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Abstract Accurately inferring the number of cells in a biomedical image is a fundamental

yet challenging task for disease diagnosis. The early manual cell counting methods are time-

consuming and prone to errors. With the advent of deep learning, convolutional neural network

(CNN)-based cell counting has become a mainstream method. Despite the outstanding perfor-

mance of these methods, the complex tissue background in medical images still hinders the

improvement of counting performance. In this paper, we propose an attentive recognition net-

work (ARNet) to resolve the problem. Specifically, it is composed of five convolution blocks and

a channel attention (CA) module. The convolution blocks are employed to extract the basic

features, and the CA module is introduced to suppress the complex background. Experimen-

tal results on cell counting datasets have verified that the proposed method outperforms the

mainstream methods.
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1 Introduction

Cell counting, the purpose of which is inferring the number of cells in a given medical image,

occupies a significant status in microscopy medical images analysis. The amount of cells can

reflect the presence of disease [21], assist in determining tumor types [4], and aid in learning

cellular and molecular genetic mechanisms [20]. The early manually cell counting is inefficient
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2 1 INTRODUCTION

and prone to error. Realizing high throughput processing by this means in real medical appli-

cations is not realistic. Therefore, it is desirable to design an efficient model to for accurate cell

counting.

The early work implemented cell counting task by detection and regression. Generally, the

counting by detection aims to discover the centroid position of cells and count them to predict

the final result [17]. These methods require a high accuracy of centroid labelling, and perform

unsatisfactory in medical images with occlusions. The regression-based methods [18, 25] tend to

learn a mapping from the input to cell count. These methods can handle more complex scenes

than the detection-based methods. Nevertheless, they only output the cell counts, and cannot

provide the cell position information, which is also very valuable for medical image analysis

[11]. Due to the powerful feature extraction and inferring ability of CNNs in computer vision[?

? ], predicting a density map from the given image has been a mainstream solution [3, 10].

With the advance of attention mechanism, the object counting task has developed rapidly in

many fields, i.e., crowd counting [8, 26], vehicle counting [16, 27]. The attention-based counting

methods minimizes the influence of irrelevant information by re-adjusting parameters in different

dimensions [7]. Although the above methods have enhanced the performance of cell counting

to some extent, the low contrast, variance in cell size and the complex tissue background in

medical microscopic images still hinder the further improvement of the counting accuracy.

To mitigate the adverse effects of the complex tissue background, we propose the attentive

recognition network (ARNet). It consists of five convolution blocks for extracting the low-level

features. Especially, the first four blocks are employed to extract the basic features, and the last

blocks adopts dilated convolution layers to enlarge the receptive field. Followed that, a channel

attention (CA) module is introduced to suppress the background clutter. In a nutshell, the

contributions of this paper are as follows.

1. We propose an ARNet to enhance the counting performance in cell images with complex

tissue background.

2. We introduce a CA module to adjust the weight along the channel dimension, which aims

to reduce the background weight and increase the foreground weight.

3. We carry extensive experiments to demonstrate the performance of ARNet. Meanwhile,

ablation study is performed to prove the effectiveness of the individual components in the

proposed model.

The remainder of this paper is arranged as follows. The related work is reviewed in Section

2. The proposed method is introduced in detail in Section 3. The details of the experiment and

the conclusion of this paper are provided in Section 4 and 5, respectively.
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2 Related work

In this section we describe three types of cell counting methods, i.e., counting by detection,

counting by regression and counting by density estimation.

Previous works complete the cell counting by the means of detection [1, 2] and regression[15,

18]. The counting by detection methods employ a detector to locate the cells and then sums

up the cells as a count. Arteta et al. [2] proposed a tree-structured discrete graphical model to

detect all the cells in microscopy images. The detection-based methods are difficult to deal with

occlusion and shape variations. Therefore, the counting by regression methods are proposed to

enhance the counting performance, which learn a mapping from the medical image to a count.

Lempitsky et al. [15] built a general learning-based model for object counting tasks, i.e., crowd

counting and cell counting.

Recently, the development of CNN has further enhanced the accuracy of cell counting.

Cohen et al. [5] built a redundant counting method to replace that predicting density map,

which is helpful to address the complicated object counting task. Falk et al. [6] employed the U-

Net to simultaneously complete the task of cell counting, detection and morphometric. Xie et al.

[23] developed two parallel fully convolution regression networks, namely FCRN-A and FCRN-B

to improve efficiency in an end-to-end manner. He et al. [11] built an auxiliary CNN model

to boost the main regression model. Furthermore, the attention mechanism [22, 7] has inspired

numerous researchers to use it to improve network performance. Guo et al. [9] incorporated

a self-attention module to U-Net to enhance cell detection accuracy in microscopic images.

Jiang et al. [12] built a weighted channel module to tackle the occlusions in cell counting. The

module takes the residual connection and is easy to be plugged into any CNNs.

3 The proposed method

Given a medical microscopic image X ∈ RH×W , a density map Y ∈ RH×W can be regressed

by the CNN. The number of cells is obtained by integrating the pixels on the density map. The

process can be represented by,

N =

∫
Y =

∫
F (X; θ), (1)

where the F (X; θ) denotes a function of density regression, in which θ represents the parameters

to be learned by the network.
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Fig. 1: The architecture of the proposed ARNet for cell counting.

3.1 Network design

The architecture of the proposed ARNet is depicted in Fig 1. It consists of five convolution

blocks for extracting basic features and a channel attention (CA) module to cope with the

tissue background. The first four blocks are composed of convolution layers with dilated rate of

1 and max pooling layers, which are adopted to extract the cell features with small size. The

convolution layers with dilated rate of 2 in the final block are employed to enlarge the receptive

field so that the network can capture cells with a large scale.

To address the problem of complex background in the medical image, the CA module [22]

is introduced. In the last layer of the ARNet, a convolution layer with kernel size of 1×1 is

employed to reduce the channels to 1 and output the density map. In a nutshell, the proposed

ARNet is formulated as,

M = Conv1×1(fca(Blocki(X))), i ∈ {1, 2, 3, 4, 5} , (2)

where the fca denotes a function of channel attention. Blocki represents the operation of the

five convolution blocks.

3.2 Channel attention module

The purpose of channel attention is to select the targets (cells in this paper) by recalibrating the

weight of each channel [7] adaptively. As shown in Fig. 1, the CA module contains three opera-

tions, i.e., global average pooling (GAP), one-dimensional convolution layer and an activation

function.

The GAP operation reduces the input 2D image to a 1D array for subsequent parameter

adjustments. The fast 1D convolution operation is performed to produce the channel weights.

The size of the convolution kernel is an adjustable parameter, which affects the final channel

weight generation. The issue will be discussed in detail in the ablation study. Finally, we choose
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the sigmoid activation function to output the optimized weight, which can perform element-wise

multiplication with the initial input features and output the refined feature map. The map can

suppress the side effects of background clutter and emphasize the areas where cells exist. Briefly,

the CA module can be represented by the following formula,

P = M ⊗ Sig(Conv1d(GAP(Mi))), (3)

where P represents the refined feature map, and M is the extracted basic feature map. Conv1d

denotes a fast 1-dimension convolutional operation. Sig denotes the Sigmoid function.

3.3 Loss function

The MSE function is adopted as the loss function to optimize the network. It can minimize the

Euclidean distance between the ground truth and the prediction. The function is formulated as,

Loss =
1

N
∥y − ŷ∥22 , (4)

where N denotes the number of test images. y and ŷ denote the estimated and the ground truth

values, respectively.

3.4 Ground truth generation

The ground truth map Mgt is generated by adopting a Gaussian kernel Gσi convolving a delta

function:

Mgt =
H∑
i=1

δ(x− xi) ∗Gσi
(x), σi = βd̄i, (5)

where H denotes the number of cell annotations and x refers to the position pixel. σi represents

the variance of the kernel, and the δ(x− xi) depicts a target cell.

4 Experiment and analysis

4.1 Datasets

4.1.1 Synthetic bacterial cells

The synthetic bacterial cells (VGG) dataset was established by [15]. It includes 200 fluorescent

microscopy images with resolution of 256×256. Because the dataset is synthetic, the cells al-

most have the same size, but they cluster together and are heavily obscured. Annotations are
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automatically executed during the data construction process, which makes the labels error-free.

Samples of VGG dataset are present in Fig 2.

Table 1: The information of VGG and MBM datasets.

Dataset VGG MBM

Resolution 256×256 600×600
Train/Validation/Test 50/50/100 15/15/14
Number of cell 174±64 126±33
Image type synthetic real

4.1.2 Modified bone marrow cells

The modified bone marrow (MBM) cell counting dataset contains 44 RGB microscopy images

(600×600), which are collected from [13]. More specifically, the images are obtained from 11

Hematoxylin-Eosin images (1200×1200) of bone marrow tissue, which are from eight different

patients. Each of the image is cut into four images of the same size. The labeled cells in this

dataset have large-scale variation and non-uniform background, which make the counting task

more troublesome. Fig 2 provides some examples of the MBM dataset. More details are reported

in the Table 1.

Fig. 2: Examples of VGG and MBM datasets. The left two images are from VGG dataset and
the right two images take from MBM dataset.

4.2 Implementation details

All experiments are performed based on the PyTorch framework and are implemented on two

NVIDIA 3080 GPUs. For data augmentation, we adopt random cropping, horizontal and vertical

flipped. To avoid the overfitting, we set several dropout layers in the end of the network. At

the training stage, Adam optimizer [14] with a learning rate of 1e-5 is employed to optimize the

network. The weight decay is set as 1e-3. The batch size is set as 8 for VGG dataset, and 4 for

MBM dataset. The maximum number of training epochs is set as 1000.
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4.3 Evaluation metrics

We choose the mean absolute error (MAE) and its related standard deviations (STD) as the

evaluation metrics. They are formulated as,

MAE =
1

S

S∑
i=1

|Cgti − Cesti | , (6)

STD =

√√√√ 1

S − 1

S∑
i=1

(|Cgti − Cesti | −MAE)
2
, (7)

where S represents the number of test samples. Cgti and Cesti denote the ground truth and

estimated cell counts of the i-th images, respectively. The lower MAE and STD indicate that

the model has better counting accuracy and counting stability.

4.4 Comparative analysis

We compare and analyze the proposed ARNet with other cell counting methods. The comparison

results are reported in Table 1.

Table 2: The results of comparison on VGG and MBM datasets. Boldface indicates the best
performance.

Methods
VGG MBM

MAE STD MAE STD

U-Net [6] 27.8 25.5 48.0 19.0
ResNet-152[25] 7.5 2.2 - -
StructRegNet [24] 9.8 8.7 12.8 8.6
Mask R-CNN [10] 36.9 19.7 44.4 14.2
Marsden’method[18] - - 20.5 3.5
FCRN-A [23] 2.9 0.2 21.3 9.4
FCRN [19] 2.8 2.5 8.5 7.6
ARNet(Ours) 2.7 2.2 5.0 3.2

On VGG dataset, one can see that the ARNet ranks first with an MAE score of 2.7, which

achieves 6.8% gains compared with the second-best method FCRN-A [23]. The STD metric is

also competitive, ranking second with a score of 2.2, indicating that the counting stability of

the ARNet on the VGG dataset could be further improved. It is a remarkable fact that the

proposed method has the same STD score as the ResNet-152 [25], but the MAE score is 64%

lower than it.

On the MBM dataset, the proposed ARNet scores 5.0 and 3.2 in MAE and STD, which

outperform all the reported methods. Compared with FCRN [19], it improves by 41.1% and
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57.9% in MAE and STD, respectively. Furthermore, the Marsden’method[18] also adopts the

GAP operation to compress the image to generate new weights. However, there is still a big gap

in MAE (75.6%).

Gt: 86.0 Gt: 115.0 Gt: 163.0 Gt: 111.0

Est: 83.4 Est: 114.0 Est: 161.8 Est: 112.9

Fig. 3: Visualized results of the VGG and MBM datasets.

4.5 Ablation study

Ablation studies are carried out on MBM dataset to explore the benefits of the CA module in

this section. The experimental configuration items are as follows.

‘baseline’ represents only five convolution blocks are employed as the basic network.

‘baseline + CA (k=n)’ means adding the CA module to the baseline, and the kernel size of

the 1d convolution is set to n.

The ablation experimental results are tabulated in Table 3. The item ‘baseline‘ scores 9.6

and 7.6 in MAE and STD, respectively. It obtains the worst performance compared with other

items. We can observe that the CA module is beneficial to boosting the counting accuracy and

stability. Specifically, the score of item 2 (k=3) is better than the item 3 (k=5) in MAE, while

the opposite is true for STD. By contrast, the item 4 achieves the best performance in both
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Table 3: The results of comparison on VGG and MBM datasets. Boldface indicates the best
performance.

Methods MAE STD

baseline 9.6 7.6
baseline+ CA(k=3) 6.6 5.1
baseline+ CA(k=5) 5.8 5.9
baseline+ CA(k=1) 5.0 3.2

MAE and STD. The reason for this phenomenon is that the size of cells in medical images is

generally small, and the use of large convolution kernel will lead to the loss of details and thus

fail to achieve the optimal results.

5 Conclusion

In this paper, we propose an ARNet for accurate cell counting. It includes five basic convolution

blocks for extracting low-level features, and a CA module to deal with the complex tissue

background in a biomedical image. The CA module aims to re-adjust the weight along the

channel dimension through GAP, 1D convolution and activation function. The feature map

refined by the CA module can minimize the weights of background and improve the weight of

foreground. Experimental results prove that the ARNet outperforms the mainstream methods

in cell images with background clutter.
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