles [17] to estimate the HR image.
These methods mainly based on priors of edge statistical information and they can achieve
good SR results when the upscaling factor is small. However, the SR results obtained by
the statistic based methods often lose much high-frequency detail information when the
upscaling factor is large.

To date, example based methods [9] are the most successful SR approaches. These meth-
ods aim to learn the mapping between the HR image and corresponding LR image by a
large number of example pairs. According to the different reference images, these methods
can be roughly divided into two categories: internal-example based methods [12–44], and
external-example based methods [20–43].

Internal-example based methods set the original image as the HR image, and the corre-
sponding down-sampled images are set to the LR image. Then, the mapping can be learned
from these example pairs. In the testing phase, the SR images can be obtained by applying
the mapping to the given LR images. Yang et al. [44] exploit the self-similarity of the refer-
ence to learn the mapping. Based on this work, Wu et al. [41] combine self-similarity with
generalized nonlocal mean to further improve the quality of the SR image. Freedman et al.
[8] apply the internal-example based method to video SR. Moreover, Huang et al. [14] use
the self-dictionaries to handle the geometric transformations. These methods are simple and
effective. However, these internal-example based methods only work well when the image
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contains a lot of repeated structures. When the LR image consists of rich textures and rich
structures, these methods often fail to generate a satisfying HR image.

External-example based methods utilize example pairs from an external dataset to learn
the mapping. A large number of representative example pairs are sampled from the external
dataset Then, these example pairs are utilized to learn the universal mapping, which would
be used to calculate the SR images. Usually, these representative pairs can be embodied
by one or more pre-trained dictionary. For instance, the dictionary learned via sparse cod-
ing is widely applied in SR [42, 45, 46]. Yang et al. [45] train two coupled dictionaries,
namely LR dictionary and HR dictionary, from LR and HR pairs, respectively. Considering
the internal relationship, the SR image can be obtained by applying the sparse coefficients,
which is calculated via the LR dictionary. The SR images obtained via these sparse coding
based methods contain rich details and sharpened edges. However, to calculate the dictio-
naries, a lot of computational costs are required. Thus, these methods are limited due to
high computational cost and running time. To address this problem, Timofte et al. [34, 35]
apply neighbor embedding to SR tasks. In their method, the SR image is calculated via opti-
mizing a least square with l2 norm regularization. Compared with [45], the computational
cost is efficiently reduced. Random forests [2] is also applied to generate the SR image
[29, 30]. Generally, these methods require less running time compared with the sparse cod-
ing based methods. The biggest problem of these methods is that the forest model is too
huge.

Recently, deep learning (DL) has achieved great success in many computer vision tasks.
Dong et al. [3] (SRCNN) first introduce convolutional neural network (CNN) to SR. In
their method, a CNN with 3 layers is used to model the complex mapping between LR
and HR. Liu et al. [25] propose a robust SR method by using deep networks with sparse
prior. Inspired by VGG-net [32], Kim et al. [19] (VDSR) propose an SR architecture, in
which a lot of small filters are cascaded to calculate the residual component. Then, the SR
image can be obtained by combining the LR image and the residual component. The SR
images obtained via VDSR demonstrate the outstanding capacity of deep network models.
Besides, Kim et al. [20] also design an SR architecture (DRCN), in which 16 recursive
layers are used. It solves gradient exploding/vanishing by using recursive-supervision and
skip-connection. Though these deep learning based methods can generate satisfying SR
results, a lot of computational costs and running time are required. To accelerate the SR
process, Shi et al. [31] propose a real-time SR method by using a compact convolutional
network model with up-sample filter, which is applied in the last layer to up-sample the
output image into the ideal size. By doing so, the computational cost is efficiently reduced.
Similarly, based on [3], Dong et al. [4] adopt deconvolution layers with small convolutional
kernel size to accelerate the SR process. Inspired by ResNet [12], Lim et al. [24] propose
an SR method (EDSR) by using an enhanced deep ResNet, and the excellence of EDSR is
proved by winning the NTIRE2017 [36] challenge. Considering the dependencies between
LR and HR images, Haris et al. [11] propose an SR method based on deep back-projection
networks (DBPN). In their method, a feedback mechanism is utilized to learn the projection
errors, which are used to calculate the SR image. Generative adversary network (GAN)
[10], which is consist of a discriminator (D) and a generator (G), is widely applied in many
computer vision tasks. GAN also achieves promising results in SR. Ledig et al. [21] first
introduce GAN to SR. In their method, with the zero-sum game between D and G, the
generated SR image can recover photo-realistic textures. Wang et al. [40] use GAN with the
spatial feature transform layer to generate the SR image with realistic and visually pleasing
textures. However, these methods often neglect the diversity of image patches. Therefore,
the reconstruction effect is limited.
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Loss function is a key factor for these DL based SR methods. The mean square error, l2,
is widely employed in many image restoration tasks [3, 4, 37]. It is utilized to calculate the l2
distance between the SR image and the corresponding HR image. The structural similarity
index loss (SSIM) is another popular reference-based measure. It is based on that human
vision system (HVS) is sensitive to local structural changes. Johnson et al. [18] propose the
perceptual loss, in which the correlations among high-level features are considered. Based
on this, Ledig et al. [21] propose the perceptual loss for GAN, in which the adversarial loss
is also considered.

The contexts across the image patches reflect the diversity. To fully use the diversity of
the image patches, we proposed a universal, flexible, and effective framework. The pro-
posed framework can be adopted to any DL based methods. It can significantly improve
the SR accuracy while maintaining the running time. In the proposed framework, K-means
is employed to cluster the different texture characteristics. This makes full use of the
intrinsic characteristics of the training images. To train the convolutional neural network,
we propose a new weighted loss function, in which the coefficients are calculated adap-
tively according to the distances to the cluster centers. To sum up, there are mainly three
contributions:

1. We propose a generic SR framework, which fully exploits the texture variability across
different image patches. Our framework provides a cogent strategy to improve the SR
performance without extra time consumption over existing DL based methods with a
single branch. Experimental results show the superiority of our framework.

2. We propose a clustering based multiple branch networks for our framework. The coef-
ficients, which is calculated via the relationship between the cluster center and the
input patch, induce multiple branches to learn the diversity of different image patch.
During the reconstruction stage, the outputs from multiple branches are combined in
accordance with the coefficient maps.

3. We introduce a new weighted loss function to our framework. This loss function com-
putes the Euclidian distance between the HR image and the weighted sum of the output
from multiple branches. It enforces a prior knowledge based on cluster information to
each branch in our network.

To validate the effectiveness of the proposed framework, experiments are performed on
VDSR with applying the proposed framework (VDSR-K). By experiments, we demonstrate
that the VDSR-K outperforms the original VDSR.

The rest of the paper is organized as follow. Section 2 briefly reviews the VDSR and
Kmeans. Section 3 describes the proposed framework in detail. Section 4 analyses the
experimental results. Finally, Section 5 concludes the paper.

2 VDSR

VDSR is a representative deep learning based SR approach. Its network structure is shown
in Fig. 1.

Network depth is a key factor for SR accuracy. The deeper network can bring a better
performance. Out of this motive, Kim et al. deepen the network by cascading small filters
(i.e. 3× 3) for 20 times. By doing so, the receptive field is effectively increased to 41× 41,
while the receptive field for SRCNN is 13 × 13. That is to say, more image context can be
taken into account.
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Fig. 1 Structure of the VDSR

In general, deeper networks require more time to train. This not only consumes huge
computational costs, but also leads to an adverse effect to the real-time performance [6]. To
address this problem, VDSR employs four novel solutions:

1. Residual learning: Instead of learning all the information to generate the SR image,
VDSR employs a residual learning mechanism, in which only the residual between
the HR image and LR image is learned. Compared to other methods, the required
computational cost is efficiently reduced.

2. High learning rate: Learning rate has a significant impact for network convergence,
especially when the network is deep. To accelerate convergence, VDSR initially set the
learning rate to 0.1, and it would be decreased by a factor of 10 after every 20 epochs.

3. Adjustable gradient clipping: To avoid exploding gradients caused by high learning
rate, the gradient is clipped to [− θ

γ
, θ

γ
], where γ denotes a predefined value, θ denotes

the current learning rate, respectively.
4. Multi-scale: VDSR utilizes a larger training set to train a multi-scale model. Such

a model not only reduces training time, more importantly, it also improves the
performance for large scales.

By adopting these strategies, VDSR significantly improves SR accuracy and reduces the
required time compared with other methods.

3 Proposedmethod

3.1 Network architecture

As shown in Fig. 2, our network architecture mainly consists of 2 parts, namely feature
extraction and reconstruction. Give an input LR image upsampled to the original size by

Fig. 2 Network architecture of our VDSR-K
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Table 1 Comparison of our network structures

Phase Layers No. Branch(es) Branch(es) Filter Filter size Activation

in VDSR-K in VDSR number function

Feature extraction 1 1 1 64 3 × 3 × cin ReLu

2-15 1 1 64 3 × 3 × 64 ReLu

Reconstruction 16-19 k 1 64 3 × 3 × 64 ReLu

20 k 1 cout 3 × 3 × 64 None

bicubic interpretation, the network aims to learn an output SR image, which is supposed to
be close to the ground truth image HR.

It’s a rule of thumb that the deeper neural network can better extract the representa-
tive feature. Since SR is an ill-posed problem, an LR image may be obtained via different
HR images. To recovery the most possible HR image, these representative features play an
import role. In this paper, we employ 15 convolutional layers to extract the features. The
filter size of the convolutional layer is denoted as w × h × c, where w is the width, h is the
hight, and c is the depth of the channel. In the first layer, we use 64 filters with the size of
3 × 3 × cin, where cin is the color channel. Specifically, experiments are performed on Y
channel of YCbCr space, so cin is equal to 1. For each of the other 14 layers, 64 filters with
the size of 3 × 3 × 64 are employed. To make full use of the diversity of the image, multi-
ple CNN branches is utilized to reconstruct the SR image. For each branch, 5 CNN layers
are used to reconstruction the residual component. In detail, for the first 4 layers, 64 filters
with the size of 3 × 3 × 64 are employed. For the last layer, cout filters with the size of
3 × 3 × 64 are employed. cout denotes the color channel of the output image. In this paper,
same as cin, cout is equal to 1. The activation function for all the layers except the last layer
is ReLu. The detail of the network structure is shown in Table 1. We formulate that k is the
number of clusters. Thus, the number of convolutional layers in VDSR-K is 15 + k × 5.
To generate a better residual image, we use no bias for all the CNN layers. The final out-
put of our network is obtained via the weighted sum of all the branches. The weights for
different branches is calculated via measuring the distance between the LR image and pre-
calculated cluster centers. Moreover, to train the neural networks toward different branches,
a new weighted loss function based on l2 loss is proposed. More detail is explained in the
following subsections (Fig. 3).

Fig. 3 The pre-process of dataset and calculating the coefficients. Flatten is to reshape an image patch with
the size of m × n into a vector with m ∗ n elements
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3.2 Dataset K-means clustering

By applying data augmentation, and cropping from the augmented dataset, a large num-
ber of LR patches can be obtained. To make a full use of the diversity of these patches,
we use K-means to cluster the LR patch dataset. Given a LR patch dataset P =
(p1, p2, · · · , pn−1, pn), where n is the number of the patches. Every element pi, i =
(1, 2, · · · n − 1, n) is a matrix with the size of w × h. We first flatten it into a column vector
with the size of 1× w ∗ h. The flatten dataset X = (x1, x2, · · · , xn−1, xn) would be used to
calculate the cluster centers. This process can be explained as (1).

C = Kmeans(X, k) (1)

where Kmeans(•) denotes the K-means cluster operation. k is the number of clusters. C,
which is a k × n matrix, denotes the cluster centers.

To calculate the coefficients for different reconstruction branches, we calculate the
Euclidean distance from the sample to the cluster centers by solving (2):

D = distance(X,C) (2)

where distance(•) represents the process of calculating the Euclidean distance. D, which
is a n × k matrix, denotes the Euclidean distance from the sample to the cluster centers. For
each column vector di consists of k elements in D, the tth element dt

i denote the distance
from xt to the ith cluster centers.

With the distance D, coefficients αt
i for the tth sample to the ith reconstruction branch

can be easily obtained via solving (3) and (4):

wt
i =

k∏

j=1
dt
j

dt
i

(3)

αt
i = wt

i

k∑

n=1
wt

n

(4)

Equations (3) and (4) reflect the similarity between each sample and a certain cluster.
As shown in Fig. 2, in the reconstruction phase, multiple CNN branches are adopted.

The number of the branches is same as the number of clusters. The weighted coefficient
is assigned to each convolution branch, and the outputs are summed up to generate the SR
residual. Finally, the SR image can be obtained by combining the LR image and the learned
residual component. The reconstruction process can be explained in (5).

F =
k∑

j=1
αj × channelj(input)

SR = LR + F

(5)

3.3 Loss function

Our framework aims to learn the residual component R of HR image and LR image. Thus,
to optimize the neural network, we proposed a weighted loss function based on l2 loss. Our
loss function is shown in (6).

L =
n∑

i=1

∥
∥
∥
∥
∥
∥
Ri −

k∑

j=1

αjFj (xi)

∥
∥
∥
∥
∥
∥

2

2

(6)
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where Ri =HRi−LRi denotes the ith residual component, Fj denotes the output from jth

branch of construction branches.
With the learned residual component F , the SR image can be obtained via solving (7).

SR = LR + F (7)

3.4 Reconstruction stage

Our framework employs fully convolution networks (FCN). That is to say, it can accept the
input image with arbitrary size in the test phase. Since k CNN branches are adopted, we
obtain k outputs, namely F1, · · · , Fk in total. We assign the coefficient maps Si to Fi as its
weights (see Fig. 4). To generate the coefficient map Si , we sample patches from the test
image pixel by pixel with the same size in training phase, i.e. 41×41, then the coefficients α

for each patch is calculated via solving (3) and (4). We assign αi to its corresponding area in
Si . Then, all the overlapped elements in Si are averaged. Thus, the final residual component
can be obtained by applying Si to Fi . This can be expressed as (8).

F =
k∑

i=1

Fi ⊗ Si (8)

where ⊗ denotes the element-wise product operation.

4 Experiments

4.1 Settings

Following VDSR, we use 291 image dataset, which is consist of 291 nature images, to
train our network. We also perform data augmentation by rotating 90◦, 180◦, 270◦, flip-
ping horizontally and vertically. Thus the number of the images used to train the network

Fig. 4 Reconstruction stage
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is 291 × 5 = 1455. The degradation operator of the HR image is bicubic interpretation.
Then, the LR image is up-sampled to its original size. Experiments are performed on Y
channel of YCbCr space. A sliding window, whose size of 41 × 41, is adopted to sample
patch pairs from top left to top right. The stride of the sliding window is set to 41. We obtain
1111616 patch pairs totally. To test the performance of our network, three standard bench-
mark datasets, namely Set5 [1] with 5 images, Set14 [47] with 14 images, and B100 [26]
with 100 images. Moreover, the experimental results are evaluated by SSIM [38] and PSNR.
For a fair comparison, we also perform shave operation as VDSR et al. do. As explained in
Section 3.1, the network mainly consists of feature extraction part and reconstruction part,
the detailed structure is shown in Table 1. The optimizer for our model is stochastic gradi-
ent descent (SGD). The learning rate is initialized to 0.1, and divided by 10 after very 20
epochs. Momentum and weight decay are set to 0.9 and 0.0001, respectively. To avoid gra-
dient exploding, we also perform gradient clipping same as VDSR. Our network is trained
on 80 epochs with batch size of 128. Every epoch takes about 45 minutes. We use PyTorch
[27] with one NVIDIA 980 Ti GPU to implement our model. The source code is avail-
able at https://github.com/Paper99/K-means based SR/. The proposed method is compared
with some state-of-the-art methods, including Zeyde [47], ANR [34], A+ [35], SRCNN [3],
FSRCNN [4], and VDSR [19]. We re-measure the performance of these contrast methods
by using the relevant public codes. The parameters for these contrast experiments are set in
accordance with the corresponding publications.

4.2 Influence of the number of clusters

By applying the sample to the cluster centers, the coefficients α can be obtained. Each
coefficient αi denotes the weight for the ith branch in the reconstruction part.

To investigate the influence of the number of clusters, we evaluate our framework VDSR-
K C2 and VDSR-K C3 with group dataset into 2 clusters and 3 clusters, respectively. In this
phase, experiments are performed on Set5, Set14, and B100 with up-sacle of 2, 3, and 4. The
subjective evaluation metrics are shown in Table 2. It can be seen that with the increase of
the number of the clusters, the performance gets better. That is because of more clusters can
make more detailed distinctions between the texture characteristics of the image set. At the
reconstruction part of VDSR-K, more branches can effectively encode more representative
features of different texture categories. Thus the performance can be efficiently improved.

4.3 Comparison with the state-of-the-arts

In this section, we compare our VDSR-K with some state of the art methods, namely Zeyde,
ANR, A+, SRCNN, FSRCNN, and VDSR. We use VDSR-K C3 for an objective compari-
son, VDSR-K C2 for subjective comparison The quantitative evaluation on Set5, Set14, and
B100 with upsacle of 2, 3, and 4 is shown in Table 4. For both PSNR and SSIM, the higher

Table 2 Comparison of different cluster numbers in average PSNR

Model Set5 Set14 B100

Upscale ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

VDSR-K C2 37.51 33.72 31.38 33.03 29.79 28.00 31.90 28.83 27.28

VDSR-K C3 37.52 33.76 31.41 32.97 29.80 28.04 31.91 28.85 27.29
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Fig. 5 “78004” image from B100 with scale factor ×3

value denotes a better reconsider effect. The highest is shown in bold. It can be seen that
by utilizing our framework, VDSR-K outperforms almost all the contrast methods in all the
datasets with all the scale factors. In detail, our method obtains the best result in PSNR for
all except 2 items. That is to say, the SR results obtained via our network is the closest to
the corresponding HR image. Besides, we obtain the highest results in SSIM except for 1
item. That means our method is more suitable for HVS. This demonstrates the effectiveness
of our framework from the perspective of objective indicators.

SR results of the VDSR-K C2 and other contrast methods are shown in Figs. 5, 6, 7
and 8. It can be seen our method achieve the highest PSNR of these images. First, we show
the SR results of “78004” in B100 dataset. From Fig. 5, we can see that our method can
generate a more faithful SR image which can recover most sharp lines. From the enlarged
image, we can see that the outline of the windows is the closest to the HR image, and no
any other extra structure is introduced. However, other contrast methods fail to recover the
detail information. What worse, VDSR produces obvious artifacts around the boundary of

Fig. 6 “21077” image from B100 with scale factor ×3
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Fig. 7 “Monarch” image from Set14 with scale factor ×3

Fig. 8 “Woman” image from Set5 with scale factor ×3

Table 3 Comparison of running
time and the number of
parameters

Model Running time (s) The number of

parameters

VDSR 0.0012 0.6M

VDSR-K C2 0.0015 0.8M

VDSR-K C3 0.0019 0.9M
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the windows. The SR results of “Monarch” in Set14 is shown in Fig. 7. It can be seen that
our method accurately recovers the spots on the butterfly wings. While the SR results of
Zeyde, ANR, A+, and SRCNN glue yellow spots and white spots, which are separated in the
corresponding HR image. Figure 6 shows the SR images of “21077” in B100 dataset. The
SR result of our method is sharp on the line and the numbers printed on the car are clearer.
From Fig. 8 which shows the SR results for “woman” in Set5, our method better restored
the outline of the hollow on the scarf compared with all the contrast methods. Combining
the objective quantitative assessments and the subjective visual effect, the superiority of our
method is demonstrated.

We compare the running time and the number of parameters with VDSR, the results are
shown in Table 3. It can be seen that the required running time of VDSR-K C2 and VDSR-
K C3 is roughly the same as that of VDSR. The number of parameters in both VDSR-
K C2 and VDSR-K C3 are not increased significantly compared with VDSR. However,
our framework shows obvious advantages in both subjective visual effects and objective
indicators (Table 4).

5 Conclusion

Deep learning based SR methods often neglect the diversity of image patches. To fully
exploit the texture variability across different image patches, a universal, flexible, and effec-
tive framework is proposed. In the proposed framework, K-means is employed to group
images into different clusters. Multiple branches are adopted to reconstruct the SR image.
Each branch is weighted in accordance with Euclidean distance to the cluster centers.
To train the neural network, a weighted loss function based on l2 loss is proposed. To
demonstrate the effectiveness of our framework, we apply it to the VDSR. Experimental
results illustrate that VDSR-K performance the original VDSR and some state-of-the-art
SR approaches.
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