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Summary

Human behavior would lead to a significant impact on the environment. By monitoring the

environment, we can indirectly monitor human behavior. Remote sensing (RS) technology

provides a large number of multispectral (MS) images. When combining the Internet of things

(IoT) technology, those images can be used for human behavioral monitoring. However, due

to the limitation of the optical sensors embedded in satellites, the spatial resolution of MS

image is relatively low, which poses a huge problem for further understanding these images.

Pansharpening, also known as multisensor image fusion, aims to sharp an MS image to

a high-resolution multisensor image (HMS) by integrating a corresponding high-resolution

panchromatic (PAN) image. By doing so, the redundancy among big data can be effectively

reduced. Traditional Intensity-Hue-Saturation (IHS)–based methods often suffer from spectral

distortion. To address this problem, a novel pansharpening method is proposed in this paper.

Different from those traditional IHS methods, the proposed method first decomposes MS and

PAN into high-frequency-component (HFC) and low-frequency-component (LFC), respectively.

Then, the guided filter (GF) is utilized to enhance the spectral information on the detail map.

Furthermore, the detail map is refined according to the adaptive coefficients for each band of

MS. By performing experiments, we demonstrate the proposed method can obtain satisfying

results in both visual quality and object assessment among existing methods.
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1 INTRODUCTION

Remote sensing (RS) technology is widely used to predict abnormal scene, monitor environmental changes, and forecast natural disasters for

human behavioral monitoring,1 as shown in Figure 1. Multispectral images can be obtained from different satellites, such as Pleiades, Spot-6, and

Worldview-2, etc. However, due to the limitation of optical sensors embedded in satellites, we can only obtain multispectral (MS) images2 with

low spatial resolution and panchromatic (PAN) images with low spectral resolution, which poses a huge problem for further understanding these

images. Therefore, it is highly desired to obtain an MS image with both high spatial and spectral resolution. To make full use of the information

from those two categories images, pansharpening technology,3 also known as multisensor image fusion technology, can fuse MS image with PAN

image to obtain a high-resolution multisensor image (HMS).

To date, numerous pansharpening methods have been proposed. The basic protocol of those methods is to merge the spatial structure from

PAN image with the corresponding MS image to obtain an HMS image. According to different processing mode, these methods can be roughly

divided into two categories,4 ie, multi-resolution-analysis (MRA) methods and component-substitution (CS) methods, as shown in Figure 2.

MRA methods are mainly based on ARSIS theory.5 This theory assumes that, compared with the HMS image, the MS image loses a lot of

spatial information, while the lost information exists in the HFC of PAN image. Therefore, the basic protocol of MRA methods is to decompose
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FIGURE 1 Pansharpening multispectral images for human behavior monitoring

FIGURE 2 Pansharpening methods

PAN image into multi-scale to extract spatial detail and merge it into MS image to obtain the HMS image. To decompose PAN image, many image

processing tools have been applied, such as decimated wavelet transform (DWT),6 nonsubsampled shearlet transform (NSST),7 undecimated

wavelet transform (UDWT),8 ‘‘à trous’’ wavelet transform (ATWT),9 support value transform (SVT),10 Laplacian pyramid (LP),11 bilateral filter

(BFLP),12 intrinsic image decomposition (IID),13 and indusion method (Indusion).14 Recently, the development of deep learning brings another

solution for pansharpening. Scarpa et al15 used the convolutional network to learn the mapping between the fused image and the source images.

Vivone et al16 used deconvolution algorithm to estimate the spatial filter, which can extract the in each band.

Those MRA methods can produce HMS images with high spectral quality. However, these MRA methods always not fully consider the

adaptation between the spatial information in PAN image and spectral information in the corresponding MS image, leading to the pansharpened

HMS images constantly suffer from spatial distortion, such as ringing phenomenon and local blurring.

Different from MRA methods, CS methods pansharpen MS images by substituting one or more specific component(s) in MS image with the

corresponding component(s) in PAN image. Among CS methods, the component substitution methods based on partial replacement (PRACS),17

intensity-hue-saturation (IHS),18 principal component analysis (PCA),19,20 and Gram-Schmidt (GS)21 are the most well-known pansharpening

methods. Among the CS methods, IHS methods are a kind of representative methods. In the original IHS22 method, MS image is transformed from

RGB space into IHS space; then, the intensity component I is replaced by the corresponding PAN image. Finally, the HMS image is obtained by

transforming the new image from IHS space to RGB space. This method is widely employed due to its simple, efficient, and convenient. Though

it can achieve high spatial quality, it often suffers from serious spectral distortion. Besides, this method can only pansharpen three bands, ie, R,

G, and B, while most MS images have another band, ie, near-infrared (NIR). In other words, the IHS method doesn't fully use information of MS

images. To overcome these drawbacks, various evolutive IHS methods have been developed. Tu et al23 proposed a fast IHS (FIHS) pansharpening

method, which can pansharpen four bands of MS image, and efficiently reduce computational cost. To further reduce spectral distortion,

Rahmani et al24 proposed an adaptive IHS (AIHS) pansharpening method, which can calculate the coefficient 𝛼i for each band adaptively. Similar

with other CS methods, HMS images obtained by AIHS method often suffer from spectral distortion. Based on AIHS, Song et al25 combined

weighted least squares with AIHS (AIHS-WLS) to eliminate the influence of LFC and fuse the MS image adaptively. Jian et al26 utilized bilateral

filter (BFGF) to decompose source image and utilized guided filter to refine the HMS image. Chen and Zhang27 used an evolutionary algorithm

to optimize fused result based on IHS transformation.
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Generally, HMS images obtained from these CS methods can achieve better spatial resolution but slightly poor in preserving spectral

information.

In general, HMS images obtained by MRA methods often lead to spatial distortions, while HMS images obtained by CS methods often

lead to spectral distortion. Therefore, it is very important to balance spatial distortions and spectral distortions. To achieve this goal, a novel

pansharpening method is proposed in this paper. In the proposed method, first, MS image and PAN image are decomposed into HFC and LFC

by using GF.28 By AIHS method, the high frequency of intensity component IH of HFC can be calculated. Then, the initial detail map is obtained

by substituting IH band with PANH . By doing so, the spatial information is enhanced. Moreover, GF is utilized to extract spectral information

from MS image and to merge the information into the initial detail map. To further refine the spectral information-enhanced detail map, adaptive

coefficients calculated according to spectral signature is applied. Finally, HMS image is generated via merging the refined detail map into MS

image. Compared with traditional AIHS methods, such as AIHS,24 AIHS-WLS,25 BFGF,26 etc, there are two major contributions.

1. Traditional AIHS methods fuse multispectral image by replacing I component with PAN image in both HFC and LFC. This often leads to

spectral distortion in HMS image. To address this problem, we utilize GF to eliminate the influence of LFC. By doing so, we efficiently reduce

spectral distortion. The fused HMS image by the proposed method can achieve better visual effects.

2. Traditional AIHS methods does not fully use the spectral information from MS image, thus often increase spectral distortion. To address this

problem, GF is utilized to extract spectral information from MS image, and inject the spectral information into the detail map. By doing so, the

special information is enhanced. Thus, the HMS image contains more spectral information.

To validate the proposed method, several experiments are performed. By performing experiments, we demonstrate that our method can

obtain satisfying results in both visual quality and objective assessments among existing methods.

The remained paper is organized as follows. In Section 2, GF and AIHS method are briefly reviewed. Section 3 describes the proposed

pansharpening method in detail. Section 4 analyzes the experimental results. Finally, Section 5 concludes this paper.

2 RELATED WORK

In this section, basic theories of GF and AIHS methods are briefly reviewed.

2.1 Guided filter

GF is a powerful image filter which has been used in many computer vision tasks such as colorization, image fusion, image matting, and

up-sampling. It filters the input image by merging the information from the corresponding guidance image. The guidance image can be the input

image itself or a different image. When the guidance image is the input image, GF acts as an edge-preserving filter. It can preserve the strong

edges of the input image. When the guidance image is a different image, GF will extract the structure information from guidance image and

merge the structure information into the input image. Figure 3 shows an illustration of the guided filtering process. The applications of the guided

filter are shown in Figure 4. In this paper, the two applications of GF are both utilized. First, it is utilized to decompose MS image and PAN image

into LFC and HFC, respectively. Second, to enhance the spectral information, it is utilized to extract spectral information from MS image.

GF filters input image in a local window by a linear transform. In more detail, given an input image I and a guidance image G, the output image

O can be regarded as the linear transform of G at pixel p, where p is the center of a local window 𝜔k. Within a local window 𝜔k, this operation can

be expressed as Equation (1)

Oi = akGi + bk ∀i ∈ 𝜔k, (1)

FIGURE 3 Illustrations of the guided filtering process

LI ET AL. 3 of 12
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(A) (B)

FIGURE 4 Two applications of the guided filter. (A) When the input image and the guidance image are the same image, GF will smooth the input
image. (B) When the input image29 and the guidance image are different images, GF will extract the structure information from the guidance
image and merge the structure information into the input image

where ak and bk are two constant linear coefficients in 𝜔k; they can be calculated by minimizing Equation (2). 𝜔k is a window with size

(2r + 1) × (2r + 1); Oi is the output of 𝜔k

E(ak, bk) =
∑
i∈𝜔k

(
(akGi − Ii)2 + 𝜆a2

k

)
, (2)

where 𝜆 is the regularization factor set manually. By solving Equation (3), ak and bk can be calculated

ak =
1

|𝜔|
∑

i∈𝜔k
GiIi − 𝜇kIk

𝛿k + 𝜖

bk = Ik − ak𝜇k,

(3)

where 𝜇k and 𝛿k denote the mean and the variance of G in 𝜔k, |𝜔| is total pixel number of 𝜔k, and Pk denotes mean of Pk. Then, the filtered image

O can be obtained by averaging all the overlapping Oi, while Oi can be obtained via solving Equation (1).

It is worth noting that the value of Oi is changed when calculating it in different local window 𝜔k. To avoid this issue, all possible values of ak

and bk are averaged first. Thus, the filtered output can be rewritten as Equation (4)

Oi = aiGi + bi. (4)

In this paper, the procedure of GF is denoted as Equation (5)

O = GF(I,G, r, 𝜖). (5)

2.2 AIHS methods

IHS method fuse MS images by replacing the I band with PAN image, as shown in Figure 5. This can be expressed as Equation (6)

HMSi = MSi + 𝜂i(P − I), (6)

FIGURE 5 IHS pansharpening method replaces I component with PAN image
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where P denotes PAN image. 𝜂i denotes gain coefficients for each band. I represents the intensity channel of MS image, which can be calculated

according follow equation:

I =
N∑

i=1

𝛼iMSi, (7)

where N denotes the number of spectral bands in MS image, 𝛼i is the weighting coefficient for ith band.

The original IHS method can only sharpen MS image in three color channels, ie, R, G, and B channels, ignoring the NIR channel. To overcome

this problem, Tu et al23 proposed the FIHS method, fully used the four bands of MS image. The weighting coefficient 𝛼i in FIHS method is fixed as

1∕N. However, the pansharpening result obtained via FIHS method still suffers serious spectral distortion. To further reduce spectral distortion,

AIHS method can calculate the coefficient 𝛼i, (i = 1,2,3,4) for each band adaptively via solving Equation (8)

min
𝛼i ,… ,𝛼N

‖‖‖‖‖‖
P −

N∑
i=1

𝛼iMSi

‖‖‖‖‖‖
2

s.t.𝛼1 ≥ 0, … , 𝛼N ≥ 0. (8)

3 PROPOSED METHOD

As is shown in Figure 6, the proposed method consists of three phases.

1. Decomposing source images and obtaining an initial detail map;

2. Enhancing spectral information of the initial detail map; and

3. Refining spectral information-enhanced detail map adaptively.

Given a pair of pretreated satellite images consists of an MS image and a PAN image (the pretreating process is in Section 4), first, MS image

and PAN image are decomposed into HFC and LFC by using GF, respectively. Then, the initial detail map is obtained by subtracting PAN image

with IH band. To enhance spectral information in the initial detail map, spectral information is extracted from MS image and merged into the

initial detail map by using GF. To further refine the spectral information-enhanced detail map, adaptive coefficients are applied. Finally, the HMS

image is generated via merging the refined detail map into MS image. The following sections will explain these steps in detail.

3.1 Decomposing source images and obtaining initial detail map

In the first phase, GF is utilized to decompose PAN image and MS image into HFC and LFC according to Equation (9), respectively,

MSi
L = GF(MSi,MSi, r1, 𝜖1) i = 1,2,3,4

PANL = GF(PAN,PAN, r1, 𝜖1),
(9)

FIGURE 6 The overall framework of the proposed method. A, Decomposing source images and obtaining initial detail map; B, Enhancing
spectral information of initial detail map; C, Refining spectral information-enhanced detail map adaptly

LI ET AL. 5 of 12
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where GF(•) denotes GF operation. The two original images are denoted as MS and PAN. The LFC of MS and PAN are denoted as MSL and PANL,

respectively. r1, 𝜖1 denote radius and regularization factor of GF, respectively. Therefore, the HFC of MS and PAN can be obtained as follows:

MSi
H = MSi − MSi

L i = 1,2,3,4

PANH = PAN − PANL.

(10)

To reduce spectral distortion, the LFC is eliminated. We directly estimate the initial detail map from the intensity band of MSH and PANH .

According to Equation (8), the AIHS method is used to calculate the adaptive coefficient 𝛼 as Equation (11)

min
𝛼i ,… ,𝛼4

‖‖‖‖‖‖
PH −

4∑
i=1

𝛼iMSi
H
‖‖‖‖‖‖

2

s.t.𝛼1 ≥ 0, … , 𝛼4 ≥ 0. (11)

With the adaptive coefficient 𝛼, the HFC of intensity band can be obtained via Equation (12)

IH =
4∑

i=1

𝛼iMSi
H
, (12)

where IH denotes the HFC of I.

The initial detail map Dinit measures the difference between IH and PANH . It can be obtained as follows:

Dinit = PANH − IH. (13)

3.2 Enhancing spectral information of initial detail map

Comparing with the original MS image, the initial detail map contains more spatial information. However, it still suffers from spectral distortion

due to the IH band is subtracted. To address this problem, GF is utilized to extract spectral information from MS image. The residuals of the filtered

MS image and the original MS image contains not only spatial structure but also spectral information. This can be expressed as Equation (14)

MSH
O1

= GF
(

PANH,MSH, r2, 𝜖2

)
Res1 = MSH − MSH

O1

MSH
O2

= GF
(

PANH,Res1, r2, 𝜖2

)
Res2 = MSH − MSH

O2
,

(14)

where Res1 and Res2 denote the two-level residuals, MSH
O1

and MSH
O2

denote the two-level filtered MSH images, and r2 and 𝜖2 denote the radius

and regulation factor used in this phase, respectively.

Those residuals are utilized to enhance the spectral information of the initial detail map to obtain the spectral information-enhanced detail

map. This can be expressed as Equation (15)

Dehcd = Dinit + Res1 + Res2, (15)

where Dehcd denotes the spectral information-enhanced detail map.

3.3 Refining spectral information-enhanced detail map adaptively

In this phase, the Dehcd is adaptively refined toward the different channel. Due to the Dehcd and MS image having same spectral signatures, the

adaptive coefficient 𝛼 doesn't need to be updated. To stress the spatial structure information, the IH obtained as Equation (16) band should be

closed to PAN image

IH =
4∑

i=1

𝛼iHMSi =
4∑

i=1

𝛼i(MSi + Di), (16)

where IH denotes the intensity band of HMSH .

Therefore, the refined detail map can be obtained by solving the following equation:

min
Di

‖‖‖‖‖‖
PH −

4∑
i=1

𝛼i

(
MSi

H + Di

)‖‖‖‖‖‖
2

i = 1,2,3,4, (17)

where Di denotes the refined detail map.

Once the refined detail map is obtained, the HMS can be generated by solving Equation (18)

HMSi = MSi + Di. (18)

6 of 12 LI ET AL.
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FIGURE 7 Remote-sensing images used in this paper. (A) and (B) are captured by Spot-6. (C) is captured by Worldview-2. (D) is captured by
Pleiades. A, Vegetation; B, Cropland; C, Mountain; D, Urban

4 EXPERIMENTAL RESULT AND ANALYSIS

To validate the effectiveness of the proposed method, experiments are performed on three satellites datasets, namely, Spot-6, Worldview-2, and

Pleiades, respectively. Those test images are shown in Figure 7. The scenes described in these images are village, cropland, mountain, and urban.

The MS images from Spot-6 and Pleiades satellites contain four bands, ie, R, G, B, and NIR. The MS images from WorldView-2 satellite contain 8

bands, but only R, G, B, and NIR bands are adopted.

4.1 Parameters setup

The size of original MS images are 256 × 256, and the size of PAN images are 1024 × 1024. According to Wald's criterion,30 to set the original

MS images as reference, the original MS and PAN image are first downsampled with a factor of 1∕4 by bicubic interpolation. The downsampled

MS and PAN image are denoted as DMS and DPAN, respectively. Then, the DMS is upsampled to the original size with a factor of 4 by bicubic

interpolation. The upsampled DMS is denoted as UMS. By doing so, the original MS can servers as a reference to the pansharpening result of

UMS and DPAN. To decompose source images, r1 and 𝜖1 are set to 2 and 0.1, respectively. To extract spectral information, r2 and 𝜖2 are set to 2

and 0.1, respectively.

Besides, eight popular pansharpening methods are compared with the proposed method. Those comparison methods are SVT,10 BFLP,12

Indusion,14 PRACS,17 PCA,19 GS,21 FIHS,23 AIHS,24 and AIHS-WLS,25 respectively. Parameters of those comparative methods are set according

to the relevant publications.

4.2 Quality evaluation

Nine metrics are employed to evaluate the proposed method objectivity.

1. Correlation Coefficient (CC)31 calculates the correlation between the reference image and fused result. The large value denotes the fused

result is closer to the reference image. The ideal value is 1.

2. Universal Image Quality Index (UIQI)32 reflects the correlation loss, brightness distortion, and contrast distortion of the pansharpening result.

The larger value denotes the better pansharpening result. The ideal value is 1.

3. Relative Dimensionless Global Error in Synthesis (ERGAS)33 calculates the global quality of the fused image. The ideal value is 0.

4. Relative Average Spectral Error (RASE)34 measures the performance of each band in fused image. The ideal value is 0.

5. Root Mean Square Error (RMSE) is used to compare the difference between two images by calculating the difference between pixel values.

The smaller value denotes the lesser difference. The ideal value is 0.

6. Spectral Information Divergence (SID)35 measures the discrepancy between spectra. The ideal value is 0.

7. Quality with No Reference (QNR)36 can evaluate the quality of the fused image without reference. It consists of three parts, which are spectral

distortion index 𝜆d, spatial distortion index 𝜆s , and a global QNR index, respectively. For the global QNR index, the larger value denotes the

better fusion result, and the ideal value is 1.

8. 𝜆d is a sub-metric of QNR. It is used to measure the spectral distortion. The smaller values denote the better fusion result. The ideal value of

𝜆d is 0.

9. 𝜆s is another sub-metric of QNR. It is used to measure the spatial distortion. The smaller values denote the better fusion result. The ideal

value of 𝜆s is 0.

For all the metrics, the best results are shown in bold, and the second best results are underlined.

4.3 Result and comparison

Experiments are first performed on Village images captured by Spot-6 satellite. The pansharpening results are shown in Figure 8. The

pansharpening results obtained by PRACS, PCA, FIHS, and BFLP suffer serious spectral distortion, The color of the green ornament at the top

LI ET AL. 7 of 12
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FIGURE 8 Pansharpening results of Village image captured by Spot-6 satellite. (A) Original MS image, also names reference. (B) Upsampled DMS
image. (C) to (L) Pansharpening results by SVT, Indusion, PRACS, PCA, GS, FIHS, AIHS, AIHS-WLS, BFLP, and the proposed method, respectively.
A, Referance; B, UMS; C, SVT; D, Indusion; E, PRACS; F, PCA; G, GS; H, FIHS; I, AIHS; J, AIHS-WLS; K, BFLP; I, Proposed

TABLE 1 Quantitative metrics for Village image

Methods CC UIQI ERGAS RASE RMSE SID QNR D𝝀 Ds

Reference 1 1 0 0 0 0 1 0 0

SVT 0.9707 0.9697 2.0359 8.9954 30.1251 0.0085 0.9136 0.0568 0.0314

BFLP 0.9692 0.9674 2.0916 9.5300 31.9157 0.0105 0.8899 0.0689 0.0443

Indusion 0.9602 0.9601 2.5310 10.9428 36.6471 0.0396 0.9574 0.0379 0.0049

PRACS 0.9295 0.9192 4.1857 14.7769 49.4872 0.0866 0.9145 0.0410 0.0465

PCA 0.9287 0.8607 4.2643 15.7444 52.7273 0.0183 0.9155 0.0649 0.0210

GS 0.9518 0.9453 2.9953 11.7356 39.3022 0.0268 0.9475 0.0192 0.0340

FIHS 0.9479 0.9405 2.8563 11.7230 39.2600 0.0217 0.9332 0.0320 0.0360

AIHS 0.9821 0.9807 1.7382 7.4389 24.9124 0.0101 0.9816 0.0031 0.0153

AIHS-WLS 0.9814 0.9805 1.7318 7.4638 24.9958 0.0092 0.9618 0.0194 0.0192

Proposed 0.9845 0.9843 1.5816 7.0153 23.4939 0.0197 0.9739 0.0083 0.0179

of the building and the color of the farmland have been changed. This is because the above method loses a lot of spectrum information in the

process of decomposing the image and fusing the image. The AIHS and AIHS-WLS methods fail to enhance the spatial information. The edge of

the green building is still blurred. This is because the AIHS and AIHS-WLS methods fail to stress spatial information from PAN image. Though

spatial information of the result obtained by SVT method is enhanced, it loses much spectral information is lost. This is mainly due to the SVT

method fails to balance the spectral information and spatial information. The pansharpening result obtained by proposed method is the closest

one to the reference. It not only fully uses the spatial information from PAN image but also preserves most spectral information of the UMS

image. The quantitative metrics for Village image is shown in Table 1. The proposed method achieves the best performance in CC, UIQI, ERGAS,

RASE, and RMSE. It achieves the second best performance in QNR and D𝜆. Combining visual effects and evaluation indicators, we demonstrate

the proposed method can preserve spatial structure and enhance the spectral information.

Another experiment is performed on Cropland image captured by Spot-6 satellite. Most of the image is covered with farmlands and farmhouses.

The pansharpening results are shown in Figure 9. Results obtained by BFLP, PCA, and AIHS-WLS methods lose a lot of spectral information. This

is mainly caused by these methods fail to properly fuse the decomposed images. This leads to the change of overall color. The PRACS method

does not replace the property partial of the source images, leading to obvious artifact around the farmhouses. AIHS and proposed method can

produce the fused images, which have a similar visual effect. From the enlarged images, we can see that the proposed method can produce a

pansharpened result, which is even more clear than the reference. The objective evaluation for this experiment is shown in Table 2. The proposed

method obtains the best performance in six metrics and the second best performance in two metrics. The subjective visual effect is consistent

with the object evaluation metrics. Thus, the effectiveness of the proposed method is demonstrated.

The pansharpening results of Mountain image captured by Worldview-2 satellite is shown in Figure 10. It can be found that the pansharpening

result obtained by PCA method suffers serious color distortion, and the red hills turn green. This is because PCA loses a lot of information during

dimension reduction and dimensional recovery. Moreover, the pansharpening results obtained by Indusion and FIHS method also suffered from

a slight spectral distortion. From the enlarged image, the pansharpening results obtained by PAC, FIHS, and Indusion are obvious suffer spectral

distortion. The color of the green forest becomes brown. Compared with other pansharpening methods, the proposed method and the BFLP

method can produce high-quality HMS images, which are the closest to the reference. The proposed method fully uses the spatial information
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LI ET AL. 9 of 12

FIGURE 9 Pansharpening results of Cropland image captured by Spot-6 satellite. (A) Original MS image, also names reference. (B) Upsampled
DMS image. (C) to (L) Pansharpening results by SVT, Indusion, PRACS, PCA, GS, FIHS, AIHS, AIHS-WLS, BFLP, and the proposed method,
respectively. A, Referance; B, UMS; C, SVT; D, Indusion; E, PRACS; F, PCA; G, GS; H, FIHS; I, AIHS; J, AIHS-WLS; K, BFLP; L, Proposed

TABLE 2 Quantitative metrics for Cropland image

Methods CC UIQI ERGAS RASE RMSE SID QNR D𝝀 Ds

Reference 1 1 0 0 0 0 1 0 0

SVT 0.9051 0.8946 2.5976 11.2999 30.7732 0.0117 0.8240 0.1240 0.0594

BFLP 0.9174 0.8998 2.5777 11.8089 32.1596 0.0093 0.7871 0.1427 0.0819

Indusion 0.9050 0.9046 2.7898 11.8877 32.3742 0.0231 0.9309 0.0488 0.0214

PRACS 0.8483 0.8009 5.2560 18.2409 49.6758 0.0556 0.8107 0.1063 0.0930

PCA 0.8730 0.7732 3.6436 14.2988 38.9402 0.0199 0.8068 0.1430 0.0587

GS 0.9080 0.8927 2.7526 11.5020 31.3238 0.0171 0.9598 0.0102 0.0302

FIHS 0.8883 0.8728 2.6542 11.4394 31.1532 0.0117 0.9431 0.0243 0.0334

AIHS 0.9445 0.9316 2.0710 9.4643 25.7742 0.0085 0.9429 0.0127 0.0449

AIHS-WLS 0.9395 0.9339 2.1288 9.5519 26.0129 0.0100 0.9215 0.0495 0.0305

Proposed 0.9396 0.9387 2.0345 9.2282 25.1315 0.0113 0.9667 0.0080 0.0255

FIGURE 10 Pansharpening results of Mountain image captured by Worldview-2 satellite. (A) Original MS image, also names reference. (B)
Upsampled DMS image. (C) to (L) Pansharpening results by SVT, Indusion, PRACS, PCA, GS, FIHS, AIHS, AIHS-WLS, BFLP, and the proposed
method, respectively. A, Referance; B, UMS; C, SVT; D, Indusion; E, PRACS; F, PCA; G, GS; H, FIHS; I, AIHS; J, AIHS-WLS; K, BFLP; I, Proposed

from PAN image, and it handles the trade-off among spectral information and spatial information efficiently. To further validate the effectiveness

of the proposed, the objective evaluation metrics are shown in Table 3. From the table, it can be seen the proposed method achieves the best

performance in seven indices and the second best performance in one index. Combined with subjective visual effects and objective evaluation

indicators, the superiority of the proposed is verified.

Experiment is performed on Urban image captured by Pleiades satellite. As is shown in Figure 11, the PARCS, PCA, and BFLP suffer severe

spectral distortion. In detail, the results of PARCS and BFLP are slightly yellowish, which is caused by the inappropriate image decomposition

LI ET AL. 9 of 12
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10 of 12 LI ET AL.

TABLE 3 Quantitative metrics for Mountain image

Methods CC UIQI ERGAS RASE RMSE SID QNR D𝝀 Ds

Reference 1 1 0 0 0 0 1 0 0

SVT 0.9642 0.9623 1.7831 8.4550 5.9243 0.0062 0.9659 0.0090 0.0253

BFLP 0.9693 0.9692 1.6400 7.7266 5.4139 0.0038 0.9557 0.0152 0.0296

Indusion 0.9438 0.9437 2.2020 9.6981 6.7953 0.0349 0.9667 0.0093 0.0242

PRACS 0.9631 0.9620 1.8225 8.6707 6.0754 0.0110 0.9694 0.0061 0.0246

PCA 0.1779 0.1549 6.7512 29.2188 20.4731 0.1161 0.8518 0.0943 0.0595

GS 0.9567 0.9534 1.9853 8.8620 6.2095 0.0242 0.9899 0.0084 0.0017

FIHS 0.9527 0.9486 1.9268 8.6500 6.0609 0.0140 0.9778 0.0181 0.0041

AIHS 0.9637 0.9622 1.7241 7.9272 5.5545 0.0114 0.9865 0.0056 0.0080

AIHS-WLS 0.9658 0.9650 1.6982 7.8646 5.5106 0.0103 0.9862 0.0073 0.0065

Proposed 0.9676 0.9672 1.6693 7.8259 5.4835 0.0076 0.9910 0.0057 0.0033

FIGURE 11 Pansharpening results of Urban image captured by Pleiades satellite. (A)Original MS image, also names reference. (B) Upsampled
DMS image. (C) to (L) Pansharpening results by SVT, Indusion, PRACS, PCA, GS, FIHS, AIHS, AIHS-WLS, BFLP, and the proposed method,
respectively. A, Referance; B, UMS; C, SVT; D, Indusion; E, PRACS; F, PCA; G, GS; H, FIHS; I, AIHS; J, AIHS-WLS; K, BFLP; I, Proposed

TABLE 4 Quantitative metrics for Urban image

Methods CC UIQI ERGAS RASE RMSE SID QNR D𝝀 Ds

Reference 1 1 0 0 0 0 1 0 0

SVT 0.8584 0.8299 8.9719 35.5038 88.5820 0.0756 0.8659 0.0583 0.0805

BFLP 0.8706 0.7965 10.5293 43.3900 108.2580 0.0772 0.8115 0.0567 0.1397

Indusion 0.9205 0.9195 5.5234 21.3901 53.3682 0.0489 0.9636 0.0054 0.0311

PRACS 0.8285 0.7888 10.4707 41.1312 102.6224 0.0775 0.8676 0.0456 0.0910

PCA 0.9102 0.7317 8.1255 31.4398 78.4423 0.0384 0.8072 0.1261 0.0763

GS 0.9312 0.9247 5.1424 19.9216 49.7045 0.0191 0.9282 0.0064 0.0659

FIHS 0.9276 0.9213 5.0814 19.9604 49.8012 0.0151 0.9281 0.0072 0.0652

AIHS 0.9526 0.9462 4.3591 16.8416 42.0197 0.0109 0.9380 0.0063 0.0560

AIHS-WLS 0.9551 0.9515 4.2357 16.3586 40.8148 0.0102 0.9539 0.0115 0.0350

Proposed 0.9574 0.9557 4.1228 16.1962 40.4096 0.0236 0.9691 0.0134 0.0178

degree. The result of PCA are reddish. This is because PCA lost a lot of information. SVT and GS methods do not make full use of spatial

information from the PAN image; their pansharpening results are not clear enough. The proposed method fully considers the balance between

spectral information and spatial information, resulting in a pansharpening result with rich spatial details and well-preserved spectral information.

The objective evaluation for this experiment is shown in Table 4. As is shown in this table, the proposed method obtains the best performance

in seven evaluation metrics, which are CC, UIQI, ERGAS, RASE, RMSE, QNR, and Ds . The subjective visual effects and objective evaluation

indicators demonstrate the effectiveness of the proposed method.
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5 CONCLUSION

In this paper, a multispectral remote-sensing image pansharpening method has been proposed. The proposed method utilizes GF to eliminate

the influence of LFC to reduce spectral distortion. Then, the AIHS method is used to generate the initial detail map. Moreover, GF is utilized

to extract spectral information and merge it into the detail map. To match the difference of different channels in MS image, the spectral

information-enhanced detail map is further refined according to the adaptive coefficients. By experiments, we illustrate that the proposed

method can efficiently enhance the spectral information and balance the trade-off between spectral information and spatial information. Besides,

the MATLAB implementation of the proposed method will be released if this paper is accepted.
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