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Abstract—The development of Generative Adversarial Networks (GANs) has revolutionized image
generation and editing. However, the capacity to create realistic images presents serious security
concerns, particularly in the context of face-based payment systems. Deepfakes leverages GANs to
generate manipulated videos or images, which may present opportunities for identity theft and
fraudulent transactions. For instance, perpetrators employ Deepfakes technology to forge identifying
information about victims, such as transplanting their faces into fake videos or images to make it
appear like they are performing activities they have never done before. To address this growing
concern, this study proposes a deep learning-based detection method utilizing an improved
convolutional neural network (CNN) model. The proposed model comprises two key modules, namely
the Multi-scale Attention (MA) module and the Halo Attention (HA) module. Specifically, MA is
designed to recognize faces and other details in the forged image. HA is built to focus on localized
regions of the image. Experimental results show that the proposed model scores 97.12 and 99.32 on
FF++ (HQ) dataset and 91.26 and 95.43 on FF++ (LQ) dataset in terms of ACC and AUC, respectively.
The remarkable accuracy and performance make it a dependable solution for safeguarding face
payment systems.

FACIAL PAYMENT SYSTEMS have gained
widespread adoption across various domains like
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retail, finance, and public transportation. This
innovative technology can enhance user experience and
transaction efficiency. For instance, facial payments
enable contactless transactions and minimize the
risk of virus and bacteria transmission. Furthermore,
eliminating physical cards through facial payments
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Figure 1. GANs network architecture.

streamlines the payment process and enhances user
convenience. However, the burgeoning field of
deepfakes technology threatens the facial payment
security [1]. It results in unauthorized transactions and
the exposure of sensitive user information. Although
some financial systems employ security measures,
such as detecting vital signs like blinking or head
movement, the continuous evolution of deep forgery
techniques may breach these security measures.

Deepfakes is a technology that utilizes artificial in-
telligence techniques, e.g., GANs [2] to produce highly
realistic fake videos or images. The working principle
of GANs is illustrated in Figure 1. It comprises two
modules, i.e., a generator that synthesizes new data
from a target image or video, and a discriminator
that attempts to distinguish the generated content from
real data. Through an iterative refinement process,
the generator progressively improves its forgeries to
deceive the discriminator, ultimately producing highly
convincing deepfakes. This poses a significant chal-
lenge to facial recognition systems, as it becomes
increasingly difficult to differentiate between a real
person and a deepfake.

To detect face forgery in consumer electronics,
this work proposes a deep learning-based approach
for forgery face detection. The overall framework of
the proposed MAHA-Net is shown in Figure 2. Two
modules are introduced in this network i.e., the Multi-
scale Attention (MA) module is designed to recognize
faces and other details in the forged image. The Halo
Attention (HA) module is built to focus on localized
regions of the image, which helps to recognize subtle
changes in expressions and movements of faces in
forged images. The main contribution of this paper is
as follows:

• To improve the detection accuracy of the deep-
fake model, a deep leaning-based MAHA-Net is
proposed by incorporating a multi-scale Atten-
tion (MA) module and a Halo Attention (HA).

• A multi-scale attention is introduced to capture
forgery traces at various scales. Meanwhile, a Halo
self-attention model is adopted to capture useful
relationships between nearby pixels.

• Comparative experiments conducted on public
datasets verify that the proposed model outperforms
the state-of-the-art methods in detection accuracy.

The remainder of this article is structured as follows.
The “Related Work” Section reviews existing meth-
ods used for deepfake detection. The “The Proposed
Model” Section delves into the details of the proposed
deep learning-based method for deepfake detection.
The “Experimental Results and Analysis” Section de-
scribes the experimental setup, the datasets used, and
the evaluation of the performance of the proposed
method. Finally, the main conclusions of this work
with some possible future trends are given in the
“Conclusion and Future Work” Section.

RELATED WORK
Deep forgery detection is to identify and verify the

authenticity of deeply forged images or videos, and
researchers have given it considerable attention.

Early deepfake detection methods are mainly based
on facial cues, e.g., head movements and facial expres-
sions. Jung et al. [3] detected deepfakes by analyzing
significant changes in the pattern of eye blinking.
Ciftci et al. [4] leveraged biological signals as implicit
authenticity descriptors to detect synthetic content in
portrait videos.

Recently, deep learning has dominated the field of
deepfake detection [5], [6]. Zhou et al. [7] proposed
a two-stream neural network for deepfake detection.
Specifically, one branch is to analyze the visual ap-
pearance and the other focuses on local noise patterns.
Rössler et al. [8] boosted the performance of deepfake
detection by retraining an XceptionNet on manipulated
face datasets. Li et al. [9] proposed a frequency-
aware discriminative feature learning framework for
face forgery detection. Nguyen et al. [10] proposed
a capsule network to improve the deepfake detection
accuracy. Cao et al. [11] proposed a Reconstruction-
classification Learning (RECCE) framework, which
learns differences in real face images through recon-
struction.

THE PROPOSED MODEL
The proposed MAHA-Net framework is depicted

in Figure 2. Compared with baseline RECCE [11],
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Figure 2. Overall framework of the proposed MAHA-Net.

the Multi-scale Attention (MA) module and the Halo
Attention (HA) module are employed in this network.
The reconstruction network consists of an encoder
and a decoder. Initialization of the encoder involves
utilizing a pre-trained Xception model.
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Figure 3. Schematic diagram of the Multi-scale
Attention (MA) module.

Within the encoder, the MA module is positioned
between the two block layers of the Xception. The
input image I is initially processed by the encoder
to extract feature maps, denoted by Fenc. Following
this, Fenc is directed through two separate pathways.
In one pathway, Fenc undergoes a multi-scale graph
reasoning operation within the decoder to obtain an
enhanced feature representation, denoted by Fenh.
Simultaneously, the reconstruction differences are uti-
lized to guide the subsequent classification process.
The other pathway involves applying the HA module

to the feature layer Fenc. Finally, the feature maps
obtained from both pathways are summed up and
used as the basis for the Classification Module, which
discriminates between real and fake content.

The output of the image after the reconstruction
network is Î . The addition of noise enlarges the
coding region of the image, thus masking out the
distorted blank coding points. The reconfiguration net-
work equation is as follows:

Î = frec(Ĩ), (1)

where the variable Ĩ denotes the output obtained by
introducing white noise during the training period.
frec(·) denotes the reconstruction network process.

Multi-scale Attention Module
The multi-scale attention (MA) module integrates

both channel attention and spatial attention. Therefore,
it enables the simultaneous learning of inter-channel
and spatial feature dependencies. The architecture of
the MA is shown in Figure 3. “Groups” indicates the
divided groups, “X Avg Pool” means the 1D horizontal
global pooling, and “Y Avg Pool” represents the 1D
vertical global pooling, respectively. “Matmul” block
is a matrix multiplication operation used to compute
interactions between different features.

To acquire various semantic information, the MA
module partitions the input image feature map x into
g groups along the channel dimension. To capture fea-
tures at various spatial scales, the MA module employs
a three-parallel path structure. Two pathways utilize
1 × 1 convolutions to focus on fine-grained details
within the local area of each pixel. The third pathway
employs a 3×3 convolution to capture broader spatial
relationships between pixels across a wider area.
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Figure 4. Schematic diagram of the Halo Atten-
tion (HA) module.

Halo Attention Module
The halo attention [12] concentrates on a smaller

localized window around each pixel. This module
enables the proposed framework to capture useful
relationships between nearby pixels. The architecture
of the halo attention is shown in Figure 4.

Specifically, the input feature map is partitioned
into four equally sized blocks. Each block is subjected
to a padding operation, i.e., n layers of halos are
added around each block. This augmentation expands
the perceptual field of each block, and it results in
a larger perceptual field for each. Subsequently, each
block is individually sampled. Ultimately, the feature
map is output and combined with the initial input
feature map. This seamless integration is facilitated by
the utilization of the residual jump connection, which
effectively amalgamates both local and global details.

Loss Function
The overall loss function is composed of three key

components, namely reconstruction loss (Lr), classifi-
cation loss (Lcls), and metric learning loss (Lm). It is
formulated as:

L = w1Lm + w2Lr + Lcls, (2)

where the metric learning loss Lm minimizes the
distance between real data and maximizes the sepa-
ration between real and synthetic representations in
the embedding space. Following the setup described
in RECCE [11], the values of w1 and w2 are set to
0.1.

EXPERIMENTAL RESULTS AND
ANALYSIS

This section details the dataset used, the experi-
mental setup employed, and the analysis of the ob-

tained results. Comparative experiments were con-
ducted on FaceForensics++ (FF++) [8] dataset. FF++
dataset is a forensics dataset comprising 1000 original
video sequences manipulated with four automated face
manipulation methods. Each video is processed using
one of four state-of-the-art face synthesis methods,
namely Deepfakes, Face2Face, FaceSwap, and Neural-
Textures. To evaluate the performance of the proposed
method, we used two metrics, namely Accuracy (ACC)
and Area Under the Curve (AUC). The ACC is the
ratio of correctly predicted samples to the total number
of samples. It provides a straightforward measurement
of the model’s ability to classify both real and fake
images. However, ACC can be misleading with class
imbalance. The AUC is a more robust metric that is
not affected by class imbalance. Higher ACC and AUC
indicate better discrimination ability of the model. We
trained the model with 32 samples per batch for 40
iterations. The learning rate is dynamically adjusted
during training using a step-learning rate scheduler.
We implemented the framework using PyTorch [13]
and trained it on two 3090 Ti GPUs in parallel.

Table 1. Comparison with the SOTA methods. The best

results are highlighted in bold.

Methods
FF++ (HQ) FF++ (LQ)

ACC AUC ACC AUC

SPSL [14] 91.50 95.32 81.57 82.82

RFM [15] 95.69 98.79 87.06 89.83

Multi-task [16] 85.65 85.43 81.30 75.59

Xception [17] 95.73 96.30 86.86 89.30

Add-Net [18] 96.78 97.74 87.50 91.01

Two-branch [19] 96.43 98.70 86.34 86.59

Freq-SCL [9] 96.69 99.28 89.00 92.39

RECCE [11] 97.06 99.32 91.03 95.02

MAHA-Net (Ours) 97.12 99.32 91.26 95.43

As shown in Table 1, the proposed method per-
forms best on FF++ datasets. Compared to the base-
line RECCE [11], the proposed method achieves the
same excellent results on FF++ (HQ) dataset. On
FF++ (LQ) dataset, the proposed model improves the
ACC and AUC to 91.26% and 95.43%, respectively.
These results indicate that the proposed network has an
advantage in accurately detecting face forgery images
compared with the SOTA competitors. The perfor-
mance improvement can be attributed to the proposed
MA and HA modules. Specifically, the MA module
captures and integrates features across multiple scales,
which enhances the ability of the network to detect
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Figure 5. The inference results of deepfake detection by the proposed model.

subtle and varied patterns in deepfake images. The HA
module focuses on the most relevant regions. It enables
the model to distinguish between authentic and manip-
ulated content and thus boost performance, especially
in low-quality datasets. Low-quality data is susceptible
to adversarial attacks [20]. This is because the noise
and artifacts present in low-quality data can provide a
hiding place for adversarial perturbations. Compared
to the SOTA methods, the superior performance of the
proposed framework on low-quality datasets verifies
the robustness of the proposed model.

The objective result of deepfake detection by the
proposed model is shown in Figure 5. It shows that
the proposed MAHA-Net can accurately predict the
authenticity of human faces.

CONCLUSION AND FUTURE WORK
Deep face forgery poses a significant security risk

to face payment systems in the consumer electronics
domain. To mitigate these risks, a deep forgery detec-
tion framework named MAHA-Net is presented in this
work. MAHA-Net integrates a multi-scale attention
module and a halo attention module. The multi-scale
attention module captures image features at different
scales, and the halo attention module focuses on lo-
calized regions of the image. The two modules can
extract the forged features in deep forged images.
Extensive experiments have demonstrated that MAHA-
Net outperforms current state-of-the-art methods in
accuracy on the widely used FF++ dataset.

The results indicate that the detection accuracy
of the MAHA-Net and existing detection methods
was low on the low-quality FF++ datasets. In the
future, we will aim to improve the accuracy of low-
pixel forged faces. Additionally, we plan to investigate

the integration of techniques like transfer learning to
further enhance the robustness of MAHA-Net against
new and unseen deepfakes.

ACKNOWLEDGMENTS
This work was supported partly by the National

Natural Science Foundation of China (No.61801272)

REFERENCES
1. S. Saeedi, A. C. Fong, S. P. Mohanty, A. K. Gupta, and

S. Carr, “Consumer artificial intelligence mishaps and

mitigation strategies,” IEEE Consumer Electronics

Magazine, vol. 11, no. 3, pp. 13–24, 2021.

2. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

“Generative adversarial networks,” Communications of

the ACM, vol. 63, no. 11, pp. 139–144, 2020.

3. T. Jung, S. Kim, and K. Kim, “Deepvision: Deepfakes

detection using human eye blinking pattern,” IEEE

Access, vol. 8, pp. 83 144–83 154, 2020.

4. U. A. Ciftci, I. Demir, and L. Yin, “Fakecatcher:

Detection of synthetic portrait videos using biological

signals,” IEEE Transactions on Pattern Analysis &

Machine Intelligence, no. 01, pp. 1–1, 2020.

5. F. Ding, G. Zhu, M. Alazab, X. Li, and K. Yu,

“Deep-learning-empowered digital forensics for edge

consumer electronics in 5g hetnets,” IEEE consumer

electronics magazine, vol. 11, no. 2, pp. 42–50, 2020.

6. G. Zhang, M. Gao, Q. Li, W. Zhai, G. Zou, and

G. Jeon, “Disrupting deepfakes via union-saliency

adversarial attack,” IEEE Transactions on Consumer

Electronics, vol. 70, no. 1, pp. 2018–2026, 2024.

7. P. Zhou, X. Han, V. I. Morariu, and L. S. Davis,

“Two-stream neural networks for tampered face

detection,” in 2017 IEEE conference on computer

xxx/xxx YYYY 5



Department Head

vision and pattern recognition workshops (CVPRW).

IEEE, 2017, pp. 1831–1839.

8. A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess,

J. Thies, and M. Nießner, “Faceforensics++: Learning

to detect manipulated facial images,” in Proceedings of

the IEEE/CVF international conference on computer

vision, 2019, pp. 1–11.

9. J. Li, H. Xie, J. Li, Z. Wang, and Y. Zhang,

“Frequency-aware discriminative feature learning

supervised by single-center loss for face forgery

detection,” in Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, 2021, pp.

6458–6467.

10. H. H. Nguyen, J. Yamagishi, and I. Echizen,

“Capsule-forensics: Using capsule networks to detect

forged images and videos,” in ICASSP 2019-2019

IEEE international conference on acoustics, speech

and signal processing (ICASSP). IEEE, 2019, pp.

2307–2311.

11. J. Cao, C. Ma, T. Yao, S. Chen, S. Ding, and X. Yang,

“End-to-end reconstruction-classification learning for

face forgery detection,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2022, pp. 4113–4122.

12. A. Vaswani, P. Ramachandran, A. Srinivas, N. Parmar,

B. Hechtman, and J. Shlens, “Scaling local

self-attention for parameter efficient visual backbones,”

in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2021, pp.

12 894–12 904.

13. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,

Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and

A. Lerer, “Automatic differentiation in pytorch,” in

NIPS-W, 2017.

14. H. Liu, X. Li, W. Zhou, Y. Chen, Y. He, H. Xue,

W. Zhang, and N. Yu, “Spatial-phase shallow learning:

rethinking face forgery detection in frequency domain,”

in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2021, pp.

772–781.

15. C. Wang and W. Deng, “Representative forgery mining

for fake face detection,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern

recognition, 2021, pp. 14 923–14 932.

16. H. H. Nguyen, F. Fang, J. Yamagishi, and I. Echizen,

“Multi-task learning for detecting and segmenting

manipulated facial images and videos,” in 2019 IEEE

10th international conference on biometrics theory,

applications and systems (BTAS). IEEE, 2019, pp.

1–8.

17. F. Chollet, “Xception: Deep learning with depthwise

separable convolutions,” in Proceedings of the IEEE

conference on computer vision and pattern

recognition, 2017, pp. 1251–1258.

18. B. Zi, M. Chang, J. Chen, X. Ma, and Y.-G. Jiang,

“Wilddeepfake: A challenging real-world dataset for

deepfake detection,” in Proceedings of the 28th ACM

international conference on multimedia, 2020, pp.

2382–2390.

19. I. Masi, A. Killekar, R. M. Mascarenhas, S. P. Gurudatt,

and W. AbdAlmageed, “Two-branch recurrent network

for isolating deepfakes in videos,” in Computer

Vision–ECCV 2020: 16th European Conference,

Glasgow, UK, August 23–28, 2020, Proceedings, Part

VII 16. Springer, 2020, pp. 667–684.

20. Y. Lu and T. Ebrahimi, “Assessment framework for

deepfake detection in real-world situations,” EURASIP

Journal on Image and Video Processing, vol. 2024,

no. 1, p. 6, 2024.

Siyou Guo is currently working toward an M.S.
degree with the School of Shandong Univer-
sity of Technology, Zibo, China. Contact him at
23504030565@stumail.sdut.edu.cn.

Qilei Li is working toward a PhD at the Queen Mary
University of London, London, E1 4NS, United King-
dom. Qilei Li and Siyou Guo contributed equally to
this work. Contact him at qilei@ieee.org.

Mingliang Gao is an associate professor and vice
dean at the Shandong University of Technology. He is
the first corresponding author of this article. Contact
him at mlgao@sdut.edu.cn.

Guisheng Zhang is working toward an M.S. degree
with the School of Shandong University of Technol-
ogy, Zibo, China. Contact him at 22504030001@stu-
mail.sdut.edu.cn.

Jinfeng Pan is an associate professor at the School
of Electrical and Electronic Engineering, Shandong
University of Technology, Zibo, China. Contact her at
pjfbysj@163.com.

Gwanggil Jeon is a professor at Shandong Univer-
sity of Technology, Zibo, China, and Incheon Na-
tional University, Incheon, Korea. He is the second
corresponding author of this article. Contact him at
ggjeon@gmail.com.

6 IEEE Consumer Electronics Magazine


	RELATED WORK
	THE PROPOSED MODEL
	Multi-scale Attention Module
	Halo Attention Module
	Loss Function

	EXPERIMENTAL RESULTS AND ANALYSIS
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES
	Biographies
	Siyou Guo
	Qilei Li
	Mingliang Gao
	Guisheng Zhang
	Jinfeng Pan
	Gwanggil Jeon


