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Abstract
Vehicle counting is crucial for effective road planning and traffic management. Despite
significant advancements that have been achieved with the development of deep learning
technology, current counting models rely on large-scale parameters and substantial
computational resources, which limits their practical application. Additionally, these methods
are typically trained on large centralized datasets, which may result in inefficiencies for
resource-constrained devices. Furthermore, inadequate privacy protection poses potential risks
of personal information leakage. To address these issues, we introduce a lightweight counting
network, privacy-aware aggregation network (PANet) for real-world application in this paper. In
PANet, a pyramid feature enhancement module is built to aggregate multi-scale information and
enhance key representation, while also optimizing the channel-wise output of the model to
reduce computational complexity. Furthermore, a federated learning framework is implemented
to distribute the computational load and safeguard user privacy. Experimental results on a wide
range of counting benchmarks demonstrate the superior efficiency and accuracy of PANet. The
code is available at https://github.com/sdut-jacheng/PANet.
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1. Introduction

Vehicle counting is a crucial task in contemporary traffic man-
agement and urban planning. It aims at inferencing the num-
ber of vehicles in static images or videos. With the progress in
deep learning technologies, research on vehicle counting has
garnered increased attention from scholars and the accuracy of
vehicle counting has markedly improved [1]. In particular, the
use of convolutional neural networks (CNNs) for object detec-
tion and recognition has led to unprecedented advancements in
vehicle counting [2, 3].

Although these methods have shown notable performance
improvements, there are still some unresolved technical issues.
The first issue is the contradiction between calculation amount
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and calculation accuracy. Figure 1 illustrates a comparison
of parameters and counting accuracy for several state-of-the-
art (SOTA) methods on the PUCPR+ dataset [4]. The results
shown in figure 1 reveal a common trend that models with
higher prediction accuracy generally consists of more para-
meters. Specifically, these models often require substantial
computational resources, especially on resource-constrained
edge devices [5]. Thus, the key challenge in vehicle count-
ing is how to reduce model complexity while maintaining high
accuracy [6].

The second issue in vehicle counting tasks is scale vari-
ation, where the size of vehicles in the same scene changes
significantly due to factors such as camera angle, height, and
traffic density [13]. This problem of scale variation decreases
the accuracy and robustness of vehicle detection and count-
ing, especially in high-density and complex traffic environ-
ments. To overcome this challenge, various solutions have
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Figure 1. Comparison of the number of parameters and accuracy within the SOTA counting models on the PUCPR+ dataset. A lower mean
absolute error (MAE) indicates a higher counting accuracy, and a larger number of parameters reflects a heavier network. These SOTA
models include: MCNN [7], CSRNet [8], RAQNet [9], SRRNet [3], GGANet [10], FPANet [11], SSFPNet [12]. The proposed approach
ensures high counting precision with a minimal number of parameters.

been proposed. These solutions mainly include pyramid net-
work structures and multi-scale feature fusion. For example,
Zhai et al [11] proposed a crowd counting model termed
feature pyramid attention network (FPANet). They built a
multi-scale aggregation module to aggregate information from
different scales to address the problem of scale variation.
Chen et al [12] proposed a selective spatial frequency pyramid
network (SSFPNet) in which a hybrid feature pyramid module
is developed to aggregate multi-scale information.

The third issue is data privacy and security. Conventional
centralized training often necessitates centralizing all data
on a server for processing. This process requires signific-
ant computational power and raises concerns about poten-
tial data leakage. To overcome this issue, decentralized learn-
ing has become a promising solution. Federated learning is
a widely used decentralized learning technique [14–16]. It
trains models across multiple clients and aggregates their
updates. It helps to prevent data leakage while alleviating the
computational pressure on individual clients. In this regard,
Chen et al [15] proposed a federated learning-based network
termed DLPTNet, which achieves accurate crowd counting
while ensuring user privacy. Pang et al [17] developed a hori-
zontal federated learning framework. The framework updates
the global model by aggregating parameters from local mod-
els. It does not require sharing local data, which ensures data
privacy. However, federated learning requires frequent trans-
mission of model parameters among clients and the central
server. The size of the model directly affects communica-
tion overhead. Lightweight networks can reduce the volume
of packages transmitted, which increases communication effi-
ciency and overall performance.

Based on the aforementioned background, we propose a
privacy-aware aggregation network (PANet). It employs a
meticulously designed pyramid feature enhancement (PFE)

module to deal with the problem of scale variation while redu-
cing the computational load. Moreover, it combines a feder-
ated learning framework to achieve balanced computational
loads while ensuring data privacy. Meanwhile, the proposed
lightweight PANet reduces communication overhead in feder-
ated learning by limiting the number of transmitted paramet-
ers. Overall, the contributions of this work are summarized as
follows.

(i) We present PANet, a lightweight network to improve
vehicle counting accuracy with fewer parameters.
Specifically, it contains a well-designed PFE module to
capture multi-scale vehicle features, which is beneficial
for addressing scale variation.

(ii) We employ a federated learning framework, which
addresses the issue of high computational pressure on
single clients while upholding data privacy. Furthermore,
it mitigates the forgetting effect during client-side
updates, which enables efficient and accurate vehicle
counting.

(iii) We perform extensive experiments on five vehicle bench-
mark datasets to showcase the superior accuracy and
robustness of the proposed PANet. More importantly,
the model achieves high performance with a much smal-
ler number of parameters and floating-point operations
(FLOPs).

2. Related work

2.1. Vehicle counting

In recent years, deploying surveillance cameras in urban set-
tings has significantly enhanced the application of vision-
based techniques for assessing traffic density [1]. These
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techniques are typically divided into two principal categor-
ies. The first includes traditional methods that rely on frames-
based method [18, 19], detection-based method [20, 21], and
motion-basedmethod [22]. Thesemethods often face perform-
ance issues in urban surveillance due to the impact of per-
spective shifts and uneven density distribution. The second
category comprises methods that use CNN models to gen-
erate vehicle density maps, which are then used to analyze
traffic flow. Yi et al [23] developed a multi-scale feature
fusion network. It employs a series of channel-space attention
mechanisms, multi-scale context fusion modules, and count-
scale pooling modules to boost feature extraction and identify
subtle features in target objects. Zhai et al [9] proposed
a region-aware quantum network, which employs cascaded
object region awareness modules to extract local informa-
tion and quantum-driven calibration modules to capture global
information. This design effectively mitigates background
interference and significantly improves counting accuracy.
Guo et al [3] developed the scale region recognition network,
which incorporates scale-aware perception and object region
recognition modules. By encoding features at multiple scales
and minimizing background noise, it enhances the accuracy
of counting. Chen et al [12] proposed a SSFPNet. It integ-
rates pyramid attention and hybrid feature pyramid modules
to gather multi-scale information, and precisely extract object
region features.

2.2. Federated learning

Federated learning involves training distributed models across
multiple local data sources to achieve data-distributed learn-
ing. This approach provides a robust solution for mitigat-
ing data privacy and security issues [24]. Arapakis et al [25]
proposed P4L, a method for enhancing privacy protection.
It utilizes a privacy-preserving peer-to-peer (P2P) learning
framework across different devices and employs partial homo-
morphic encryption to ensure the confidentiality of shared
gradients. Zhou et al [26] designed a privacy-aware asyn-
chronous federated learning framework based on P2P. This
framework develops a communication mechanism based on
secret sharing to secure the encrypted P2P FL process and
introduces a Gaussian mechanism to ensure the anonymity of
local model updates. Nevertheless, due to communication effi-
ciency, the frequent exchange of model updates or paramet-
ers between clients and the central server or other clients can
impact overall model performance. To reduce communication
overhead while preserving privacy, this issue has become a
key research focus in federated learning in recent years [27].
Wang et al [28] proposed a communication-efficient adaptive
federated learning technique. It prioritizes compressing one-
way communication from clients to the central server, which
reduces communication overhead. Wang et al [29] developed
an efficient asynchronous federated learning approach. It
allows edge nodes to select and update parts of the model from
the cloud based on local data distribution. This technique sig-
nificantly decreases both computational and communication
loads, which improves the efficiency of federated learning.

2.3. Lightweight network

To streamline networks and enhance computational efficiency,
lightweight network models have received extensive atten-
tion in the research community [30]. Howard et al [31] pro-
posed MobileNet, which reduces model parameters by using
depthwise separable convolutions instead of standard convo-
lutions. Zhang et al [32] developed ShuffleNet, which employs
group convolutions to minimize parameter count and chan-
nel shuffling to facilitate information exchange between dif-
ferent groups. Han et al [33] designed GhostNet, which
identifies redundant feature maps extracted by convolutions
and developed the Ghost module to reduce feature redund-
ancy. Tang et al [34] proposed GhostNetV2, which enhances
GhostNet by incorporating hardware-friendly attention into
convolutions to improve the effectiveness of inexpensive oper-
ations. This approach boosts network performance and main-
tains its lightweight characteristics.

3. Methodology

3.1. Overall framework

As illustrated in figure 2, the proposed network consists of
three main components: an encoder, a PFE module, and a
decoder. The encoder uses OSNet [35] for feature extrac-
tion, the PFE module captures multi-scale information and
enhances key features, and the decoder uses several transposed
convolutions to upsample the density map to match the input
dimensions.

3.2. PFE module

To capture multi-scale features and precisely extract vehicle
information, we designed the PFE module, as depicted in
figure 2. It comprises two main components: the multi-
scale feature perception (MFP) unit and the feature enhance-
ment (FE) unit, which collaboratively enhance the counting
capabilities of the network.

For the input featureX ∈ RC×H×W, it is initially distributed
across j distinct branches. In each branch, depth-wise separ-
able dilated convolutions (DSDConvs) with different dilation
rates (rate= 1,2,..., p) are applied to broaden the receptive field
without the additional computational cost, which enhances
the capture of extensive contextual information. After the
DSDConvs, each output feature map is processed through a
3×3 convolution to refine the features. These processed fea-
ture maps are combined with the next branch using element-
wise addition to promote information fusion among features.
Ultimately, the feature maps from all branches are merged into
a unified multi-scale feature map X1 through concatenation.
This process is formulated as,

Yk = DSDConvr1 (X) ,k= 1 (1)

Yk = DSDConvri(X+Conv2d(Yk−1)),

i ∈ {2, . . .,p} ,k ∈ {2, . . ., j} (2)

X1 = Concat(Y1,Y2, . . .,Yj) , (3)

3



Meas. Sci. Technol. 36 (2025) 026213 J-A Cheng et al

Figure 2. The pipeline of the PANet for vehicle counting.

where DSDConvri represents DSDConvs with varying dila-
tion rates, Conv2d signifies a 3×3 convolution, and Yk is
defined as the kth branch.

The output feature map X1 from the multi-feature resol-
ution unit is directed into two distinct processing branches
in the FE unit. On the one hand, X1 is processed through
average pooling to minimize dimensions and abstract basic
information, then further refined through a 3×3 convolution
layer. After that, a Sigmoid function is used to distill high-
level information. On the other hand, the feature map is com-
pressed through a 1×1 convolution to simplify its complexity.
The compressed features are then refined through group-wise
and point-wise convolutions and combined using element-
wise addition. Finally, the feature maps from both branches
are multiplied element-wise to produce an enhanced output
feature map X ′. This process is formulated as,

X2 = Sigmoid(Conv2d(AvgPool(X1))) , (4)

X3 = Concat(GWConv(Conv2d(X1)) ,

PWConv(Conv2d(X1))) , (5)

X ′= X2

⊗
X3, (6)

where GWConv refers to group-wise convolution. PWConv
stands for point-wise convolution.

⊗
represents element-wise

multiplication.

3.3. Federated learning framework

In light of the need to manage distributed computing resources
efficiently while safeguarding data privacy, this paper intro-
duces a federated learning framework to balance the compu-
tational load. The framework leverages local data from vari-
ous contributors to train machine learning models, with the
updated local models being centrally aggregated without shar-
ing the original datasets. This approach significantly reduces
global loss and ensures satisfactory performance on particip-
ating devices.

As shown in figure 3, the federated learning process starts
with downloading the initial global model from the central
server to local devices. Subsequently, each client updates this
model using their respective local data. A proximal term is
incorporated into each client’s objective function during the
update process to address data heterogeneity and reduce local
model bias. This proximal term ensures that local updates align

closely with the initial model. This process is formulated as
follows,

θt+1
i = θti − η (∇θiL(θti)+µ(θti − θg)) , (7)

where θti indicates the local model parameters during the tth
iteration, and θt+1

i indicates the parameters in the (t+ 1)th
iteration. The gradient of the loss function with respect to the
local model parameters at the tth iteration is represented by
∇θiL(θti). The term µ(θti − θg) represents the proximal term
gradient at the tth iteration.

The updated local model parameters are then uploaded to
the central server. Finally, to create the global model, the cent-
ral server aggregates the weights submitted by each client and
applies an arithmetic averaging method. It is formulated as,

Wglobal =
1
n

n∑
i=1

Wclienti , (8)

where Wglobal denotes the aggregate global weight of the
PANet, and Wclienti signifies the local weight for each cli-
ent. This method enhances computational efficiency through
parallel computing. It alleviates the computational burden
on individual clients and significantly reduces training time.
Additionally, the design addresses potential privacy breaches
associated with data sharing in traditional machine learning
and reduces the reliance of the model on a single data source,
which improves model generalization.

3.4. Ground truth (GT) generation

The density map is generated using themethod of focal inverse
distance transform map [36]. It is formulated as,

Fgt =
1

P(x,y)α×P(x,y)+β
+C

, (9)

where α and β are defined as 0.02 and 0.75 based on previ-
ous approaches [3, 15]. A constant C= 1 is utilized to avert
division by zero errors, and P(x,y) quantifies the Euclidean
distance between a pixel at coordinates (x, y) and the closest
annotated head location (x ′,y ′).
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Figure 3. The overview of the federated learning framework.

3.5. Loss function

The Euclidean loss is adopted to measure the pixel-wise dif-
ference between the predictedmap and the GT. It is formulated
as,

loss=
1
K

K∑
i=1

∥F(Ii)−Gi∥22 , (10)

where K represents the batch size, and F(Ii) denotes the pre-
dicted density map. Gi denotes the associated density map of
the GT.

4. Experimental results and analysis

4.1. Datasets

In this paper, we evaluated the proposed methods on seven
benchmarks to comprehensively demonstrate the effectiveness
over the existing SOTA methods. The benchmarks include:

CARPK dataset [4] consists of 1448 drone-view images from
four different parking lots, with a total of 89 777 annotations.
It is divided into 989 images for training and 459 images for
testing.

PUCPR+ dataset [4] is an extensive resource for vehicle
counting that includes various weather conditions. It contains
125 images with a total of 16 456 annotations. Among these,
100 images are used for training, and 25 are reserved for
testing.

Large-vehicle dataset [37] contains 172 remote sensing
images, each with an average resolution of 1552×1573 pixels.
The primary focus of the annotations is on large vehicles
within these images.

Small-vehicle dataset [37] is another remote sensing vehicle
counting dataset. It comprises 280 high-resolution imageswith

a total of 148 838 small vehicles. Compared to the Large-
vehicle dataset, it shows greater scale variation.

TRANCOS dataset [38] contains 1244 images from conges-
ted traffic environments, each accompanied by a mask.

ShanghaiTech Part A [7] dataset comprises 300 training
images and 182 testing images. These images are sourced from
the internet and display a relatively dense crowd distribution.

UCF_CC_50 [39] dataset comprises 50 images with diverse
resolutions, each averaging 1280 individuals. In total, 63 075
individuals are annotated, with the number of individuals per
image varying from 94 to 4543, which indicates substantial
variations among the images. The statistics of these datasets is
shown in table 1.

4.2. Implementation details

We use OSNet [35] as the backbone, which employs a light-
weight structure and has effective feature extraction capab-
ilities. During the training stage, the samples are randomly
cropped to a size of 256× 256 and horizontally flipped for
data augmentation. The batch size and the number of epochs
are set to 8 and 3000, respectively. The Adam algorithm [40]
is employed for optimization, with a learning rate of 1e-4 and
a weight decay of 5e-4. To assess efficiency, the input size
is configured to 576 ×768, without involving specific data-
sets. To ensure a fair comparison, all the parameters and the
architectures of the comparison methods are obtained from the
authors’ publicly available codes. All the experiments are con-
ducted on the same hardware with PyTorch [41] on an RTX
3090 GPU.

4.3. Evaluation metrics

The mean absolute error (MAE) and root mean squared
error (RMSE) are employed to assess the precision and sta-
bility of the counting task. They are defined as,
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Table 1. Statistics of the benchmarking datasets.

Dataset # Images Train Val Test Average resolution Min Max Avg Total

CARPK [4] 1448 989 — 459 720 × 1280 — — — 89777
PUCPR+ [4] 125 100 — 25 720 × 1280 — — — 16456
Large-vehicle [37] 172 108 — 64 1552 × 1573 — — — 16456
Small-vehicle [37] 280 222 — 58 2473 × 2339 — — — 16456
TRANCOS [38] 1244 403 420 421 — — — — 46796
Part A [7] 482 300 — 182 589 × 868 33 3139 501 241 677
UCF_CC_50 [39] 50 40 — 10 — 94 4543 1280 63 705

Table 2. Comparison of different methods in efficiency.

Methods Params (M)↓ FLOPs (G)↓ Time (ms)↓ FPS↑

CSRNet [8] 16.26 182.69 15.07 66.35
CAN [42] 18.10 193.65 17.80 56.17
SASNet [43] 38.90 393.20 45.94 21.77
BL [44] 21.50 182.19 15.69 63.75
SRRNet [3] 66.14 162.09 37.07 26.93
RAQNet [9] 28.30 250.80 35.20 28.30

PANet (Ours) 4.61 27.36 11.03 90.64

MAE=
1
N

N∑
i=1

|si− ŝi|, (11)

RMSE=

√√√√ 1
N

N∑
i=1

(si− ŝi)
2
, (12)

where N represents the total image count, si is the GT count,
and ŝi is the predicted value for the i-th image.

4.4. Efficiency evaluation

To validate the efficiency of the proposed PANet, a comparat-
ive analysis is conducted against the SOTA methods. The per-
formance of PANet was assessed by analyzing the paramet-
ers, FLOPs, inference time, and frames per second (FPS) of
the model. The experimental results are presented in table 2.
Considering that some lightweight networks have no public
code, we were unable to conduct a detailed analysis of their
FLOPs, FPS, and inference time on a unified experimental
platform. Therefore, we compared the number of parameters
and the counting accuracy on the ShanghaiTech Part A dataset.
The experimental results are shown in table 3.

Compared to the SOTA methods listed in table 2, PANet
has the fewest parameters at 4.61 M and requires only 27.36G
FLOPs. This indicates that PANet is more compact and
easier to deploy in the real world with limited resources.
Additionally, PANet achieves the fastest inference time of
11.03 ms and the highest FPS of 90.64. This shows the super-
ior speed and capability of PANet for real-time processing.

The comparison results between the proposed PANet and
other lightweight networks in terms of Params, MAE, and
RMSE are shown in table 3. It indicates that the MoibleCount
has the minimum number of parameters (3.4M), but the accur-
acy is the worst. The proposed PANet has 4.61 M parameters

Table 3. Comparison of different lightweight methods in Params
and counting accuracy. The best results are presented in bold.

Methods Params (M)↓ MAE↓ RMSE↓

MobileCount [45] 3.40 89.4 146.0
Repmobilenet [46] 3.41 84.2 127.5
LMSFFNet [23] 4.58 85.9 139.9
ACSCP [47] 5.10 75.7 102.7
MDCount [48] 5.33 84.2 130.7
FPANet [11] 7.80 70.9 120.6
PSCC+DCL [49] 8.96 65.0 108.0

PANet (Ours) 4.61 58.42 91.7

Table 4. Comparison of different methods on CATRK and
PUCPR+ datasets. Results are shown in bold for the best
performance and underlined for the second-best.

CARPK PUCPR+

Method MAE RMSE MAE RMSE

YOLO [50] 102.89 110.02 156.72 200.54
Faster-RCNN [51] 103.48 110.64 156.76 200.59
SSD [52] 37.33 42.32 119.24 132.22
LEP [53] 51.83 — 15.70 —
One-look regression [54] 59.46 66.84 21.88 36.73
LPN [55] 23.80 36.79 22.76 34.46
RetinaNet [56] 16.62 22.30 24.58 33.12
MCNN [7] 39.10 43.30 21.86 29.53
CSRNet [8] 11.48 13.32 8.65 29.53
SRRNet [3] 8.50 10.98 2.04 2.79
RAQNet [9] 5.38 7.83 1.71 2.54

PANet (Ours) 5.94 8.23 1.46 2.03

which ranks in the mid-range in terms of parameters among
the compared methods. However, PANet achieves the best
performance in accuracy, with 58.42 and 91.7 in MAE and
RMSE, respectively.

4.5. Performance evaluation

4.5.1. Comparison on vehicle counting. The experimental
results on the CARPK and PUCPR+ datasets are shown in
table 4. On the CARPK dataset, the proposed PANet achieved
an MAE of 6.25 and an RMSE of 8.58, which both ranked
second. Compared to the top-performing RAQNet [9], PANet
shows an increase in MAE and RMSE by 9.4% and 4.9%,
respectively. Nevertheless, PANet reduces the parameter count
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by 83.7%, which significantly reduces model complexity with
only a slight decrease in accuracy. Unlike RAQNet [9], which
primarily focuses on addressing background interference,
PANet leverages efficient MFP unit and FE unit to capture
multi-scale features and precisely extract vehicle information.

On the PUCPR+ dataset, PANet achieved an MAE of 1.46
and an RMSE of 2.03, the best among all methods. Compared
to the third-placed SRRNet [3], PANet shows a 28.4% and
27.2% improvement in MAE and RMSE, respectively, while
reducing the parameter count by 93%. The results indicate that
the proposed PANet achieves superior efficiency and precision
inmulti-scale information extraction compared to SRRNet [3],
which also focuses on scale variation challenges. By lever-
aging the PFE module to optimize the representation and
integration of multi-scale features, PANet can alleviate the
effect of scale variations. This improvement further validates
its practicality and robustness in complex scenarios.

The results of the experiments on the large-vehicle and
small-vehicle datasets are presented in table 5. For the small-
vehicle dataset, the proposed PANet achieved the lowest MAE
of 118.76 and the second-lowest RMSE of 424.57. Compared
to ASPDNet [37], PANet improved MAE and RMSE by
72.6% and 65.7%, respectively. The results show that the
proposed PANet achieves notable performance improvements
compared to ASPDNet [37], which also addresses multi-scale
challenges in remote sensing tasks. Through the incorporation
of the PFE module, PANet can capture diverse scale features
of vehicles in remote sensing data. Furthermore, the integra-
tion of global and local features enhances the discrimination
of feature representations. On the large-vehicle dataset, PANet
achieved the best performance in both MAE and RMSE,
with scores of 15.66 and 31.13, respectively. Compared to
SANet [57] which also addresses scale variation problems,
PANet improved MAE by 75.06% and RMSE by 60.92%.
SANet [57] relies on fixed convolutional kernels for multi-
scale feature extraction and employs a relatively simple feature
fusion strategy, which limits its ability to handle the diverse
and variable scales of targets in complex scenarios. In con-
trast, PANet incorporates the PFE module, which substan-
tially enhances multi-scale feature extraction and represent-
ation. Specifically, the MFP unit employs adjustable dilated
convolutions to flexibly capture multi-scale information, while
the FE unit integrates global and local features for deeper fea-
ture fusion. This approach enables PANet to focus more on
variable targets.

In addition, validation experiments were conducted on the
Trancos dataset, as shown in table 6. Although the MAE of
PANet was 23% higher than SRRNet, it achieved a 93% reduc-
tion in parameters. Compared to other SOTA methods, PANet
improved the counting accuracy. It highlights the effectiveness
of the proposed PFE module in aggregating multi-scale fea-
tures and enhancing key representations. It helps the model to
better cope with traffic congestion in diverse environments and
adapt to varying lighting conditions and crowd densities.

Figure 4 illustrates the qualitative results across five vehicle
datasets, including CARPK, PUCPR+, Small vehicle, Large
vehicle, and TRANCOS. The predicted counts (Est) align
closely with the GT in all scenarios. This demonstrates the

Table 5. Comparison of different methods on small and large
vehicle datasets. The best results are presented in bold, while the
second-best results are highlighted in underline.

Small vehicle Large vehicle

Method MAE RMSE MAE RMSE

MCNN [7] 488.65 1317.44 36.56 55.55
CSRNet [8] 443.81 1252.22 34.10 46.42
SCAR [58] 497.22 1276.65 62.78 79.46
ASPDNet [37] 433.23 1238.61 31.76 40.14
SFCN [59] 440.70 1248.27 33.93 49.74
SFANet [60] 435.29 1284.15 29.04 47.01
CMTL [61] 490.53 1321.11 61.02 78.25
CAN [42] 457.36 1260.39 34.56 49.63
SPN [62] 445.16 1252.92 36.21 50.56
SANet [57] 497.22 1276.66 62.78 79.65
SRRNet [3] 122.79 419.65 18.25 31.24

PANet (Ours) 118.76 424.57 15.66 31.13

Table 6. Comparison of different methods on TRANCOS vehicle
dataset. Bold indicates the best results, and underlined highlights
the second-best results.

Methods MAE

SANet [63] 17.77
Lempitsky et al [64] 13.76
Guerrero-Gómez-Olmedo et al [38] 13.29
CCNN [65] 10.99
Zhang et al [66] 5.31
SRRNet [3] 3.89

PANet (Ours) 5.05

robustness and adaptability of PANet across different vehicle
densities and perspectives.

4.5.2. Comparison on crowd counting. To validate the gen-
eralization ability of the proposed PANet, cross-domain exper-
iments are conducted on two crowd datasets (ShanghaiTech
Part A and UCF_CC_50). The comparison with several SOTA
methods is presented in table 7.

On the ShanghaiTech Part A dataset, PANet achieves the
best results in MAE and RMSE. Compared to RAQNet [9],
PANet improved MAE by 1.0%, with a decrease of 9.4%
in RMSE, and an 83.7% reduction in parameter. In the
UCF_CC_50 dataset, PANet achieved the best performance
across all metrics. Compared to MobileCount [45], a light-
weight network, PANet improvedMAE and RMSE by 63.01%
and 61.51%, respectively. These results demonstrate that
PANet performs well in both dense and highly variable scenes.
Additionally, the cross-domain experiment results indicate
that PANet maintains high counting accuracy and robustness
across different types of datasets, which further proves its
broad applicability in practical scenarios. The subjective res-
ults on these two datasets are shown in figure 5. The result
clearly shows that the generated densitymaps closely resemble
the GT, and the predicted values are also very close to the
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Figure 4. The visual result on five vehicle datasets. The first row represents the input image, the second row is the ground truth, and the
third row is the generated density map.

Table 7. Comparison of different methods on ShanghaiTech Part A and UCF_CC_50 crowd datasets.

ShanghaiTech
Part A UCF_CC_50

Method MAE RMSE MAE RMSE

MCNN [7] 110.20 173.20 377.60 509.10
TDF-CNN [67] 97.50 145.10 354.70 491.40
LCNet [68] 93.30 149.00 326.70 430.60
MobileCount [45] 89.40 146.00 284.80 392.80
CCNN [69] 88.10 141.70 — —
1/4SAN+SKT [70] 78.00 126.60 — —
SANet [57] 75.30 122.20 358.40 334.90
PCCNet [71] 73.50 124.00 240.00 315.50
SRRNet [3] 60.80 103.00 172.90 256.30
RAQNet [9] 59.00 101.20 177.10 247.60

PANet (Ours) 58.42 91.70 105.36 151.19

Figure 5. The visual result on ShanghaiTech PartA and UCF_CC_50 datasets.
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Figure 6. Ablation study on key modules of the PFE module.

Table 8. Ablation study of the federated learning framework.

n = 2 n = 4 n = 8

Clients MAE RMSE MAE RMSE MAE RMSE

Avg. 71.07 119.84 122.70 233.60 169.56 360.03
PANet (Ours) 61.90 101.52 63.59 104.90 70.40 120.22

actual values. This indicates that PANet is effective and super-
ior across various scenarios.

4.6. Ablation study

To evaluate the effectiveness of the PFE module and the fed-
erated learning framework, we conducted ablation studies on
the ShanghaiTech Part A dataset. The results are displayed in
figure 6 and table 8. The baseline refers to a network contain-
ing only the encoder and decoder.

Figure 6 shows the baseline scores of 60.32 and 99.56.0
in MAE and RMAE, respectively. When the PFE module is
incorporated, MAE decreases by 3.15%, and RMSE decreases
by 7.89%. In the PFE module, we adjusted the baseline chan-
nels from 512 to 256. This adjustment reduced FLOPs by
47.4% with only a 0.11% increase in parameters and simul-
taneously improved the performance of the PANet.

To evaluate the impact of the number of clients on model
performance and the effectiveness of the federated learning
framework, we conducted experiments on the ShanghaiTech
PartA dataset. The Avg method randomly splits the training
set of the Part A dataset into n equal parts, uses one part for
training, and tests on the entire test set. This experiment was
repeated 8 times, and the average result was calculated. In the
federated learning framework, n represents the number of cli-
ents. The results for different numbers of clients (n = 2, 4,
8) using both the Avg method and the proposed PANet with
federated learning framework are shown in table 8.

As the number of clients increases, the MAE and RMSE
values for both methods also increase, which indicates a
decline in model performance. This decline is due to the
more pronounced non-independent and identically distributed
data characteristics as the number of clients increases, which
poses greater challenges for global model aggregation. Across
all client numbers, our method consistently outperforms the
Avgdataset method in terms ofMAE and RMSE values, which
further validates the effectiveness of the federated learning
framework.

5. Conclusion

In this paper, we presented a lightweight PANet for vehicle
counting to achieve efficient performance on edge devices.
Additionally, the federated learning framework alleviates the
pressure on individual devices processing data from various
sources while protecting data privacy. Specifically, the PFE
module improves network accuracy while optimizing network
output to reduce computational load. Moreover, the proposed
federated learning framework distributes computational load,
which enhances model training efficiency and reduces the bur-
den on individual nodes. Additionally, it ensures data pri-
vacy by aggregating parameters without sharing local datasets.
Experimental results from five vehicle datasets and two crowd
datasets show that PANet demonstrated significant advantages
in effectiveness and accuracy.

Data availability statement
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field of study. The data that support the findings of this study
are available upon reasonable request from the authors.

ORCID iD

Mingliang Gao https://orcid.org/0000-0001-7273-7499

References

[1] Tituana D E V, Yoo S G and Andrade R O 2022 Vehicle
counting using computer vision: a survey 2022 IEEE 7th
Int. Conf. for Convergence in Technology (I2CT) (IEEE)
pp 1–8

[2] Xu H, Cai Z, Li R and Li W 2022 Efficient CityCam-to-edge
cooperative learning for vehicle counting in ITS IEEE
Trans. Intell. Transp. Syst. 23 16600–11

[3] Guo X, Gao M, Zhai W, Li Q and Jeon G 2023 Scale region
recognition network for object counting in intelligent
transportation system IEEE Trans. Intell. Transp. Syst.
24 15920–29

[4] Hsieh M-R, Lin Y-L and Hsu W H 2017 Drone-based object
counting by spatially regularized regional proposal network
Proc. IEEE Int. Conf. on Computer Vision (Venice, Italy,
22–29 October 2017) pp 4165–73

[5] Chaudhuri Y, Kumar A, Phukan O C and Buduru A B 2024 A
lightweight feature fusion architecture for
resource-constrained crowd counting (https://doi.org/
10.48550/arXiv.2401.05968)

9

https://orcid.org/0000-0001-7273-7499
https://orcid.org/0000-0001-7273-7499
https://doi.org/10.1109/i2ct54291.2022.9824432
https://doi.org/10.1109/TITS.2022.3149657
https://doi.org/10.1109/TITS.2022.3149657
https://doi.org/10.1109/TITS.2023.3296571
https://doi.org/10.1109/TITS.2023.3296571
https://doi.org/10.1109/ICCV.2017.446
https://doi.org/10.48550/arXiv.2401.05968
https://doi.org/10.48550/arXiv.2401.05968


Meas. Sci. Technol. 36 (2025) 026213 J-A Cheng et al

[6] Venkatesh S and Sankara Babu B 2022 A survey: vehicle
detection and counting 2022 13th Int. Conf. on Computing
Communication and Networking Technologies (ICCCNT)
(Kharagpur, India, 3–5 October 2022) (IEEE)
pp 1–5

[7] Zhang Y, Zhou D, Chen S, Gao S and Ma Y 2016
Single-image crowd counting via multi-column
convolutional neural network Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (Las Vegas, NV,
USA, 27–30 June 2016) pp 589–97

[8] Li Y, Zhang X and Chen D 2018 Csrnet: dilated convolutional
neural networks for understanding the highly congested
scenes Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (Salt Lake City, UT, USA, 18–23 June 2018)
pp 1091–100

[9] Zhai W, Xing X and Jeon G 2024 Region-aware quantum
network for crowd counting IEEE Trans. on Consumer
Electronics (https://doi.org/10.1109/TCE.2024.3378166)

[10] Guo X, Gao M, Zou G, Bruno A, Chehri A and Jeon G 2023
Object counting via group and graph attention network
IEEE Trans. Neural Netw. Lear. Syst. (https://doi.org/
10.1109/TNNLS.2023.3336894)

[11] Zhai W, Gao M, Li Q, Jeon G and Anisetti M 2023 FPANet:
feature pyramid attention network for crowd counting Appl.
Intell. 53 19199–216

[12] Chen J, Gao M, Guo X, Zhai W, Li Q and Jeon G 2023 Object
counting in remote sensing via selective spatial-frequency
pyramid network J. Softw. Pract. Exper. 54 1754–73

[13] La H-P, Ha M-T, Nguyen H-L and Nguyen M-T 2020 Vehicle
counting: survey and experiments 2020 7th NAFOSTED
Conf. on Information and Computer Science (NICS) (Ho
Chi Minh City, Vietnam, 26–27 November 2020) (IEEE)
pp 350–5

[14] Zhou X, Ye X, Kevin I, Wang K, Liang W, Nair N K C,
Shimizu S, Yan Z and Jin Q 2023 Hierarchical federated
learning with social context clustering-based participant
selection for internet of medical things applications IEEE
Trans. Comput. Soc. Syst. 10 1742–51

[15] Chen J et al 2024 Privacy-aware crowd counting by
decentralized learning with parallel transformers Internet
Things 26 101167

[16] Zhou X, Liang W, Kevin I, Wang K and Yang L T 2020 Deep
correlation mining based on hierarchical hybrid networks
for heterogeneous big data recommendations IEEE Trans.
Comput. Soc. Syst. 8 171–8

[17] Pang Y, Ni Z and Zhong X 2023 Federated learning for crowd
counting in smart surveillance systems IEEE Internet
Things J. 11 5200–9

[18] Tsai C-M and Yeh Z-M 2013 Intelligent moving objects
detection via adaptive frame differencing method Intelligent
Information and Database Systems: 5th Asian Conf.,
ACIIDS 2013, Proceedings Part I (Kuala Lumpur,
Malaysia, 18–20 March 2013) vol 5 (Springer) pp 1–11

[19] Cucchiara R, Grana C, Piccardi M and Prati A 2000 Statistic
and knowledge-based moving object detection in traffic
scenes ITSC 2000. 2000 IEEE Intelligent Transportation
Systems. Proc. (Cat. No. 00TH8493) (Dearborn, MI, USA,
1–3 October 2000) (IEEE) pp 27–32

[20] Zheng Y and Peng S 2012 Model based vehicle localization
for urban traffic surveillance using image gradient based
matching 2012 15th Int. IEEE Conf. on Intelligent
Transportation Systems (Anchorage, AK, USA, 16–19
September 2012) (IEEE) pp 945–50

[21] Toropov E, Gui L, Zhang S, Kottur S and Moura J M F 2015
Traffic flow from a low frame rate city camera 2015 IEEE
Int. Conf. on Image Processing (ICIP) (Quebec City, QC,
Canada, 27–30 September 2015) (IEEE) pp 3802–6

[22] Chen Z, Ellis T and Velastin S A 2012 Vehicle detection,
tracking and classification in urban traffic 2012 15th

International IEEE Conf. on Intelligent Transportation
Systems (Anchorage, AK, USA, 16–19 September 2012)
(IEEE) pp 951–6

[23] Yi J, Shen Z, Chen F, Zhao Y, Xiao S and Zhou W 2023 A
lightweight multiscale feature fusion network for remote
sensing object counting IEEE Trans. Geosci. Remote Sens.
61 1–13

[24] Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G and Piccialli F
2023 Model aggregation techniques in federated learning: a
comprehensive survey Future Gener. Comput. Syst.
150 272–93

[25] Arapakis I, Papadopoulos P, Katevas K and Perino D 2023 P4l:
privacy preserving peer-to-peer learning for
infrastructureless setups (arXiv:2302.13438)

[26] Zhou X, Liang W, Kevin I, Wang K, Yan Z, Yang L T, Wei W,
Ma J and Jin Q 2023 Decentralized P2P federated learning
for privacy-preserving and resilient mobile robotic systems
IEEE Wirel. Commun. 30 82–89

[27] Woisetschläger H, Isenko A, Wang S, Mayer R and
Jacobsen H-A 2024 A survey on efficient federated learning
methods for foundation model training (https://doi.org/
10.24963/ijcai.2024/919)

[28] Wang Y, Lin L and Chen J 2022 Communication-efficient
adaptive federated learning Int. Conf. on Machine Learning
(PMLR) pp 22802–38

[29] Wang Q, Li Q, Wang K, Wang H and Zeng P 2021 Efficient
federated learning for fault diagnosis in industrial
cloud-edge computing Computing 103 2319–37

[30] Wang C-H, Huang K-Y, Yao Y, Chen J-C, Shuai H-H and
Cheng W-H 2022 Lightweight deep learning: an overview
IEEE Consum. Electron. Mag. 13 51–64

[31] Howard A G, Zhu M, Chen B, Kalenichenko D, Wang W,
Weyand T, Andreetto M and Adam H 2017 Mobilenets:
efficient convolutional neural networks for mobile vision
applications (https://doi.org/10.48550/arXiv.1704.04861)

[32] Zhang X, Zhou X, Lin M and Sun J 2018 Shufflenet: an
extremely efficient convolutional neural network for mobile
devices Proc. IEEE Conf. on Computer Vision and Pattern
Recognition pp 6848–56

[33] Han K, Wang Y, Tian Q, Guo J, Xu C and Xu. C 2020
Ghostnet: more features from cheap operations Proc.
IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (Seattle, WA, USA, 13–19 June 2020)
pp 1580–9

[34] Tang Y, Han K, Guo J, Xu C, Xu C and Wang Y 2022
Ghostnetv2: enhance cheap operation with long-range
attention Advances in Neural Information Processing
Systems vol 35 pp 9969–82

[35] Zhou K, Yang Y, Cavallaro A and Xiang T 2021 Learning
generalisable omni-scale representations for person
re-identification IEEE Trans. Pattern Anal. Mach. Intell.
44 5056–69

[36] Liang D, Xu W, Zhu Y and Zhou Y 2022 Focal inverse
distance transform maps for crowd localization IEEE Trans.
Multimedia (https://doi.org/10.1109/TMM.2022.3203870)

[37] Gao G, Liu Q and Wang Y 2021 Counting from sky: a
large-scale data set for remote sensing object counting and a
benchmark method IEEE Trans. Geosci. Remote Sens.
59 3642–55

[38] Guerrero-Gómez-Olmedo R, Torre-Jiménez B,
López-Sastre R, Maldonado-Bascón S and Onoro-Rubio D
2015 Extremely overlapping vehicle counting Pattern
Recognition and Image Analysis: 7th Iberian Conf., IbPRIA
2015, Proc. 7 (Santiago de Compostela, Spain, 17–19 June
2015) (Springer) pp 423–31

[39] Idrees H, Saleemi I, Seibert C and Shah M 2013 Multi-source
multi-scale counting in extremely dense crowd images Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(Portland, OR, USA, 23–28 June 2013) pp 2547–54

10

https://doi.org/10.1109/ICCCNT54827.2022.9984481
https://doi.org/10.1109/CVPR.2016.70
https://doi.org/10.1109/CVPR.2018.00120
https://doi.org/10.1109/TCE.2024.3378166
https://doi.org/10.1109/TNNLS.2023.3336894
https://doi.org/10.1109/TNNLS.2023.3336894
https://doi.org/10.1007/s10489-023-04499-3
https://doi.org/10.1007/s10489-023-04499-3
https://doi.org/10.1002/spe.3287
https://doi.org/10.1002/spe.3287
https://doi.org/10.1109/NICS51282.2020.9335840
https://doi.org/10.1109/TCSS.2023.3259431
https://doi.org/10.1109/TCSS.2023.3259431
https://doi.org/10.1016/j.iot.2024.101167
https://doi.org/10.1016/j.iot.2024.101167
https://doi.org/10.1109/TCSS.2020.2987846
https://doi.org/10.1109/TCSS.2020.2987846
https://doi.org/10.1109/JIOT.2023.3305933
https://doi.org/10.1109/JIOT.2023.3305933
https://doi.org/10.1007/978-3-642-36546-1_1
https://doi.org/10.1109/ITSC.2000.881013
https://doi.org/10.1109/ITSC.2012.6338660
https://doi.org/10.1109/ICIP.2015.7351516
https://doi.org/10.1109/ITSC.2012.6338852
https://doi.org/10.1109/TGRS.2023.3238185
https://doi.org/10.1109/TGRS.2023.3238185
https://doi.org/10.1016/j.future.2023.09.008
https://doi.org/10.1016/j.future.2023.09.008
https://arxiv.org/abs/2302.13438
https://doi.org/10.1109/MWC.004.2200381
https://doi.org/10.1109/MWC.004.2200381
https://doi.org/10.24963/ijcai.2024/919
https://doi.org/10.24963/ijcai.2024/919
https://doi.org/10.48550/arXiv.2205.02719
https://doi.org/10.1007/s00607-021-00970-6
https://doi.org/10.1007/s00607-021-00970-6
https://doi.org/10.1109/MCE.2022.3181759
https://doi.org/10.1109/MCE.2022.3181759
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1707.01083
https://doi.org/10.1109/cvpr42600.2020.00165
https://doi.org/10.48550/arXiv.2211.12905
https://doi.org/10.48550/arXiv.2211.12905
https://doi.org/10.1109/TPAMI.2021.3069237
https://doi.org/10.1109/TPAMI.2021.3069237
https://doi.org/10.1109/TMM.2022.3203870
https://doi.org/10.1109/TGRS.2020.3020555
https://doi.org/10.1109/TGRS.2020.3020555
https://doi.org/10.1007/978-3-319-19390-8_48
https://doi.org/10.1109/CVPR.2013.329


Meas. Sci. Technol. 36 (2025) 026213 J-A Cheng et al

[40] Kingma D P and Ba J 2014 Adam: a method for stochastic
optimization (https://doi.org/10.48550/arXiv.1412.6980
Focus to learn more)

[41] Paszke A et al 2019 Pytorch: an imperative style,
high-performance deep learning library Adv. Neural Inf.
Process. Syst. 32 8024–35

[42] Liu W, Salzmann M and Fua P 2019 Context-aware crowd
counting Proc. IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (Long Beach, CA, USA, 15–20 June
2019) pp 5099–108

[43] Song Q, Wang C, Wang Y, Tai Y, Wang C, Li J, Wu J and Ma J
2021 To choose or to fuse? Scale selection for crowd
counting Proc. AAAI Conf. on Artificial Intelligence vol
35 pp 2576–83

[44] Ma Z, Wei X, Hong X and Gong Y 2019 Bayesian loss for
crowd count estimation with point supervision Proc.
IEEE/CVF Int. Conf. on Computer Vision (Seoul, Korea
(South), 27 October –2 November 2019) pp 6142–51

[45] Wang P, Gao C, Wang Y, Li H and Gao Y 2020 Mobilecount:
an efficient encoder-decoder framework for real-time crowd
counting Neurocomputing 407 292–9

[46] Lin C and Hu X 2024 Efficient crowd density estimation with
edge intelligence via structural reparameterization and
knowledge transfer Appl. Soft Comput. 154 111366

[47] Shen Z, Xu Y, Ni B, Wang M, Hu J and Yang X 2018 Crowd
counting via adversarial cross-scale consistency pursuit
Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (Salt Lake City, UT, USA, 18–23 June 2018)
pp 5245–54

[48] Meng X and Ren Z 2021 MDCount: a lightweight
encoder-decoder architecture for resource-saving crowd
counting J. Phys.: Conf. Ser 2024 012031

[49] Wang Q, Lin W, Gao J and Li X 2020 Density-aware
curriculum learning for crowd counting IEEE Trans.
Cybern. 52 4675–87

[50] Redmon J, Divvala S, Girshick R and Farhadi A 2016 You
only look once: unified, real-time object detection Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(Las Vegas, NV, USA, 27–30 June 2016) pp 779–88

[51] Ren S, He K, Girshick R and Sun J 2016 Faster R-CNN:
towards real-time object detection with region proposal
networks IEEE Trans. Pattern Anal. Mach. 39 1137–49

[52] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y and
Berg A C 2016 SSD: single shot multibox detector
Computer Vision–ECCV 2016: 14th European Conf.,
Proceedings Part I (Amsterdam, The Netherlands, 11–14
October 2016), vol 14 (Springer) pp 21–37

[53] Stahl T, Pintea S L and Van Gemert J C 2018 Divide and
count: generic object counting by image divisions IEEE
Trans. Image Process. 28 1035–44

[54] Nathan Mundhenk T, Konjevod G, Sakla W A and Boakye K
2016 A large contextual dataset for classification, detection
and counting of cars with deep learning Computer
Vision–ECCV 2016: 14th European Conf., (Proceedings
Part III) (Amsterdam, The Netherlands, 11–14 October
2016) vol 14 (Springer) pp 785–800

[55] Hsieh M-R, Lin Y-L and Hsu W H 2017 Drone-based object
counting by spatially regularized regional proposal network
Proc. IEEE Int. Conf. on Computer Vision pp 4145–53

[56] Lin T-Y, Goyal P, Girshick R, He K and Dollár P 2017 Focal
loss for dense object detection Proc. IEEE Int. Conf. on
Computer Vision pp 2980–8

[57] Cao X, Wang Z, Zhao Y and Su F 2018 Scale aggregation
network for accurate and efficient crowd counting Proc.
European Conf. on Computer Vision (ECCV) pp 734–50

[58] Gao J, Wang Q and Yuan Y 2019 SCAR: spatial-/channel-wise
attention regression networks for crowd counting
Neurocomputing 363 1–8

[59] Wang Q, Gao J, Lin W and Yuan Y 2021 Pixel-wise crowd
understanding via synthetic data Int. J. Comput. Vis.
129 225–45

[60] Zhu L, Zhao Z, Lu C, Lin Y, Peng Y and Yao T 2019 Dual
path multi-scale fusion networks with attention for crowd
counting (https://doi.org/10.48550/arXiv.1902.01115)

[61] Sindagi V A and Patel V M 2017 Cnn-based cascaded
multi-task learning of high-level prior and density
estimation for crowd counting 2017 14th IEEE Int. Conf. on
Advanced Video and Signal Based Surveillance (AVSS)
(IEEE) pp 1–6

[62] Chen X, Bin Y, Sang N and Gao C 2019 Scale pyramid
network for crowd counting 2019 IEEE Winter Conf. on
Applications of Computer Vision (WACV) (Waikoloa, HI,
USA, 7–11 January 2019) (IEEE) pp 1941–50

[63] Fiaschi L, Köthe U, Nair R and Hamprecht F A 2012 Learning
to count with regression forest and structured labels Proc.
21st Int. Conf. on Pattern Recognition (ICPR2012) (IEEE)
pp 2685–8

[64] Lempitsky V and Zisserman A 2010 Learning to count objects
in images Proc. 23rd Int. Conf. on Neural Information
Processing Systems vol 1 pp 1324–32

[65] Onoro-Rubio D and López-Sastre R J 2016 Towards
perspective-free object counting with deep learning
Computer Vision–ECCV 2016: 14th European Conf.,
(Proceedings Part VII) (Amsterdam, The Netherlands,
October 11–14 2016) vol 14 (Springer) pp 615–29

[66] Zhang S, Wu G, Costeira J P and Moura J M F 2017
Understanding traffic density from large-scale web camera
data Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (Honolulu, HI, USA, 21–26 July 2017)
pp 5898–907

[67] Babu Sam D and Venkatesh Babu R 2018 Top-down feedback
for crowd counting convolutional neural network Proc.
AAAI Conf. on Artificial Intelligence vol 32

[68] Ma X, Du S and Liu Y 2019 A lightweight neural network for
crowd analysis of images with congested scenes 2019 IEEE
Int. Conf. on Image Processing (ICIP) (Taipei, Taiwan,
22–25 September 2019) (IEEE) pp 979–83

[69] Shi X, Li X, Wu C, Kong S, Yang J and He. L 2020 A
real-time deep network for crowd counting ICASSP
2020-2020 IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP) (Barcelona, Spain, 4–8 May 2020)
(IEEE) pp 2328–32

[70] Liu L, Chen J, Wu H, Chen T, Li G and Lin L 2020 Efficient
crowd counting via structured knowledge transfer Proc.
28th ACM Int. Conf. on Multimedia pp 2645–54

[71] Gao J, Wang Q and Li X 2019 Pcc net: perspective crowd
counting via spatial convolutional network IEEE Trans.
Circuits Syst. Video Technol. 30 3486–98

11

https://doi.org/10.48550/arXiv.1412.6980 Focus to learn more
https://doi.org/10.48550/arXiv.1412.6980 Focus to learn more
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1109/CVPR.2019.00524
https://doi.org/10.1609/aaai.v35i3.16360
https://doi.org/10.1109/ICCV.2019.00624
https://doi.org/10.1016/j.neucom.2020.05.056
https://doi.org/10.1016/j.neucom.2020.05.056
https://doi.org/10.1016/j.asoc.2024.111366
https://doi.org/10.1016/j.asoc.2024.111366
https://doi.org/10.1109/CVPR.2018.00550
https://doi.org/10.1088/1742-6596/2024/1/012031
https://doi.org/10.1109/TCYB.2020.3033428
https://doi.org/10.1109/TCYB.2020.3033428
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TIP.2018.2875353
https://doi.org/10.1109/TIP.2018.2875353
https://doi.org/10.48550/arXiv.1609.04453
https://doi.org/10.48550/arXiv.1707.05972
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1007/978-3-030-01228-1_45
https://doi.org/10.1016/j.neucom.2019.08.018
https://doi.org/10.1016/j.neucom.2019.08.018
https://doi.org/10.1007/s11263-020-01365-4
https://doi.org/10.1007/s11263-020-01365-4
https://doi.org/10.48550/arXiv.1902.01115
https://doi.org/10.48550/arXiv.1707.09605
https://doi.org/10.1109/WACV.2019.00211
https://doi.org/10.1007/978-3-319-46478-7_38
https://doi.org/10.1109/CVPR.2017.454
https://doi.org/10.1109/ICIP.2019.8803062
https://doi.org/10.1109/ICASSP40776.2020.9053780
https://doi.org/10.1145/3394171.3413938
https://doi.org/10.1109/TCSVT.2019.2919139
https://doi.org/10.1109/TCSVT.2019.2919139

	Efficient vehicular counting via privacy-aware aggregation network
	1. Introduction
	2. Related work
	2.1. Vehicle counting
	2.2. Federated learning
	2.3. Lightweight network

	3. Methodology
	3.1. Overall framework
	3.2. PFE module
	3.3. Federated learning framework
	3.4. Ground truth (GT) generation
	3.5. Loss function

	4. Experimental results and analysis
	4.1. Datasets
	4.2. Implementation details
	4.3. Evaluation metrics
	4.4. Efficiency evaluation
	4.5. Performance evaluation
	4.5.1. Comparison on vehicle counting.
	4.5.2. Comparison on crowd counting.

	4.6. Ablation study

	5. Conclusion
	References


