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Abstract—Infrared and visible images are a pair of multi-
source multi-sensors images. However, the infrared images
lack structural details and visible images are impressionable
to the imaging environment. To fully utilize the meaningful
information of the infrared and visible images, a practical
fusion method, termed as RCGAN, is proposed in this paper.
In RCGAN, we introduce a pioneering use of the coupled
generative adversarial network to the field of image fusion.
Moreover, the simple yet efficient relativistic discriminator is
applied to our network. By doing so, the network converges
faster. More importantly, different from the previous works in
which the label for generator is either infrared image or visible
image, we innovatively put forward a strategy to use a pre-
fused image as the label. This is a technical innovation, which makes the process of generating fused images no longer
out of thin air, but from “existence” to “excellent.” The extensive experiments demonstrate the proposed RCGAN can
produce a faithful fused image, which can efficiently persevere the rich texture from visible images and thermal radiation
information from infrared images. Compared with traditionalmethods, it successfullyavoids the complex manual designed
fusion rules, and also shows a clear advantages over other deep learning-based fusion methods.

Index Terms— Image fusion, infrared image, visible image, coupled generative adversarial network, relativistic discrim-
inator, deep learning.

I. INTRODUCTION

MANY cameras are equipped with both visible imaging
sensor and infrared imaging sensor. These two types

of sensors can capture the visible image and the infrared
image respectively. Visible images contain rich texture
information, while visible imaging sensors are susceptible to
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the environment. For instance, some important objects may be
invisible in visible image the condition of darkness or thick
fog. In contrast, infrared images are captured in accordance
with the thermal radiation. Thus, they can work stably around
the clock under all conditions. However, infrared images often
lack texture information. To fully utilize the complementary
information, infrared and visible images fusion technology
[1] aims to integrate infrared image and visible image into
a single image, which is rich in both texture and thermal
radiation distribution.

Generally, existing infrared and visible images fusion meth-
ods can be roughly divided into two categories: traditional
fusion methods and deep learning based methods. Traditional
fusion methods process the source images either in the spatial
domain or the transform domain. For spatial domain methods,
the fused is obtained via analyzing the spatial relationship
between infrared image and visible image. For instance,
Li et al. [2] decomposed source images into two scales and cal-
culated the weight maps for the two scales by using the guided
filter [3]. Consequently, the fused image can be obtained by
reconstructing the two scales via the weight maps. This is a
representative spatial fusion method, which motivated other
fusion methods [4], [5]. For the transform domain methods,
the source images are usually transformed into coefficients by
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some mathematical tools. The next is to measure the activity
level and to fuse the transform coefficients. Finally, the fused
image is obtained via an inverse transformation. In this aspect,
some typical transform methods, such as Laplacian pyra-
mid (LP), discrete wavelet transform (DWT), nonsubsampled
contourlet transform (NSCT), sparse representation (SR) were
explored in [6]–[13]. However, the aforementioned traditional
fusion methods may take a long time for decomposition.
Besides, these traditional methods require complex manually
designed fusion rules. Hence, these methods are hard to use
in practical applications.

Recently, some deep learning based fusion methods have
been proposed by virtue of the powerful representation ability
of deep networks [14]. Liu et al. [15] combined Laplacian
pyramid decomposition and shallow convolutional neural net-
work to fused the infrared and visible images. Li et al. [16]
decomposed the source images into a base part and a
detail part, and used VGG-network [17] to fuse the detail
layer. Nevertheless, the approaches above still require two
complex handcrafted components as most traditional fusion
methods do: activity level measurements and fusion rules.
As a result, such methods occupy excessive computing and
storage resources. To achieve an end-to-end mapping from
source images to a fused image, Ma et al. introduced a
generative adversarial network (GAN) [18] to infrared and
visible images fusion task [19], termed as FusionGAN.
In FusionGAN, a fused image with highlighted targets and
abundant textures can be directly generated by the generator.
The discriminator, which regards a corresponding visible
image as a positive sample, can provide more texture infor-
mation for the fused image.

Although FusionGAN is independent of complicated activ-
ity level measurements and fusion rules, we argue that it
suffers from three drawbacks. First, single GAN only can
exploit one relationship between different semantic levels, but
highlighted targets in infrared images and abundant textures
in visible images obviously should be treated in different
ways. Second, there is no valid label in FusionGAN, making
the process of generating fused images undirected. Third,
the criterion used in the discriminator of FusionGAN deter-
mines whether a fused image is a visible image or not,
but the absolute differences between a fused image and a
visible image are difficult to fool the discriminator. Therefore,
the training process of FusionGAN will wander off in the
wrong direction.

To solve the issues mentioned above, a relativistic cou-
pled GAN for infrared and visible images fusion, which
is abbreviated as ‘RCGAN’ is proposed. We use coupled
GAN [20] to play a two-team game (each team contains one
generator and one discriminator) rather than a minimax two-
player game in FusionGAN. As for generators, infrared and
visible images share the same high-level concepts at the first
layers, and utilize different low-level details to fuse meaningful
information at the last layers. A pair of fused images, which
are obtained by generators, are then fed into corresponding dis-
criminators to distinguish the high-level representations among
them. To solve the ‘undirected’ problem existed in the previous
works [15], [16], [19], a pre-fused image is employed as the

Fig. 1. Infrared and visible images fusion using RCGAN. (c) is the pre-
fused image by GFF [2]. (d) and (e) are the generated results of the
coupled generators, (f) is the final fusion result. The pre-fused image
neglects the significant object (see the green box), and it introduces a
noisy block (see the yellow box). The first generator optimizes the pre-
fused image towards the infrared image, thus the person is visible, but
the tree (see the red box) is fuzzy. The second generator optimize the
pre-fused image towards the visible image. It addresses the noisy block
in the pre-fused image, but the person is fuzzy. Thus, the (d) and (e) are
averaged to take advantage of them, and the final fusion result (f) can be
obtained. (f) is more clear and representative than the pre-fused image.

guide of generators. We employ relativistic discriminators [21]
to measure the relative differences between the fused image
and infrared/visible image. Compared with traditional fusion
methods, our method successfully avoids complex manual
designed fusion rules and can fuse source images in an
end-to-end way. Meanwhile, the proposed RCGAN requires
less computational computing and storage resources compared
with [15], [16], it also overcomes the aforementioned inher-
ent disadvantages in [19]. Compared with FuisonGAN, our
method employs coupled GAN to handle multi-domain images
in a different way. By using the pre-fused image, our network
is able to purposefully synthesis a faithful fusion results.
To summarize, our main contributions can be listed as follows:

1) We pioneer the coupled GAN for multi-domain image
fusion. A couple of generators and discriminators, which
share common scenes from source images, are used to
treat highlighted targets in infrared images and abundant
textures in visible images in different ways.

2) We creatively use the pre-fused image as the guide for
the coupled generators in the training phase.1 By doing
so, the objective of generators is to optimize the pre-
fused image, rather than generate it out of thin air.
In other words, it enables the fused image from ‘exis-
tence’ to ‘excellent’.

3) We introduce the relativistic discriminators to evaluate
the relative differences between the fused image and
the infrared/visible image. Through using relativistic dis-
criminators, the convergence process can be more stable
during training and the fusion result can be more faithful.

The rest of the paper is organized as follows. Section II
introduces some related works, such as the FusionGAN and
coupled GAN. Section III describes the proposed RCGAN
in detail. The experimental results and analyses are given in
Section IV. Finally, the conclusion is drawn in Section V.

1It should be noted that the pre-fused image is not required during inference.
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II. RELATED WORKS

A. FusionGAN

FusionGAN [19] first introduced the generative adversarial
network (GAN) to image fusion task. In FusionGAN, the gen-
erator receives the concatenated infrared and visible images to
generate an image with both infrared image thermal radiation
information and visible image gradient detail. The discrimi-
nator will inject more visible image structure information by
distinguishing the generated image and visible image.

The loss function for the generator is designed as

LG = �(G) + αLcontent , (1)

where LG represents the total loss for the generator, �(G)
denotes the adversarial loss, Lcontent represents the content
loss between the generated image Ig and the infrared/visible
image (Iir /Iv is ), and α is a constant to regulate the ratio
between �(G) and Lcontent . In more detail, the two separate
loss functions are formulated as

�(G) = 1

N

N∑

n=1

(D(I (n)
g ) − a)

2

Lcontent = 1

W H
(β

∥∥∇ Ig − ∇ Iv is
∥∥2

2 + ∥∥Ig − Iir
∥∥2

2), (2)

where I (n)
g is the n-th generated image. There are N images

totally. a is the label that discriminator thinks the generated
data is real, W and H denote the width and height of the source
images, respectively. The notation ∇ denotes the gradient
operator, �·�2 denotes the L2-norm, and β is a constant to
control the ratio of gradient information.

The loss function for the discriminator is set to

L D = 1

N

N∑

n=1

(D(Iv is ) − b)2 + 1

N

N∑

n=1

(D(Ig) − c)2, (3)

where L D is the loss for discriminator, b and c are soft labels
for the discriminator, and D (·) denotes the classification result
of the discriminator. It can be learned from the above loss
functions that the output of the initial generator is an image
with infrared image thermal radiation information and visible
image gradient detail. By the feedback of the discriminator,
the structure information of visible image can be added to the
generated image.

B. Coupled Generative Adversarial Network

Coupled GAN [20] aims to learn the joint distribution of
multi-domain images. Except for a portion of the sample
drawn from the marginal distribution, it does not require any
external information. This is achieved by the weight-sharing
mechanism of the generators.

It consists of two parts: the coupled generators and the
coupled discriminators. They restrain each other follow the
minimax criterion. Let G1(·) and G2(·) be the function of
the first generator and the second generator, D1(·) and D2(·)
be the function of the first discriminator and the second
discriminator. The constrained minimax game in the coupled

GAN can be formulated as

max
G1,G2

min
D1,D2

L(G1, G2, D1, D2)

= �I1 [− log D1(I1)]
+�z[− log(1 − D1(G1(z))] +�I2 [− log D2(I2)]
+�z[− log(1 − D2(G2(z))], (4)

where z is a random vector, I1 and I2 represent images
sampled from different domains.

The weights of the front layers in coupled generators which
are used to extract the high-level features are shared. This is
the key factor that enables coupled generators to learn the
joint distribution. The coupled discriminators also employ the
weight sharing mechanism in the last few layers. Although this
does not help to learn the joint distribution, it can effectively
reduce the parameters of the network.

Since coupled GAN can learn the joint distribution of multi-
domain images, it is suitable for multi-domain image tasks
such as image transformation [22] and domain adaptation [20].
This motivates us to explore coupled GAN for infrared and
visible images fusion. Owing to the imaging principles of
infrared images and visible images are different, they belong
to two distinct domains. But they also have a strong internal
correlation. Therefore, understanding their joint distribution
will be very helpful for fusion.

Algorithm 1: The Training Process of RCGAN

for number of epoch do
for number of iterations do

// update the coupled discriminators ;
Pick n images generated from first generator
(I (1)

g1 , · · · , I (n)
g1 ) ;

Pick n visible images (I (1)
v is , · · · , I (n)

v is ) ;
Update the first discriminator by Adam optimizer;
Pick n images generated from second generator
(I (1)

g2 , · · · , I (n)
g2 ) ;

Pick n infrared images (I (1)
ir , · · · , I (n)

ir ) ;
Update the second discriminator by Adam
optimizer;
// update the coupled generators ;
Pick n pre-fused images (I (1)

p f , · · · , I (n)
p f ) ;

Pick n infrared images (I (1)
ir , · · · , I (n)

ir ) ;
Update the first generator by Adam optimizer;
Pick n visible images (I (1)

v is , · · · , I (n)
v is ) ;

Update the second generator by Adam optimizer;
end

end

III. PROPOSED METHOD

The framework of the proposed RCGAN is represented
in Fig. 2. We design a sophisticated coupled GAN to fully
exploit the representative information in infrared and visible
images. The infrared and visible images are connected on
the color channel and fed into parallel coupled generators.
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Fig. 2. Architecture of the proposed RCGAN. The infrared and visible images are connected in the color channel as the input for the coupled
generators. Then, the two generated image Ig1 and Ig2 are fed to the coupled relativistic discriminators. With the game between coupled
generators and the relativistic discriminators, both generated are faithful. Finally, the two generated images are averaged to obtain the fused
image.

Fig. 3. Architecture of the coupled generators in RCGAN. BN denotes
the batch normalization layer. n and s represent the number of the
convolutional kernels and the stride, respectively.

The first generator attempts to generate an image with infrared
image structure information based on the pre-fused image.
The discriminator then measures the relative offset of the
generated image to the visible image. Similarly, the second
generator is dedicated to enhancing the gradient information
of the visible image on the pre-fused image. Its discriminator
is dedicated to measuring the offset of the second generated
image relative to the infrared image. As the training iteration
increases, both generators can obtain a corresponding faithful
generated image which contains both structure information of
the infrared image and the texture information of the visible
image. However, due to the training strategy, the generated
image will be relatively biased towards a certain source image.
So the two generated images are averaged to get the final fused
image. This can take advantage of the generated image and
offset its own shortcomings. The training process is drawn in
algorithm 1.

A. Architecture of Generators

The architecture of the coupled generators is shown
in Fig. 3. The two generators have exactly the same structure.
Each consists of five convolutional blocks. Each convolu-
tional block contains a convolutional layer, a batch normaliza-
tion (BN) layer and a leaky ReLU [23] activation layer (except
the last convolutional block consists of a convolutional layer

and a Tanh activation layer). The kernel size is set to 5 × 5
for the first and second convolutional blocks, 3 × 3 for the
third and fourth convolutional blocks, and 1 × 1 for the last
convolutional block. In the beginning, a larger convolution
kernel, such as 5 × 5, can have a larger receptive field for
extracting features. Then, a smaller convolution kernel, such
as 3 × 3, can optimize the feature map efficiently. The 1 × 1
convolutional filter is mainly used to reduce the dimension so
that the generated image can have the desired color channel.
The stride for all convolution operations is set to 1, and no
pooling is done. This setting can preserve useful information
as much as possible. The number of convolutional kernels for
the five convolutional blocks are set to 256, 128, 64, 32, and 1,
respectively. Leaky ReLU is used as the activation function for
the first four convolutional blocks, and Tanh is used for the last
convolutional block. To couple the two generators together,
the weights of the first three convolutional blocks are shared.
By adopting weight sharing among the generators, on the one
hand, the number of parameters can be greatly reduced, on the
other hand, this helps to learn the joint distribution of multi-
domain images. Thus the feature map in our network is more
representative.

We want to make the first generator G1 learn the thermal
radiation information of the infrared image based on the pre-
fusion image. So the loss function is set to

LG1 = �(G1) + αLcontent1, (5)

where �(G1) and Lcontent1 denote the GAN loss and content
loss for the first generator, which can be formulated as

�(G1) = 1

N

N∑

n=1

(DRa1(I (n)
g1 , I (n)

v is ) − a)
2

Lcontent1 = 1

W H
(β

∥∥Ig1 − Iir
∥∥2

2 + ∥∥Ig1 − Ip f
∥∥2

2), (6)

where DRa1(Ireal , I f ake) is the function of the first relativistic
discriminator in which the data Ireal tends to be real is labeled
as a. Correspondingly, I f ake is the data tends to be fake,
Ig1 stands for the first generated image obtained by G1,
Lcontent1 denotes the content loss for the first generator. α and
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Fig. 4. Architecture of the coupled relativistic discriminators in RCGAN.
BN denotes the batch normalization layer. n and s represent the number
of the convolutional kernels and the stride, respectively.

β (in 5) are two factors two control the ration of the content
and infrared image Iir .

With the help of this loss function, the first generated image
Ig1 can simultaneously persevere details from the pre-fused
image Ip f and learn radiation information of the infrared
image Iir .

Similarly, we want to inject the gradient information of
the visible image Iv is into the second generated image based
on the pre-fusion image Ip f . Therefore, the loss function of
the second generator is set to

LG2 = �(G2) + αLcontent2, (7)

where �(G2) and Lcontent2 are formulated as

�(G2) = 1

N

N∑

n=1

(DRa2(I (n)
g2 , I (n)

ir ) − a)
2

Lcontent2 = 1

W H
(β

∥∥∇ Ig2 − ∇ Iv is
∥∥2

2 + ∥∥Ig2 − Ip f
∥∥2

2), (8)

where DRa2(Ireal , I f ake) is the function of the second rela-
tivistic discriminator in which the real data is labeled as a.
Ig2 is the generated image of the second generator, and ∇ is
the gradient operation. Thus, Ig2 can learn the gradient details
of the visible image based on the pre-fusion image.

Therefore, the role of the coupled generators can be thought
of as optimizing the pre-fusion image along with different
directions. But each generated image is biased toward a
particular source image (see Fig. 1). This biased issue will
be alleviated in the subsequently coupled discriminator.

B. Architecture of Relativistic Discriminators

The architecture of the coupled relativistic discriminators is
shown in Fig. 4. The two generated image Ig1 and Ig2 are input
for the coupled relativistic discriminators. Each relativistic
discriminator consists of four convolutional blocks and a linear
layer. The first block is composed of a convolutional layer
and a Leaky Relu activation layer. The next three blocks are
made up of a convolutional layer, a batch normalization layer
and a Leaky Relu activation layer. The kernel size of all the
convolutional layer is set to 3, and the stride is set to 2. Thus
the width and height of the feature map will shrink rapidly. The
numbers of the kernels for the four convolutional layers are

set to 32, 64, 128, and 256, respectively. Only the first block
is valid padded. The last linear layer will convert the flatten
feature map into one output, which represents the relative
distance between Ig and the corresponding image. To reduce
the amount of the parameter, the weight for the third and fourth
convolutional block and the liner layer are shared as shown
in Fig. 4.

The role of the coupled relativistic discriminators is to
calculate how the generated image relatively close to another
image. In this way, by backpropagation, the generated image
can simultaneously contain the information of the corre-
sponding opposite image. In detail, for the first generator,
the infrared image is used as part of the loss function to
optimize the results, so in the corresponding first discriminator,
we calculate how close the first generated image is to the
visible image. Thus, the loss function for the first relativistic
discriminator DRa1 is set to

L Ra1 = DRa1(Iv is , Ig1), (9)

Similarly, the second relativistic discriminator DRa2 aims
to measure how the second generated image Ig2 is relatively
close to the infrared image. Thus, its loss function can be
formulated as

L Ra2 = DRa2(Iir , Ig2), (10)

where L Ra1 and L Ra2 denote the loss function for the first rel-
ativistic discriminator and the second relativistic discriminator,
respectively. The function of two relativistic discriminators can
be formulated as

DRa1(Ireal , I f ake) = C1(Ireal ) −�I f ake [C1(I f ake)]
DRa2(Ireal , I f ake) = C2(Ireal) −�I f ake [C2(I f ake)], (11)

where C1(·) and C2(·) denote the non-linear transformation
of two discriminators. The coupled relativistic discriminators
allow the single generated image to have information of the
opposite image. But the resulting image is still biased to some
extent (See Fig. 1), so the two generated images are averaged
to obtain the final fusion result F as

F = 0.5 × (Ig1 + Ig2). (12)

Since the two images, Ig1 and Ig2, are both generated on
the basis of the pre-fusion image, the averaging operation can
make the final resulting image reserve both infrared thermal
radiation information and the visible image texture information
based on the pre-fused image.

There is no doubt that using a more complex network
model, such as ResNet [24] and DenseNet [25], can signif-
icantly improve the capabilities of the network. But for a fair
comparison, the design of the single branch of RCGAN is
similar to FusionGAN.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Training Details

To train the RCGAN, 39 pairs of infrared and visible images
from TNO dataset are used. We first convert the training
images to gray, and crop patches from them with the size
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of 120 × 120 and stride of 14. Then, the training patches are
centralized to [−1, 1]. Since the coupled generators employ
no padding operation, the width and height of the feature
map will shrink. To solve this issue, all the patches are zero-
padded to 132 × 132. The infrared image patch and visible
image patch are connected in the color channel and fed to the
coupled generators. Thus the shape of the generated image is
120 × 120. The two parameters λ and � which are used to
adjust the ratio are set to 100 and 6, respectively. The label a
for the coupled discriminator is set to 1. We use Adam [26]
as the optimizer, and the batch size is 32. A complete epoch
consists of a coupled discriminators training session at first and
a coupled generators training session at second, and 100 epoch
is trained. We employ the fusion results of GFF [2] as the pre-
fused image. The implementation of RCGAN is available at
https://github.com/liqilei/RCGAN.

B. Comparison With State-of-the-Art Methods

To demonstrate the superiority of the proposed RCGAN,
it is compared with seven state-of-the-art methods, which are
guided filter based fusion (GFF) [2], adaptive sparse represen-
tation (ASR) [11], sparse representation (SR) [27], Laplacian
pyramid with sparse representation (LP-SR) [28], convo-
lutional neural network based fusion (CNN) [29], fusion
with convolutional neural network (FCNN) [15], and
FusionGAN [19]. The implements or models of these methods
are publicly available, and all the parameters are set in
accordance with the corresponding publications. The experi-
ments are performed on two public datasets including TNO
dataset [30] and INO dataset [31]. The INO dataset con-
sists of a number of infrared and visible video pairs, and
we capture some frames from them to test our method.
Besides the subjective visual effect, the structural similarity
index (SSIM) [32], which measure the structural similarity
between the source images and the fused image, is employed
to objectivity measure the proposed method. Since the fused
image should persevere the representative structures of both
infrared image and visible image. Thus, a higher SSIM can
reflect a better fusion result.

For TNO dataset, four representative image pairs (bench,
house, fennek01, and jeep) is used to evaluate our methods.
The bench image pair depicts a man sitting on a bench with
a reflection in front of the river. But the light is too dark to
see the man in the visible image. The fennek01 pair shows
a vehicle that is traveling on the road. The third image pair,
called house, shows a house with light, but the light source
is only visible in the visible image. The last image, called
jeep, shows a jeep at night. The sky and details of the car
can only be seen in the infrared image, while the surrounding
environment is more clear in the visible image. The images
and the fusion results of the RCGAN and other seven contrast
methods are shown in Fig. 5, and the corresponding quan-
titative evaluation of SSIM is given in Table I. In general,
SR easily introduces a large amount of noise and spots into
the fused image. For example, in the bench image, white spots
appear in the river, and the shade of the man is difficult to
recognize. Besides, a lot of noise is introduced on the ground

TABLE I
QUANTITATIVE EVALUATION OF SSIM ON FOUR PAIRS OF INFRARED

AND VISIBLE IMAGES IN TNO DATASET

TABLE II
QUANTITATIVE EVALUATION OF SSIM ON THREE PAIRS OF INFRARED

AND VISIBLE IMAGES IN INO DATASET

in the house image. To make matters worse, in the jeep pair,
SR cannot fuse the information from the infrared image and
causes the body of the jeep is hard to identify. Since the
fusion rules are designed based on sparse coefficients in these
SR based methods, a slight change in the sparse coefficient
may cause a huge disaster in spatial the domain. Besides,
a single dictionary in SR [27] is difficult to represent the struc-
tural features of infrared and visible images simultaneously.
Therefore, the SSIM for the fused image is relatively low.
ASR, which employs multiple dictionaries, can alleviate this
problem. However, ASR’s performance for some details is still
poor. For example, in the jeep pair, it can be seen from the
enlarged visible image that the wheel has a small circle in the
innermost. But these contrast methods, including ASR, fail to
fuse this detail. Besides, ASR requires a lot of running time
and computational costs. The multi-scale methods, including
GFF and LP-SR, rely too much on the decomposition level
and the manual activity measurement. Thus their fusion results
may neglect some important information. For instance, in the
bench image, the used image of GFF is dark overall. For
LP-SR, the fusion result of house neglects the light source,
and the fusion result for jeep ignores the innermost circuit of
the wheel in the enlarged image. The CNN introduces a white
block in the river on the bench image and makes the light
source in the house image invisible. Similarly, FCNN ignores
some details in the fused images, such as the innermost circles
inside the wheel. This is because the two methods are not
accurate enough on detecting the activity level. As analyzed
earlier, a single GAN network cannot exploit the representative
information of the multi-domain images. Thus, FusionGAN’s
results are often too smooth and have a severe halo effect,
which is not conducive to visual perception. The fusion results
of our RCAN are clearer and most of the representative details
are preserved.

We also evaluation RCGAN and other contrast methods on
three image pairs. The three image pairs are captured in differ-
ent scenes, and they are named CoatDeposit, MultipleDeposit,
and ParkingSnow in INO dataset. The visual effect of the
fusion results is shown in Fig. 6, and the objective mea-
surement is drawn in Table II. It can be seen that the
fusion results of SR suffer from heavy spatial distortion.
Especially for the ParkingSnow, it is difficult to recognize
the appearance of the snow in the fused image. ASR and
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Fig. 5. Fusion results for four representative infrared and visible images from the TNO dataset. The frist two rows are the fusion results for bench
image pair; the third and fourth rows are the results for fennek01 image pair; the fifth and sixth rows are the results for house image pair; the last
two rows are the fusion results for jeep image pair. For a better comparison, a small region is enlarge in the green box.

FusionGAN introduce holo around the objects. Due to the
inappropriate activity level measurement, the fused images
of LP-SR and FCNN are often unsatisfactory. In the fusion
results of LP-SR and FCNN on ParkingSnow image, the body

of the man is gray and the head of the man is white. This is
unfriendly for perception and analysis. Compared with other
methods, RCGAN can make full use of information from
infrared and visible images, and the fused images are rich
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Fig. 6. Fusion results for three representative infrared and visible images from the INO dataset. The frist two rows are the fusion results for CoatDeposit
image pair; the third and fourth rows are the results for MulitpleDeposit image pair; the last two rows are the fusion results for ParkingSnow image
pair. For a better comparison, a small region is enlarge in the green box.

in detail and can highlight key objectives, such as the man
in CoatDeposit and ParkingSnow. The quantitative evaluation
results in Table II also demonstrate our method can produce
a satisfying fusion result which can persevere most structure
information of infrared and visible images. The visual effects
and the objective evaluation results of both TNO dataset
and INO dataset demonstrate that our RCGAN has obvious
advantages over other state-of-the-art methods.

C. Ablation Study

1) Ablation Study on Relativistic Discriminator: To demon-
strate the importance of the relativistic discriminator,
we design CGAN, which employs the coupled standard
absolute discriminators instead of the coupled relativistic
discriminators. The other settings are exactly the same as
those of RCGAN except for the coupled discriminators. The
loss functions for the coupled discriminators in CGAN are

formulated as

D1(x) = C1(x)

D2(x) = C2(x), (13)

where C1(x) and C2(x) are the non-transformed output of the
two standard discriminators.

We visualize the loss of discriminators in RCGAN and
CGAN during training as shown in Fig. 7. Since the
different categories of discriminators, the magnitude of value
is different. But it is still obvious that the loss of RCGAN
equipped with relativistic discriminator can reduce stably.
The CGAN with standard discriminator is accompanied by
severe jitter, which is not conducive to the training progress.
In addition, relativistic discriminator helps the network
converge faster. With the help of relativistic discriminator, both
discriminators in RCGAN can converge around 20 epochs.
Nevertheless, CGAN requires about 30 epochs to reach the
same level.
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Fig. 7. Ablation study on relativistic discriminator. The first row shows
the loss of RCGAN equiped with relativistic discriminator, the second row
shows the CGAN with standard discriminator.

Fig. 8. Ablation study on the pre-fused image Ipf . The first row shows the
fusion results for bench image pair; the second row shows the results for
house image pair. The values in (c) and (d) indicate the SSIM evaluation
metrics.

2) Ablation Study on Pre-Fused Image: To demonstrate
the advantages of using pre-fused images, a comparative
experiment in which no pre-fused image used is designed.
In detail, when training the coupled generator, only use
the infrared/visible image is used as its label. The coupled
discriminator part is not redesigned since it does not involve
pre-fusion images. Except for the content loss of coupled
generators, all other training details are exactly the same as
before. The content loss in the comparative experiment is

Lcontent1 = 1

W H
(β

∥∥Ig1 − Iir
∥∥2

2)

Lcontent2 = 1

W H
(β

∥∥∇ Ig2 − ∇ Iv is
∥∥2

2). (14)

We compared the fused images obtained from this network
with those obtained by RCGAN in both subjective aspect and
objective aspect in Fig. 8. The fused images without Ip f are
dim. For example, for the bench image pair, Ip f helps the
forest and the bank become more contrasting, which helps the
perception of the human visual system. For the house image
pair, by using Ip f , the bushes illuminated by the lights are
more vivid. The outline of the lighting source is also sharper.
From the quantitative indicators, by using Ip f , a higher SSIM
value can be obtained, which means that the fused image
can retain more structure information of infrared and visible
images. In general, Ip f allows the fusion of infrared and
visible images to have a direction.

V. CONCLUSION

In this paper, an efficient infrared and visible image fusion
method named RCGAN was proposed. The RCGAN exploited
the coupled GAN structure to achieve an end to end fusion
operation. We creatively transformed the issue of generating
an image to optimize the pre-fused image. Nevertheless, due
to the limitation of training data, RCGAN can only handle
specific kinds of infrared images. Besides, the coupled GAN
still requires a fair amount of parameters. In the future, more
in-depth work could be carried out on fusing multiple kinds of
infrared images and reducing the parameters of the network.
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