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Abstract—The rapid advancement of deepfake technology has
enabled the creation of highly realistic forged face images or
videos. While deepfake technology adds entertainment to people’s
lives, it also poses a potential threat to social security. Deepfake
detection is a crucial technology for identifying forged images.
However, existing deep learning-based models for deepfake de-
tection often overlook subtle forged traces. To solve this problem,
we propose a Progressive Attention Network (PANet). The PANet
incorporates two attention modules, namely the Efficient Multi-
Scale Attention Module (EMAM) and the Spatial and Channel
Attention Module (SCAM), in a progressive manner. The EMAM
focuses on crucial facial regions, such as the eyes, nose, and
mouth, rather than the entire face. The SCAM facilitates fine-
grained feature extraction. Experimental results demonstrate that
the proposed method achieves state-of-the-art results on deepfake
detection datasets.

Index Terms—Deepfake Detection, Efficient Multi-Scale Atten-
tion, Feature Extraction, Information Disorder, Forged Traces

I. INTRODUCTION

The advent of deepfake technology, especially Generative
Adversarial Networks (GANs) [1], has made rumor-mongering
easier. Deepfakes often manipulate audio and visual elements
to depict individuals saying or doing things they never did [2].
Also, deepfakes can be weaponized to spread fabricated nar-
ratives and amplify the impact of disinformation campaigns.

Deepfakes typically generate artifacts that may be sub-
tle to humans. However, they can be detected using speci-
fied deepfake detection models. Early machine learning face
forgery detection methods commonly followed the classical
approach of training Convolutional Neural Networks (CNNs)
for image classification. These methods used ready-made CNN
backbones that directly processed facial images as inputs
and classified them as genuine or fake. Nevertheless, these
vanilla CNNs lacked an in-depth understanding of forgeries.
To address this problem, recent studies have integrated specific
forgery patterns, including spectral analysis, noise features,
detailed textures, and frequency information. This approach
aims to detect traces of forgery in manipulated facial images
with greater accuracy and robustness. For instance, Wang et
al. [3] combined the RGB and frequency domains resulting

Corresponding authors: Mingliang Gao, David Camacho

in improved robustness of the deepfake detection model.
Huang et al. [4] exploited the spectral artifacts left over
from the upsampling operation used in the GAN to detect
high-fidelity deep vacation videos. Wang et al. [5] intro-
duced a forensic-inspired approach using efficient “Multi-Head
Relative-Interaction” to pinpoint deepfakes by analyzing video
noise patterns.

The aforementioned methods rely on the forgery patterns
associated with specific operational techniques. To solve this
problem, some research was devoted to learning representa-
tions that can be generalized to unknown forgery patterns.
Chen et al. [6] dynamically adjusted the model by synthesizing
pseudo-training data, thereby enhancing the generality of the
deepfake detector against unseen forgeries. Meanwhile, the
incorporation of an attention mechanism in deep forgery de-
tection enhances the model’s ability [7]. The Reconstruction-
classification Learning (RECCE) [8] framework addresses
uncertain forgery patterns by learning differences in real
face images through reconstruction. However, the RECCE
framework exhibits suboptimal performance in the extraction
of fine-grained features. To solve this problem, we propose
a Progressive Attention Network (PANet) in this paper. The
PANet incorporates two attention modules, namely the Ef-
ficient Multi-Scale Attention Module (EMAM) [9] and the
Spatial and Channel Attention Module (SCAM) [10], in a
progressive manner. The main contributions are concluded as
follows.

• We propose a deepfake detection method via a Progres-
sive Attention Network. The method uses a progressive
attention module to focus on the extracted features from
coarse-grained to fine-grained, which improves the accu-
racy of detecting subtle traces of forgery.

• We introduce an efficient multi-scale attention module.
This module is designed for coarse-grained feature learn-
ing and focuses on key regions in face features.

• We employ spatial and channel attention modules to learn
and emphasize local structures of the face image and
extract fine-grained features.
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II. RELATED WORK

A. Deepfake Detection

Deepfake detection is critical for protecting information
trustworthiness, privacy, legal social stability, and regulating
technological developments. Researchers are working to im-
prove the accuracy and efficiency of deepfake detection. Shao
et al. [11] recognized successive depth forgery operations
by establishing enhanced correspondences between pairs of
image sequences. Wodajo et al. [12] combined the learning
capabilities of CNNs and transformers to detect deepfake
video. Heo et al. [13] combined vector-cascaded CNN features
with patch-based localization to interactively specify artifact
regions across all locations. Das et al. [14] utilized face
marker information to dynamically cut regions in an image.
The RECCE [8] framework learns real face image differ-
ences by reconstruction to effectively handle uncertain forgery
patterns. However, it lacks extracting fine-grained features.
To solve this problem, we propose a Progressive Attention
Network (PANet).

B. Attention mechanism

The attentional mechanism is a technique that allows a
model to learn the relationships between different inputs.
There are three widely acknowledged attention mechanisms,
namely channel attention (CA), spatial attention (SA), and
a combination of CA and SA. The CA is exemplified by
the Squeeze-and-excitation (SE) mechanism [15], which ex-
plicitly models the relationships between different dimen-
sions and extracts attention according to the channel dimen-
sion. Meanwhile, the Convolutional Block Attention Mod-
ule (CBAM) [10] captures the semantic inter-mapping re-
lationship between spatial and channel dimensions in the
feature extraction by incorporating cross-channel and cross-
spatial information. The Spatial Group-wise Enhance (SGE)
attention [16] enhances the spatial distribution of different
semantic sub-features by grouping the channel dimension. The
Inverted Residual Mobile Block (iRMB) attention [17] extends
the spatial dimension of the input feature map and computes
attention weights between features using the multi-head self-
attention mechanism.

Considering that the key facial features, e.g., eyes, nose,
and mouth are typically the most recognizable elements of
the face, they are the most susceptible to manipulation in
the context of deepfakes. To effectively deepfake detection,
attention mechanisms can be utilized to focus on these critical
facial components [8], [18].

III. PROPOSED METHOD

A. Overview

In this work, we propose a Progressive Attention Net-
work (PANet) by equipping the RECCE framework with an
Efficient Multi-Scale Attention Moudle (EMAM) [9]. The
EMAM focuses on the important feature representation of
images and achieves coarse-grained feature extraction. At
the same time, we adopt a Spatial and Channel Attention

Module (SCAM) to further refine feature extraction, thereby
achieving a coarse-to-fine feature extraction. The structure
of the proposed Progressive Attention Network framework is
depicted in Fig. 1.

Given an input image X ∈ RC×H×W , it is first fed into
the encoder initialized by Xception, which extracts common
features. The output of the image after the reconstruction
network is X̂ . The introduction of noise enlarges the coding
region of the image, thus masking out the distorted blank
coding points [19]. The common feature extraction equation
is as follows:

X̂ = Fxcep(X̃), (1)

where X̃ denotes the result of adding white noise during the
training period.

B. Efficient Multi-Scale Attention Module

The Efficient Multi-Scale Attention Module (EMAM) con-
sists of three parts, namely feature grouping, parallel subnet-
works, and cross-spatial learning. Feature grouping divides
the input feature map into sub-features, parallel subnetworks
extract local and global information from the grouped feature
map. Cross-spatial learning is employed to aggregate attention-
weight descriptors from the parallel subnetworks to capture
the pairwise relationships between pixels in the input image.
The architecture of the EMAM is shown in Fig. 2. To acquire
various semantic information, for the input image feature map
X ∈ RC×H×W , the EMAM partitions the feature maps into G
groups within the channel dimension. The partitioned feature
map is formulated as:

X =
[
X0, Xi, ..., XG−1

]
, Xi ∈ RC//G×H×W , (2)

where C//G denotes C divided by G.
Multi-scale spatial information can be collected by large

local receptive fields of neurons. Consequently, the EMAM
employs three parallel routes to extract attention-weight de-
scriptors. Two parallel routes use 1×1 convolution for smaller
receptive fields, while a third path uses 3× 3 convolution for
a larger receptive field. To capture dependencies across all
channels and manage computational budgets, cross-channel
information interaction is modeled in the channel direction.
Specifically, two 1D global average pooling operations are
applied to encode the channel along two spatial directions in
the branch with 1× 1 convolution. It is formulated as:

Xavg = avgpoolx(x) ∈ RC//G×1×W ,
(3)

Yavg = avgpooly(x) ∈ RC//G×H×1.
(4)

Meanwhile, a single 3 × 3 kernel is stacked in the third
branch to capture multi-scale feature representation. Reshaping
and permuting G groups to align the batch dimension, the
EMAM redefines the input tensor with a shape of C//G ×
H × W . By employing a similar treatment as Coordinate
attention (CA) [20], the EMAM concatenates the two encoded

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 04,2024 at 15:34:47 UTC from IEEE Xplore.  Restrictions apply. 



Fde1

Encoder Decoder

Multi-scale Graph Reasoning

EMAM SCAM

   
 

 

 

Fig. 1. Schematic diagram of the proposed Progressive Attention Network (PANet).
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Fig. 2. The structure of the EMAM. The EMAM consists of three parts, namely feature grouping, parallel subnetworks, and cross-spatial learning. Here,
“X Avg Pool” represents the 1D horizontal global pooling and “Y Avg Pool” indicates the 1D vertical global pooling, respectively. Cross-spatial learning is
employed to aggregate attention-weight descriptors from the parallel subnetworks to capture the pairwise relationships between pixels in the input image.

features along the height direction of the image. It shares the
same 1×1 convolution without dimensionality reduction in the
first two branches. To model the 2D Binomial distribution over
the outputs of the 1×1 convolution, the outputs are factorized
into two vectors, and two non-linear sigmoid functions are
employed to fit. To establish distinct cross-channel interactive
features between the two parallel branches, the two channel-
wise attention graphs within each group are amalgamated
via simple multiplication. Simultaneously, the third branch
captures local cross-channel interaction through a 3×3 convo-
lution to expand the feature space. Consequently, the EMAM
incorporates both inter-channel information for modulating the
significance of distinct channels and retains detailed spatial
structure information within each channel.

The EMAM employs a technique to aggregate informa-
tion across space in various spatial dimensional directions
to achieve more comprehensive feature aggregation. To ef-
fectively capture and preserve information, the architecture
employs distinct tensors which are the outputs of the 1×1 and

3 × 3 convolutional branches. EMAM encodes global spatial
information in the output of the branch containing 1 × 1 via
2D global average pooling. Afterward, it directly reshapes
the output of the smaller branch to match the corresponding
dimensions (i.e., R1×C//G

1 ×RC//G×HW
3 ) before activating the

joint activation mechanism for channel features. The formula
for the 2D global pooling operation is:

yc =
1

H ×W

H∑
j

W∑
i

xc (i, j) , (5)

where xc indicates the input features at the c-th channel, yc
is the output associated with the c-th channel.

C. Spatial and Channel Attention Module

To achieve fine-grained feature extraction, we introduce
spatial and channel attention modules. Further refinement
operations were performed to capture fine face forgery traces.
The architecture of the spatial and channel attention model is
depicted in Fig. 3. The module induces a one-dimensional
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Fig. 3. The structure of the SCAM. The module has two sequential sub-
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channel attention mechanism feature map CA and a two-
dimensional spatial attention mechanism feature map SA. The
computational process is outlined as follows:

Fc = CA(F )⊗ F,

Fc
′ = SA(Fc)⊗ Fc,

(6)

where F is the input image and ⊗ is the element-wise
multiplication, The channel attention weighting results in Fc,
and the ultimate refined feature map Fc

′ is obtained. The
detailed equations for CA and SA are as follows:

CA = σ (f1 (f2(F )) + f1 (f3 (F )))

= σ (W1 (Wo(Favg)) +W1 (Wo (Fmax))) ,
(7)

SA (F ) = σ (f (fc (Favg,Fmax))) , (8)

where the f1 stands for Multi-Layer Perceptron (MLP), f2
and f3 correspond to the average-pooling and max-pooing
functions, respectively. W0 and W1 represent the weights of
two linear layers. fc denotes the splicing operation and f
denotes the convolution operation. σ(.) denotes the sigmoid
function. Favg and Fmax denote the average pooling and the
maximum pooling representations, respectively.

D. Loss Function

The loss function consists of three basic elements: recon-
struction loss (Lr), cross-entropy (Lcls), and metric-learning
loss (Lm). The reconstruction loss Lr is denoted as:

Lr =
1

|R|
∑
i∈R

∥X̂i −Xi∥1, (9)

where R represents the authentic samples, and |R| denotes the
cardinality of R.

Furthermore, a metric-learning loss is employed to mini-
mize the distance between real images and ensure a distinct
separation between real and fake images in the embedding
space.

Lm =
1

NRR

∑
i∈R,j∈R

cos(Fi,Fj)−
1

NRF

∑
i∈R,j∈F

cos(Fi,Fj),

(10)
where R and F indicate the real sample set and the fake
sample set, respectively. cos(α, β) is a pairwise distance
function calculated using the cosine distance:

cos(α, β) =
1− α

∥α∥2
· β
∥β∥2

2
. (11)

The overall loss function is defined as follows:

L = λ1Lr + λ2Lm + Lcls, (12)

where the weight parameters λ1 and λ2 are utilized to balance
different losses. Lcls is the cross-entropy loss for binary
classification.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

Datasets. The FaceForensics++ dataset (FF++) [21] is a
comprehensive and diverse collection designed specifically for
deepfake detection. It consists of 1000 real video sequences,
each processed using one of four automated face synthesis
methods, namely Deepfakes, Face2Face, FaceSwap, and Neu-
ralTextures. In each video sequence, there is a trackable and
predominantly unobstructed front face. This contributes to the
high realism of the generated faces.
Evaluation Metrics. To evaluate the proposed model, we
used the more common evaluation metrics in the binary
classification method, i.e., Accuracy (ACC) and Area Under
the Receiver Operating Characteristic Curve (AUC). ACC
measures the overall performance of the model, while AUC
measures the discriminatory power.
Implementation Details. The foundation of the proposed
framework lies in the Xception [22] implementation. Training
is executed with a batch size of 32, and the epoch is set to
40. A step-learning rate scheduler is implemented for dynamic
adjustment of the earning rate. The Adam [23] optimizer was
initialized with a learning rate of 2e-4 and a weight decline of
1e-5. In the EMAM feature grouping, it is divided into eight
groups. Data augmentation is exclusively achieved through
random horizontal flipping. Implemented within the PyTorch
framework, the framework leverages the computational power
of two 3090 Ti GPUs.

B. Experimental Results

We performed experiments on the benchmark datasets
FF++ [21] of different qualities, including high quality (HQ)
and low quality (LQ). This ensures the broad applicability
and dependability of the experimental results. dependability
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In each experimental setup, we recorded the key performance
indicators, ACC and AUC, to comprehensively evaluate the
effectiveness of the proposed method. At the same time, we
analyze the data in detail by comparing it with the experi-
mental results of existing methods. By comparison, we aim to
highlight the superiority of the PANet over others. The results
of the performance of the proposed framework on the FF++
dataset compared to other methods are shown in Table I.

TABLE I
COMPARISON WITH THE SOTA METHODS. THE BEST RESULTS ARE

EMPHASIZED IN BOLD.

Methods FF++(HQ) FF++(LQ)
ACC(%) AUC(%) ACC(%) AUC(%)

MesoNet [24] 83.10 - 70.47 -
SPSL [25] 91.50 95.32 81.57 82.82
RFM [26] 95.69 98.79 87.06 89.83
Freq-SCL [27] 96.69 99.28 89.00 92.39
Multi-task [28] 85.65 85.43 81.30 75.59
Face X-ray [29] - 87.84 - 61.60
Xception [22] 95.73 96.30 86.86 89.30
Add-Net [30] 96.78 97.74 87.50 91.01
Two-branch [31] 96.43 98.70 86.34 86.59
RECCE [8] 97.06 99.32 91.03 95.02
PANet(Ours) 97.26 99.37 91.37 94.90

In Table I, the PANet reaches the best results on both ACC
and AUC metrics for high-quality (HQ) images. It achieves
an ACC of 97.26%, which is a significant improvement of
0.29% over the previous best method. It also achieves an AUC
of 99.37%, which is a slight improvement of 0.13% over the
previous best method.

On low-quality (LQ) images, the performance gap between
the proposed method and other methods is not as significant.
However, the PANet still achieves comparable results, with an
ACC of 91.37% and an AUC of 94.90%. The PANet achieves
the highest ACC and the second-highest AUC among all
evaluated methods. Compared with the Xception baseline, the
proposed method has achieved an improvement of 2.59% in
ACC and 4.23% in AUC. This demonstrates that the proposed
method can extract greater discriminative features from low-
quality images.

Qualitative results from the high-quality and low-quality
subset of the FF++ dataset are shown in Fig. 4 and Fig. 5.
In both figures, the top row is the original input images and
the bottom row presents the inference results of the proposed
network.

V. CONCLUSION

In this paper, we proposed a Progressive Attention Net-
work (PANet) for deepfake detection. The framework incor-
porated an efficient multi-scale attention module, strategically
focusing on crucial facial regions like the nose, mouth, and
eyes. Additionally, the spatial and channel attention modules
were employed for fine-grained feature extraction. Experi-
mental results show that the PANet reaches ACC and AUC

percentages of 97.26% and 99.37%, respectively, for the high-
quality subset, and 91.37% for ACC and 94.90% for AUC for
the poor-quality subset of the FaceForensics++ dataset. The
results proved that the proposed method outperforms state-of-
the-art approaches.
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Fig. 4. The qualitative results from the high-quality subset of the FaceForensics++ dataset. The ground truth (GT) indicates the truth label and the
prediction (Pred) denotes the predicted label.
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