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Recently, massive deep learning based image dehazing methods have sprung up. These

methods can effectively remove most of the haze and obtain far better results than the
traditional methods. With the removal of the haze, however, edge details of the image are

also lost, which is usually more noticeable in the gradient space. This paper proposes

a gradient guided dual-branch network (GGDB-Net) for image dehazing. Specifically,
we explore the hazy image gradient map to guide our model to focus on the hazy

regions and edge restoration. We implement two parallel branches with a comprehensive

loss function, which collaborate to dehaze and repair the lost edges in haze images.
Moreover, the gradient-guided approach can potentially be applied to existing learning-
based image dehazing models to boost their performance. Experimental results indicate

that our results have good visual perceptions and are comparable to state-of-the-art
methods in quantitative metrics.

Keywords: Image dehazing; gradient guidance; edge restoration; dual-branch network.

1. Introduction

Due to the existence of various floating particles in the atmosphere, the outdoor im-

ages usually suffer from quality degradations, e.g., color distortion, low contrast and
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(a) Clear image (b) Synthetic hazy image (c) Real-World hazy image

(d) Gradient map of (a) (e) Gradient map of (b) (f) Gradient map of (c)

Fig. 1. Examples of images with the gradient maps.

edge blur The degradation causes detrimental impacts on subsequent visual-based

analysis tasks, such as super-resolution 1,2, automatic drive 3,4, object detection5,6,

and Re-ID 7.

The hazy process is usually represented by a physical atmospheric scattering

model 8,9, which can be written as:

I(x) = J(x)t(x) +A(1− t(x)), (1)

where I(x) denotes the observed hazy image. J(x) is the underlying haze-free scene,

A and t(x) represent the global atmosphere light and the medium transmission

map, respectively. In this model, without the knowledge of A and t(x), recovering

J(x) where only I(x) is available is an ill-posed problem 10. Based on the Eq. (1),

many prior-based dahazing methods 11,12,13,14 utilized the statistics of clean images

to estimate t(x) and A. Although these priors improve the overall scene visibility

somehow, their performance is not guaranteed in certain real cases 15. For example,

DCP 12 has bad performance in skies and snowy areas, since these areas do not

meet the relative assumptions.

With the advances in deep learning, a number of deep learning based approaches

have been employed in numerous computer vision tasks 16,17,18,19,15,20. Meanwhile,

various learning-based dehazing algorithms 21,22,23 were proposed to remove haze

and reconstruct the haze-free image. In the early stage, the researchers attempt to

use deep neural networks to estimate t(x) and A, such as multi-scale CNN for image

dehazing 22 and DehazeNet 21. However, these methods may lead to large-scale

reconstruction errors between the recovered image and the corresponding ground-

truth, since the incorrect estimation on t(x) and A.
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(a) (b)

(c) (d)

Fig. 2. Dehazing results. (a) a haze sample in SOTS, (b) the ground-truth, (c) result from FFA-Net

and (d) our result. Our result are more natural and outperforms FFA-Net in detail.

Recently, several learning-based methods 10,24,25,26 applied CNN to predict haze-

free images directly. These methods produce promising dehazing results with a

significant improvement over the prior-based algorithms. However, when handling

hazy images captured in heavy haze conditions, they are inability to eradicate haze

while maintaining edge details effectively. This phenomenon can be attributed to

the fact that some vital edge details are hidden under the haze, which overlaps with

each other. They remove both the haze and edge details when processing the hazy

image.

It is well known that image edge detail is obviously visible in the gradient map
27,28. Some example images and their gradient maps are shown in Fig. 1. In Fig. 1(a)

and (b), the edge detail in the clean image is significantly better than that in the

hazy image. The edge details and haze overlap each other in image space and are

hard to identify. Nevertheless, the edge detail is attenuated but not lost in the

gradient space. Moreover, the region where the gradient intensity decay indicates

the degradation level of haze influence.

To this end, we propose an end-to-end gradient guided dual-branch network

(GGDB-Net), which succeeds in removing haze and restoring edge details simulta-

neously, as shown in Fig. 2. The contributions of the work are three-fold:
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• We build a dual-branch parallel network called GGDB-Net for single image

dehazing. The GGDB-Net divides the image dehazing into two subprob-

lems, i.e., haze removal and edge repair, which are processed separately

on branches with different structures. The additional edge repair branch

integrates the lost edge details to the final haze-free image.

• We apply the gradient map as additional information to the hazy image

fed into the network. The gradient map guides the network to treat haze

regions of different densities particularly. Moreover, the method is model-

agnostic, which can be incorporated into other image dehazing methods to

improve the performance.

• Experiments show that GGDB-Net achieve competitive performance, both

qualitatively and quantitatively. Meanwhile, we investigate the effect of

different gradient operators on image dehazing. Comprehensive ablation

studies are also provided.

2. Related Work

Prior-based image dehazing methods assume statistical priors about clean

images and use these priors as additional constraints to restore the information

loss in the degradation procedure. The dark channel prior (DCP)12 is a classical

and wildly studied prior-based method. DCP assume the clean image with low

intensity in at least one color channel, which reliably calculates t(x). According to

the assumption that the contrast of clear patch is higher than that of the hazy one,

Tan et al. 14 maximize the local contrast of hazy images to estimate t(x) by using

Markov Random Field. Although these methods have been shown to be effective in

removing haze, their performance is usually limited because the priors depend on

the specific assumption and scene.

Learning-based image dehazing methods has attracted extensive atten-

tion of computer vision researchers, which benefits from the large scale benchmark

datasets and the powerful ability of deep tools. Early researchers attempted to use

CNNs to predict t(x) and A for recovering the haze-free image, such as multi-scale

CNN 22 and DehazeNet 21. Chen et al. 25 designed a gated-fusion network by fus-

ing different level features to reconstruct the finer haze-free image . Bianco et al.
26 adopted an encoder-decoder structure and added the perceptual loss to promote

local consistency for image dehazing. Qin et al. 10 designed an feature fusion atten-

tion network (FFA-Net) to build the high-quality haze-free image. Although these

learning-based methods improve the overall visual quality, they still lose a certain

extent of edge details when removing the haze.

Gradient information has been utilized in several previous low-level computer

vision problems 28,29. For the image dehazing task, Singh et al. 30 use gradient

prior to first estimate t(x) and A and then refine t(x) by the gradient map. Ye et

al. 31 proposed a novel color-line prior method, which use gradient information to

control the structural similarity of haze-free images and avoid the halo effect. In
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these methods, they use gradient information as prior knowledge to estimate t(x).

However, their procedure of estimating t(x) is not robust and inefficient.

Although CNN is prominent in transforming pixels distribution and feature ex-

traction, few dehaze methods have combined gradient information with deep tools.

Dong et al. 24 proposed a GAN model with fusion-discriminator (FD-GAN) to

recover the haze-free image, which extract high-frequency (an alternative repre-

sentation similar to gradient information) and low-frequency components into the

discriminator. However, the influence of the discriminator on the generator is un-

stable, and the generator cannot exploit the local gradient information to improve

haze removal. Ma et al. 28 added a collateral gradient branch and used gradient loss

as additional constraint to control the structure preservation in SR image. Their

method which named Structure-preserving super resolution (SPSR), used the dif-

ference between adjacent pixels to calculate the low-resolution (LR) gradient map,

but this is problematic in the hazy image. We describe more details in the exper-

imental section. Inspired by SPSR 28 and FD-GAN 24, we propose a dual-branch

gradient information guided image dehazing network, which aims to remove haze

while maintaining edge details.

3. Method

3.1. Overview

An overview of the proposed GGDB-Net is depicted in Fig. 3, which composes of

haze removal branch, edge repair branch, and feature fusion module.

To be concrete, the haze removal branch Ghaze takes the concatenated Icat of

the hazy image Ihaze and its gradient map Ihazegra as input and aims to eradicate

haze. Icat is the input to the edge repair branch Gedge, which focuses on repairing

edge details. The feature fusion module Mfusion integrates features from Ghaze and

Gedge to obtain the final haze-free image Ihf . This procedure can be written as:

Ihf = Mfusion

(
cat

(
Ghaze(I

cat), Gedge(I
cat)

))
, (2)

where cat(·) indicates the concatenate operation. In particular, the gradient images

Igra are obtained by the Sobel operator 32:

Igra =
∥∥Sobelx(I)2 + Sobely(I)

2
∥∥
2
, (3)

where I is the original image in the training dataset or test dataset. Sobelx(·)
and Sobely(·) are the Sobel operators in the horizontal and vertical directions,

respectively.

3.2. Details in Architecture

Haze Removal Branch: We design a haze removal branch Ghaze to remove haze

altogether based on U-Net 33. This architecture reduces the parameters in the

module and extracts multi-scale features. We set a convolutional layer with Sobel
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Fig. 3. Overview of the proposed GGDB-Net.

operator to get Ihazegra and concatenate with Ihaze firstly. Then the low-level features

of Icat are extracted by two convolutional layers. The feature attention block (FAB)
10 contains local residual learning and feature attention. Specifically, the feature

attention combines channel attention 34 with pixel attention, and it enables the

network to pay more attentions on more important features and pixels regions.

Two FABs are added to the back of each downsample layer, and four FABs in

front of each upsample layer to integrate features further. To avoid losing image

information and effectively using low-level features, we concatenate the same-scale

features to subsequent convolutional layers and FABs. Finally, we feed the feature

maps to the feature fusion module. Meanwhile, the feature maps are also used to

generate medium haze-free images by two 3× 3 convolutional layers.

Edge Repair Branch: Similar to the haze removal branch, the edge repair branch

consists of convolutional layers, downsample layer, upsample layer, and residual-in-

residual dense block (RRDB) 35. Considering the RRDB has far more parameters

and convolutional layers than the FAB, we only use one RRDB in each position.

Unlike the haze removal network, we expect the output of the edge repair branch

to approximate the gradient map of haze-free images.

Feature Fusion Module: The feature fusion module is also adopted in the tail of

the above two branches. Details and implementation can be found in FFA-Net10.

Here, we refer specifically to the tail part of the whole GGDB-Net, which concate-

nates feature maps of the two branches to reconstruct the final haze-free image. We

denote channel-attention as CA and pixel-attention as PA. The shape of regular

feature maps is C ×H ×W .

Fca = CA
(
cat(Fhaze, Fedge)

)
, (4)
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where Fhaze and Fedge denote the feature maps of the two branches feeding into

the feature fusion module. and Fca is the output of channel-attention layer and has

a shape of 2C × 1× 1. Then, Fca is element-wise multiplied by Fhaze and Fedge.

Fpa = PA
(
Fca[: C, :, :]⊗ Fhaze + Fca[C :, :, :]⊗ Fedge

)
, (5)

where Fpa is the out of pixel-attention layer, and ⊗ is the element-wise multipli-

cation. Fpa feed into two convolutional layers to reconstructed the final haze-free

image.

In order to get satisfactorily clean image in a multi-supervised progressive man-

ner, we design a comprehensive loss function for the intermediate and final outputs.

3.3. Comprehensive Loss Function

To enable the model to progressively reconstruct haze-free image satisfactorily with

multi-supervision, we design the loss function from two different perspectives. The

proposed GGDB-Net have three output which are the medium haze-free image, the

medium gradient map, and the final haze-free image. Therefore, one loss function

cannot constrain the output of model effectively. The loss of pixel space is denoted

as follows:

Lpix
mid =

1

N

N∑
i=1

∥∥Igt −Ghaze(I
cat)

∥∥
1
, (6)

Lpix
final =

1

N

N∑
i=1

∥∥Igt − Ihf
∥∥
1
, (7)

where Igt is the ground-truth clean image. To maintain the edge details in the final

haze-free image, we design a gradient loss to achieve the goal. The loss of gradient

space is described as:

Lgra
mid =

1

N

N∑
i=1

∥∥Sobel(Igt)−Gedge(I
cat)

∥∥
1
, (8)

Lgra
final =

1

N

N∑
i=1

∥∥Sobel(Igt)− Sobel(Ihf )
∥∥
1
, (9)

where Sobel(·) is the Sobel operation which same as the Eq. (3). It is worth noting

that we transform Sobel into a convolutional layer with fixed parameters. Hence, the

model can be trained in an end-to-end manner. The total loss function is formulated:

Losstotal = Lpix
mid + αLpix

final + βLgra
mid + γLgra

final, (10)

where α, β and γ are the trade-off weights.
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Hazy input DCP AOD-Net DehazeNet PFFNet GCANet FFA-Net Ours

Fig. 4. Visual comparisons on indoor and outdoor environments for SOTS dataset.

4. Experiments

4.1. Datasets

The RESIDE 36 dataset is a widely used benchmark dataset for image dehazing,

which consists of Indoor Training Set (ITS, with 13,990 image pairs) and Out-

door Training Set (OTS, with 60,246 image pairs). Meanwhile, we introduce the

synthetic datasets and real-world datasets to validate the dehazing performance of

the GGDB-Net to ensure the completeness. The Synthetic Objective Testing Set

(SOTS) of RESIDE is adopted for performance evaluation. We also test on several

well-known real-world datasets for qualitative assessment, including O-HAZE 37

and I-HAZE 38.

4.2. Implementation Details

During the training process, the training set is first randomly flipped horizontally

and vertically. Then, they are randomly cropped to 240× 240. Finally, the pair of

image patches as inputs and feed into GGDB-Net. The Adam optimizer is adopted

and β1 = 0.9 and β2 = 0.999. The trade-off weights in loss function are set to

α = 0.01, β = 0.01 and γ = 10, respectively.

For ITS and OTS datasets, we train the GGDB-Net for 3×105 and 6×105 steps

with batch size of 6, respectively. The learning rate is initially set to 1× 10−4 and

5 × 10−5, and the cosine annealing strategy 39 is adopted to control the learning
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rate. All experiments are implemented on PyTorch 40 with an NVIDIA RTX 2080Ti

GPU.

Hazy input DCP AOD-Net DehazeNet PFFNet GCANet FFA-Net Ours

Fig. 5. Visual comparisons on I-HAZE and O-HAZE datasets

4.3. Evaluation and Results

We compare the GGDB-Net with six state-of-the-art (SOTA) methods, i.e., one

traditional method DCP 12, and five learning-based methods, i.e., AOD-Net 41, De-

hazeNet 21, GCANet 25, FFA-Net 10, and PFFNet 42. Two evaluation metrics,i.e.,

PSNR and SSIM 43 are adopted. Comparative results are referred in Table 1.

The proposed GGDB-Net outperforms other SOTA competitors by a large mar-

gin in PSNR and SSIM. Compare with the FFA-Net 10 which ranks the second place,

GGDB-Net achieves 1.44dB PSNR and 0.029 SSIM gain in SOTS indoor. Qualita-

tive comparison results are illustrated in Fig. 4 and Fig. 5. The results of DCP and

DehazeNet with excessive brightness relative to others. AOD-Net and PFFNet fail

to get rid of the haze entirely, and they are suffered from color distortion. GCANet

and FFA-Net lose edge details and have in-homogeneous illuminations. In contrast,

the proposed GGDB-Net generate more natural results with apparent edges and

smoother illumination.

4.4. Ablation Study

To explore the validity of the GGDB-Net, it is necessary to present an ablation

study by validating different parts in the GGDB-Net.

Ablation Study on Different Components: In this subsection, all exper-

iments are trained by ITS and tested on SOTS with the same parameters of our

implementation details, excepting that the training iterations is set to 2× 105. The

results are shown in Table 2. By removing the gradient map and using the haze

image alone as input, the value of PSNR drops from 35.1846 to 33.2488, which



November 4, 2023 9:54 WSPC/INSTRUCTION FILE output

10 Mingliang Gao

Table 1. Quantitative comparisons on SOTS.

Method
SOTS indoor SOTS outdoor

PSNR SSIM PSNR SSIM

DCP 12 16.6240 0.8183 21.1532 0.8958

AOD-Net 41 20.8582 0.8790 23.3615 0.9170

DehazeNet 21 22.3024 0.8805 21.5538 0.8441

PFFNet 42 29.5132 0.9560 25.8016 0.8928

GCANet 25 30.1340 0.9672 28.3426 0.9468

FFA-Net 10 36.3870 0.9886 33.5723 0.9840

GGDB-Net(Ours) 37.8351 0.9915 34.4930 0.9855

Table 2. Ablation study of the GGDB-Net.

Haze removal branch ! ! ! !

Edge rapair branch ! ! !

Gradient-guided ! !

Gradient loss !

PSNR 32.5907 33.2488 34.5658 35.1846

SSIM 0.9820 0.9837 0.9862 0.9876

proves that the gradient guidance is helpful for image dehazing. We can also see

that even we only use the haze removal branch, both PSNR and SSIM have declined

significantly. Moreover, the impacts of medium losses are also investigated.

Ablation Study on Different Gradient Operators: In this part, we per-

form experiments to demonstrate the effect of several commonly gradient operators

on our GGDB-Net. Comparative results are depicted in Table 2. It shows that the

Sobel operator suits best among all the other operators. Since the edge details in

haze images are hidden under the haze, small extraction factors cannot extract sig-

nificant edges for guiding haze removals, such as Difference and Laplace operator.

In contrast, the Scharr operator uses too large extraction factors, which introduces

enormous noise in the background and around objects, causing instability and dete-

rioration of our model. Finally, we can observe that the Sobel operator both extracts

sufficient features and avoids the noise problem. Thus, we apply the Sobel operator

to get gradient maps.
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 (a) Hazy image  (b) Scharr  (c) Laplacian  (d) Difference  (e) Sobel

Fig. 6. Visual comparison of different gradient operators.

Table 3. Ablation study of different gradient operators.

Method PSNR SSIM

Scharr operator 16.3393 0.4491

Differential operator 34.3495 0.9857

Laplace operator 34.6373 0.9871

Sobel operator 35.1846 0.9876

5. Conclusion

We propose a gradient guided dual-branch network (GGDB-Net) for single image

dehazing in this work. The key idea is to decouple the haze removal and edge

repair with dual parallel branches and use the gradient map to guide the model to

focus on haze and edge. With the aid of gradient information, guidance can also be

used in other models to enhance the performance of image dehazing. Moreover, we

analyse the effect of different gradient operators for image dehazing. Experimental

results prove that the GGDB-Net performs favourably against the state-of-the-arts

methods, and it is qualified to get rid of remove the uneven haze and recover edge

details for real haze images.
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