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Abstract Crowd counting plays a crucial role in analyzing and understanding crowd behavior.
Existing models generally rely on large parameters to achieve high counting accuracy. This in-
creases computational demands and limits deployment on mobile edge devices. On the other hand,
lightweight networks often face difficulties in managing scale variation and show poor performance
in complex crowd counting tasks because of their simplified design. To tackle these challenges, we
propose a crowd counting model, termed Distillation Hierarchical Mixture of Experts (DHMoE).
It is composed of two primary components. The first is a knowledge distillation training model.
It transfers fine-grained knowledge from the pre-trained teacher model to the lightweight student
model and improves counting accuracy. Second, to solve the problems of scale variation and com-
plex environments, a hierarchical mixture of experts (HMoE) is proposed. The four stages of the
student model are organized into four experts, where each network handles crowd features at a
different scale. This approach effectively addresses scale variation and improves counting accuracy
in diverse environments. Experimental results on four crowd and four vehicle datasets demonstrate
that the proposed DHMoE achieves excellent counting accuracy while maintaining a lightweight
design. The code is available at https://github.com/sdut-jacheng/DHMoE.
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1 Introduction

The task of crowd counting is to derive information about crowd density by quantifying the num-
ber of individuals in an image or video. It is crucial to various domains, e.g., secure, efficient
decision-making and management. As deep learning continues to advance rapidly, numerous high-
performing models [62, 55, 5] for crowd counting have been developed. These models exhibit im-
pressive accuracy and robustness, particularly in complex scenarios. However, they often depend on
a large number of parameters and complex architectures, which demand substantial computational
resources during inference. This significant computational burden presents a major limitation, sig-
nificantly when deploying these models on edge devices or embedded systems with constrained
processing capabilities.

To be specific, most state-of-the-art (SOTA) deep learning-based models often involve millions
or billions of parameters [48]. They require greater depth and complexity to maintain accuracy in
high-density crowd counting. As depicted in Fig. 1, the analysis reveals a fundamental trade-off in
model design: achieving enhanced accuracy often requires an increase in parameters and FLOPs.
Although these methods have achieved high counting accuracy, their substantial parameters and
extensive FLOPs demands present significant challenges for real-time deployment on resource-
constrained devices.
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Fig. 1: Comparison of parameters, FLOPs, and mean absolute error (MAE) among SOTA counting
models. Lower MAE indicates higher accuracy in counting. Higher FLOPs indicate that the model
requires more computational resources. The bubble size in the figure reflects the parameters of each
model, with larger bubbles signifying larger parameters. These SOTA models include: CSRNet [29],
BL [38], SFCN [59], RAQNet [63], ASPDNet [12], CAN [35], SCAR [15], SASNet [18], SRRNet [18]
and ours).

To achieve efficient crowd counting with reduced computational costs, researchers have recently
focused on lightweight CNN models [21, 64, 20]. However, their accuracy often falls short of practi-
cal expectations [54]. Another line approach is to compress high-complexity crowd counting models
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through pruning and quantization, which reduces parameters and computational costs [48]. Never-
theless, this technique successfully decreases computational complexity, it can also cause a loss in
accuracy when parameters are significantly reduced. Thus, the challenge remains in compressing
models efficiently without sacrificing high counting accuracy.

In recent years, knowledge distillation (KD) has emerged as a widely recognized and effec-
tive technique for model compression [16]. It transfers knowledge from a large teacher model to
a smaller student model and ensures that the smaller model maintains both computational effi-
ciency and accuracy [24]. Liu et al. [33] developed a structured framework for knowledge transfer.
It includes two key modules: intra-layer pattern transfer and inter-layer relation transfer. These
components guide the acquisition of the necessary features and help the student model gain cross-
layer knowledge. Although knowledge distillation has proven beneficial for model compression and
maintaining accuracy, it encounters certain limitations in crowd counting tasks under varied con-
ditions. Specifically, a single student model may struggle to achieve optimal counting performance
in complex and high-density crowd situations [16].

In response to the aforementioned challenges, we present a counting method that integrates
knowledge distillation with a Hierarchical mixture of experts (DHMoE). First, knowledge distilla-
tion transfers complex knowledge from a large teacher model to multiple lightweight expert models.
This process allows the expert models to inherit the feature extraction and data processing capa-
bilities from the teacher model. It helps the student models maintain high counting accuracy in
various settings. Overall, the contributions of this work are summarized as follows.

1. We propose a distillation hierarchical mixture of experts (DHMoE) model for crowd counting.
It can reduce parameters and computational costs while preserving high accuracy.

2. We propose the hierarchical mixture of experts (HMoE) combination with knowledge distilla-
tion to minimize the performance difference between the student and teacher models. It im-
proves the generalization of the student model across varied scenarios and effectively addresses
challenges related to scale variation.

3. Experiments on several widely-used crowd and vehicle counting datasets show that the DHMoE
delivers superior performance, which confirms its effectiveness and robustness in various con-
texts.

2 Related work

2.1 Knowledge Distillation

Knowledge distillation (KD) involves extracting knowledge from a large teacher model and trans-
ferring it to a smaller student model [16]. This approach fits well with lightweight networks [24].
By distilling knowledge from various aspects, such as model outputs, feature layers, and atten-
tion mechanisms, the latest distillation techniques have significantly enhanced the performance
of student models. Tian et al. [52] proposed contrastive representation distillation. It aims to
align the representations of the student model with those of the teacher model. KD promotes
the development of lightweight models suitable for deployment on resource-constrained devices,
which provides considerable advantages to computer vision. Jiao et al. [27] created TinyBERT,
which is a streamlined and accelerated version of BERT. It delivers competitive results on sev-
eral NLP benchmarks. KD shows particular effectiveness in the creation of efficient models for
real-time applications within the computer vision domain. Heo et al. [1] thoroughly analyzed
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distillation methods to alleviate the computational burden of deep convolutional neural networks.
Recent developments in knowledge distillation have demonstrated their usefulness in enhancing
model performance and scalability. Thus, they are beneficial for the deployment of models in
resource-constrained domains such as computer vision and NLP. This study applies the knowledge
distillation framework to develop a lightweight neural network model. It seeks to reduce both the
parameters and computational complexity while preserving the performance of the model.

2.2 Mixture of Experts

The mixture of experts (MoE) is a widely studied model architecture in the fields of deep learning
and machine learning [2]. Its primary objective is to combine multiple expert networks to enhance
both model performance and computational efficiency [39]. MoE has been successfully applied to
various tasks and has demonstrated significant advantages in solving complex problems. Wang et
al. [60] proposed the multi-gated mixture of experts architecture. It employs multiple gating
networks that combine different experts with specific weight sets to achieve multi-task learning.
Du et al. [9] developed a hierarchical mixture density expert architecture. It solves multi-scale
problems by finding the optimal solution through the collaboration and competition of experts
operating at various scales. Fedus et al. [10] simplified the routing algorithm using the MoE
framework and developed an improved model that reduces both communication and computation
costs. This approach successfully trained sparse models with up to a trillion parameters. Reisser et
al. [43] proposed a federated mixture of experts, which addresses data heterogeneity by adaptively
selecting and training user-specific ensemble members. The continuous evolution of MoE models
shows their potential to handle intricate tasks across various scales and domains. This highlights
their important role in improving model efficiency and scalability. This study presents an HMoE
framework. It aims to enhance the capacity of the student model in handling multi-scale and
complex environments.

2.3 Lightweight Networks

To simplify the network and improve computational efficiency, lightweight network models have
drawn extensive attention from the research community [54]. Howard et al. [21] developed the
mobilenetv1 by employing depthwise separable convolutions in place of regular convolutions to
reduce the parameters of models. Sandler et al. [46] proposed mobilenetv2, which streamlines the
model from mobilenetv1 by adding residual structures and pointwise convolutions. Zhang et al. [64]
introduced shufflenetv1, which reduces flops with group convolutions and facilitates information
exchange between different groups via channel shuffling. Ma et al. [36] re-optimized the network
structure of shufflenetv1 by introducing four criteria and proposed the shufflenetv2. Furthermore,
Han et al. [20] identified redundancy in feature maps extracted through convolution and developed
the ghost module to mitigate feature redundancy. Inspired by the aforementioned studies, we
propose Distillation Hierarchical Mixture of Experts. It employs knowledge distillation to enhance
the counting accuracy of the student model. Moreover, an HMoE architecture is incorporated
to effectively handle multi-scale and complex scenarios. Therefore, the model achieves greater
efficiency, which allows it to be deployed in resource-constrained environments effectively.
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3 Methodology

3.1 Overall Framework

The DHMoE framework is shown in Fig. 2. It consists of a teacher model, a student model, and
their respective decoders. The teacher model is typically pre-trained and contains large parameters.
Conversely, the student model has fewer parameters and operates under the guidance of the teacher
model. Moreover, the framework incorporates an HMoE structure, which helps the student model
acquire deep knowledge from the teacher model. The decoder reconstructs the predicted density
map to the input size by applying deconvolution layers.
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Fig. 2: The pipeline of the DHMoE for crowd counting. “Alig” refers to a 1× 1 convolution layer
that adjusts the channel dimensions between the student and teacher models at each stage. “Align
Net” uses bilinear interpolation and 1 × 1 convolution to harmonize the feature map dimensions
and channel numbers of the first three experts with those of Expert4 to ensure consistency.

3.2 Knowledge Distillation Framework

To maintain a balance between parameters and counting accuracy, a knowledge distillation frame-
work is proposed with two models: a teacher model with large parameters and a lightweight student
model. Both networks incorporate an encoder for feature extraction and a decoder that adjusts the
density map size to match the ground truth. Fig. 2 illustrates the knowledge distillation framework,
which involves feature-level knowledge transfer. Before knowledge transfer, hierarchical features
must be extracted from both the teacher and student models. Specifically, the input image I is
processed by both the teacher and student models to extract features. At each layer, the teacher
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model extracts features denoted as Ti, while the student model extracts features denoted as Si,
where i indicates the i-th layer.

During the training process of the student model, the teacher model remains in a frozen state to
ensure that the knowledge of the teacher model is not affected by the updates of the parameter of
the student model. To ensure precise guidance is given to the student model at each stage, DHMoE
aligns the corresponding stages of both the teacher and student models. As the channel numbers
differ at each stage, direct feature similarity computation is not feasible. Thus, 1×1 convolution
layers are employed to align the channel dimensions and ensure they match the channels of the
teacher model. Cosine similarity is applied to evaluate the similarity of features. The formula for
this computation is as follows,

S′
i = Conv1× 1(Si), (1)

CS(S′
i, Ti) =

S′
i · Ti

∥S′
i∥∥Ti∥

, (2)

Li = 1− CS(S′
i, Ti), (3)

where CS(·) denotes the Cosine Similarity. ∥S′
i∥ and ∥Ti∥ represent the norms of S′

i and Ti, re-
spectively. Li refers to the loss corresponding to each layer. The final distillation loss is formulated
as,

LKD =

5∑
i=0

Li, (4)

where Li denotes the loss at the i-th layer. Through the reduction of the specified loss function, the
DHMoE significantly enhances knowledge transfer and improves the performance of the student
model.

3.3 Hierarchical Mixture of Experts

Knowledge distillation approaches involve student model learning by emulating the feature distri-
bution of the teacher model. However, simpler student models may struggle to capture the details
in teacher models accurately. The challenge becomes particularly pronounced when performing
crowd recognition in complex scenarios. Additionally, a single student model often generalizes ex-
cessively across various data scales. This over-generalization limits its ability to make accurate
distinctions between sparse and dense regions of a crowd. As a result, the crowd counting accuracy
decreases, especially in areas where crowd density varies significantly.

To address these issues outlined above, an HMoE architecture is integrated into the student
model, as shown in Fig. 3. The last four stages of the student model are assigned to an expert
network. Specifically, the first three expert networks incorporate two OSBottlenecks [66]. The
architecture of the OSBottleneck is shown in Fig. 4. The fourth expert network consists solely of a
1×1 convolution layer. Each expert is responsible for processing distinct feature levels and handles
information extraction at specific scales.

Specifically, given an input image I, the student model processes each stage through its expert
networks and produces feature representations Fi at different levels. Then, a gating mechanism,
which includes a fully connected layer and the Softmax function, generates dynamic weights Wi to
control how the outputs of the expert networks are combined. It allows for the effective integration
of diverse feature representations. Direct multiplication is not possible because of the mismatch in



Title Suppressed Due to Excessive Length 7

Gating 
 Net

Decoder

HMoE

Bilinear interpolation

Density map

Element-wise multiplication The weight of the i-th expert

Experts

Conv

Conv The convolution of

Combination

Fig. 3: The framework of the HMoE model. Features from each expert are subjected to bilinear
interpolation and 1× 1 convolution for channel adjustment. Afterwards, they are combined based
on their assigned weights to form the final feature map.
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Fig. 4: The architecture of the OSBottleneck. AG stands for aggregation gate, LConv represents
lite 3× 3 convolution, and DW refers to depth-wise.

the dimensions and channels of the feature maps among experts. Therefore, bilinear interpolation
and a 1× 1 convolution are used to align the sizes and channel configurations of all feature maps
with those of expert4. This process can be expressed as,

Wi = Softmax(Linear(F4)), (5)

F ′ =

4∑
i=1

Wi × Fi, (6)

where F ′ indicates the final fusion feature output from the HMoE, while Linear(·) denotes the
fully connected layer. F4 represents the global information gathered from the output of the last
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expert network. It is formulated as,

F4 =
1

H ×W

H∑
h=1

W∑
w=1

fh,w, (7)

where H and W correspond to the height and width of the feature map, respectively. fh,w denotes
the eigenvalue at the (h,w) coordinate within the feature map.

Within the HMoE structure, each expert is assigned to process a specific subset of features.
This design prevents the student model from introducing unnecessary complexity in each task.
Additionally, the gating mechanism dynamically allocates computational resources. It ensures the
student model acquires and integrates multi-scale features from the teacher model while maintain-
ing a lightweight design. This approach significantly improves knowledge distillation efficiency and
strengthens the generalization capability of the student model.

3.4 Ground Truth Generation

Ground truth density maps are generated as supervision through the conventional focal inverse
distance transform map method [30]. This method provides a precise representation of crowd
density by accounting for the distance between each pixel and the nearest annotated head. The
density map generation is formulated as,

Fgt =
1

P (x, y)α×P (x,y)+β + C
, (8)

where α and β are empirically set to 0.02 and 0.75, respectively, based on prior studies [17, 61, 7].
The constant C is assigned a value of 1 to avoid division by zero and ensure numerical stability.
P (x, y) represents the Euclidean distance between the pixel at coordinates (x, y) and the nearest
annotated object location (x′, y′).

3.5 Loss Function

The MSE loss function is employed to assess the pixel-level difference between the predicted map
and the ground truth. It is formulated as,

Lgt =
1

K

K∑
i=1

∥F (Ii)−Gi∥22 , (9)

where K stands for the batch size, F (Ii) represents the predicted density map, and Gi denotes the
corresponding ground truth density map.
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4 Experimental results and analysis

4.1 Implementation Details

In the training stage, for the teacher model, we selected OSNet× 1 [66], while the student model uses
OSNet× 0.5. The architecture of these two models are shown in Table 1. For data augmentation,
the samples are randomly cropped to 256× 256 and then flipped horizontally. The batch size and
epochs are 16 and 3,000, respectively. Optimization is performed using the Adam algorithm [28],
with a learning rate set to 1e-3 and a weight decay of 0.0005. All the experiments are conducted
on the same hardware with PyTorch [41] on an RTX 3080Ti GPU.

Table 1: The architecture of the two types of OSNet

Stage Output size
Output channels

OSNet× 0.5 OSNet× 1

Layer1 128×128 32 64
Layer2 32×32 128 256
Layer3 16×16 192 384
Layer4 16×16 256 512
Layer5 16×16 256 512

4.2 Datasets

ShanghaiTech [65] is a commonly utilized dataset for crowd counting research. It comprises 1,198
images with a total of 330,165 annotated head locations. It is divided into two sections: Part A
and Part B. The Part A dataset includes 300 images for training and 182 images for testing. These
images are collected from the internet and typically feature dense crowd distributions. In contrast,
the Part B dataset comprises 400 training images and 316 testing images, all captured directly on
the streets of Shanghai, and predominantly show sparse crowd distributions.

UCF CC 50 [25] is a critical resource for evaluating crowd-counting techniques, which consists
of 50 images with diverse resolutions and a total of 63,075 annotated individuals. The number of
individuals in the images shows significant variation, with counts ranging from 94 to 4,543. This
variation demonstrates the substantial diversity of the dataset.

UCF-QNRF [26] is a challenging dataset that includes a range of scenes, various viewpoints,
different lighting conditions, and variations in density. It consists of 1,535 images, with 1,201 allo-
cated for training and 334 for testing. The dataset is characterized by high-resolution images, with
an average resolution of 2, 013× 2, 902 pixels. It includes authentic outdoor settings from various
global locations, with elements such as structures, vegetation, skies, and roadways. These diverse
characteristics make the dataset a crucial resource for evaluating the robustness and generalization
capabilities of crowd-counting models under varying real-world conditions.

NWPU-Crowd [58] comprises 5,109 images. It includes 2,133,238 annotated entities, with an
average resolution of 2, 191 × 3, 209. This dataset is notable for its inclusion of negative samples,
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which improve the robustness of models during training. It stands out due to its greater variety
in scales, densities, and background complexities compared to other datasets. Furthermore, the
dataset includes negative samples that do not contain crowd scenes, which enhances its diversity.
This feature increases its value for the evaluation of crowd-counting algorithms.

CARPK [22] is sourced from various regions in Hong Kong, such as parking lots and streets,
and contains images of vehicles captured under diverse scenes and lighting conditions. It comprises
1,448 drone-view images, with 989 used for training and 459 for testing.

PUCPR+ [22] includes a wide range of video sequences and images from various driving scenarios
and perspectives. It consists of 125 images with a total of 16,456 annotations, of which 100 images
are used for training and 25 are set aside for testing.

Large-Vehicle [13] is an openly available dataset focused on large vehicle detection, recognition,
and tracking research. It comprises 172 remote sensing images, each with an average resolution of
1,552×1,573 pixels.

Small-Vehicle [13], another dataset for remote sensing vehicle counting, comprises 280 high-
resolution images containing a total of 148,838 small vehicles. It exhibits a more extensive range
of scale variation compared to the large vehicle dataset.

4.3 Evaluation Metrics

To assess the accuracy and robustness of the counting task, the Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) are used as evaluation metrics. They are formulated as,

MAE =
1

N

N∑
i=1

|si − ŝi|, (10)

RMSE =

√√√√ 1

N

N∑
i=1

(si − ŝi)2, (11)

where N denotes the total number of images, si represents the ground truth count, and ŝi corre-
sponds to the predicted count for i−th image.

4.4 Efficiency Evaluation

To assess the efficiency of the proposed DHMoE method, we conducted a comparison with SOTA
methods on four criteria: parameters (Params), floating point operations (FLOPs), inference
time (Time), and frames per second (FPS). All experiments used a unified output resolution
of 576×768 and were performed on an RTX3080Ti GPU. The results are summarized in Table 2.

As shown in Table 2, DHMoE achieves lower parameter and computation overheads than other
methods. It also shows shorter inference times and significantly higher FPS, which demonstrates
its superior performance across all metrics.
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Table 2: Comparison of efficiency across different methods. The best results are marked in bold.

Methods Params (M)↓ FLOPs (G)↓ Time (ms)↓ FPS↑

RAQNet [63] 42.77 250.86 36.24 27.59
SRRNet [18] 66.14 162.09 29.62 33.76
BL [38] 21.50 182.19 15.59 64.14
CSRNet [29] 16.26 182.69 15.08 66.33
ASPDNet [12] 22.70 256.19 35.43 28.22
SCAR [15] 16.29 182.86 16.55 60.41
SFCN [59] 38.60 274.06 40.27 24.83
SASNet [50] 38.90 393.16 45.57 21.94

DHMoE (Ours) 3.68 48.93 5.70 175.31

4.5 Accuracy and Robustness Evaluation

To assess the counting performance of the proposed DHMoE, we compared it with SOTA methods
across four crowd datasets, as summarized in Table 3. Furthermore, to explore the generalization
capability of DHMoE, cross-domain experiments were performed, along with evaluations on four
vehicle datasets. The results of these experiments are presented from Table 4 to Table 7.

Table 3: The results on the crowd datasets. The table categorizes “P(M)” as the parameters. It is
structured into two main sections: heavyweight networks are described in the upper portion, while
lightweight networks are outlined in the lower portion. In the latter section, the best results are
highlighted in bold, and those ranked second are marked with underlines.

Methods
Part A Part B UCF CC 50 UCF QNRF NWPU

P(M)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

H
ea
v
y
w
ei
g
h
t

CSRNet [29] 68.2 115.0 10.6 16.0 266.1 397.5 135.4 207.4 121.3 387.8 16.26
SFCN [59] 64.8 107.5 7.6 13.0 214.2 318.2 102.0 171.4 105.7 424.1 38.60
CAN [35] 62.3 100.0 7.8 12.2 212.2 243.7 107.0 183.0 106.3 386.5 18.10
BL [38] 61.5 103.2 7.5 12.6 229.3 308.2 87.7 158.1 105.4 454.2 21.50
SRRNet [18] 60.8 103.0 7.4 13.6 172.9 256.3 89.5 162.9 - - 66.14
RAQNet [63] 59.0 101.2 9.0 15.4 177.1 247.6 106.5 186.1 - - 42.77
DLPTNet [6] 58.4 95.0 9.3 15.6 - - 121.0 225.8 103.3 421.9 110.90
UEPNet [53] 54.6 91.2 6.4 10.9 165.2 275.9 81.1 131.7 - - 26.12
STNet [56] 52.9 83.6 6.3 10.3 162.0 230.4 87.9 166.4 - - 15.56
PET [32] 49.3 78.8 6.2 9.7 - - 79.5 144.3 74.4 328.5 20.90
APGCC [4] 48.8 76.7 5.6 8.7 154.8 205.5 80.1 136.6 71.7 284.4 18.68

L
ig
h
tw

ei
g
h
t

MCNN [65] 110.2 173.2 26.4 41.3 377.6 509.1 277.0 426.0 232.5 714.6 0.13
TDF-CNN [45] 97.5 145.1 20.7 32.8 354.7 491.4 - - - - 0.13
LCNet [37] 93.3 149.0 15.3 25.2 326.7 430.6 - - - - 0.86
MobileCount [57] 89.4 146.0 9.0 15.4 284.8 392.8 131.1 222.6 - - 3.40
C-CNN [47] 88.1 141.7 14.9 22.1 - - - - - - 0.07
1/4SAN+SKT [33] 78.0 126.6 11.9 19.8 - - 157.5 257.7 - - 0.06
SANet [3] 75.3 122.2 10.5 17.9 258.4 334.9 152.6 547.0 190.6 491.4 0.91
PCCNet [14] 73.5 124.0 11.0 19.0 240.0 315.5 148.7 247.3 - - 0.55
GAPNet [19] 67.1 110.4 9.8 15.2 202.8 246.9 118.5 217.2 174.1 514.7 2.85

DHMoE (Ours) 59.2 96.1 11.0 19.6 112.4 197.8 132.1 253.6 118.0 481.1 3.68
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The results of the experiments conducted on four crowd datasets are summarized in Table 3. The
upper section of the table lists the heavyweight networks, which generally achieve higher accuracy
but require greater computational resources. The lower section contains the lightweight networks,
which have fewer parameters but typically offer lower accuracy compared to the heavyweight
networks.

In Shanghai Part A dataset, DHMoE ranks first MAE and RMSE among lightweight networks,
with values of 59.2 and 96.1, respectively. Compared to GAPNet [19], another lightweight count-
ing method that ranks second, DHMoE decreases the MAE and RMSE by 11.77% and 12.95%,
respectively. In comparison to SRRNet [18], which also tackles the scale variation problem, the
proposed DHMoE reduces the MAE and RMSE by 2.63% and 6.7%, respectively. This verifies the
superior performance of DHMoE in handling scale variation efficiently.

In Shanghai Part B dataset, DHMoE achieves an MAE of 11.0 and an RMSE of 19.6. It is
ranked fourth among lightweight networks. Still, there is a considerable difference when compared
to the heavyweight models, such as CSRNet [29], which also addresses the scale variation problem.
Specifically, DHMoE falls behind CSRNet [29] by 3.77% in MAE and 22.5% in RMSE. However,
DHMoE only uses 22.63% of the parameters required by CSRNet [29], which indicates its efficiency
in reducing computational resources. This demonstrates that DHMoE effectively reduces computa-
tional costs while retaining competitive accuracy, which offers distinct advantages for applications
in settings with limited resources.

In UCF CC 50 dataset, DHMoE leads the lightweight networks with an MAE of 112.4 and
RMSE of 197.8. Even when compared to heavyweight networks, DHMoE demonstrates certain
advantages. For instance, compared to APGCC [4], the top-performing heavyweight network listed
in Table 3, DHMoE reduces MAE and RMSE by 27.39% and 3.75%, respectively, while using only
19.7% of its parameters. It demonstrates the superiority of DHMoE in handling high-density
scenarios and addressing scale variation challenges.

In UCF QNRF dataset, DHMoE ranks third among lightweight networks with an MAE of 132.1
and an RMSE of 253.6. Although DHMoE shows some improvement in lightweight models, it still
lags behind heavyweight models. For example, compared to CSRNet [29], which also addresses
scale variation, DHMoE increases RMSE by 18.22% but reduces MAE by 2.44%. However, the
parameters of DHMoE reduces by 77.37%.

In NWPU dataset, DHMoE reaches an MAE of 118.0 and an RMSE of 481.1, which ranks it
as the top lightweight network. Compared to SANet [3], a lightweight model ranked third that
also tackles scale variation, the performance of MAE and RMSE are improved by 38.09% and
2.1%, respectively. However, compared to heavyweight networks, there are certain limitations. For
instance, when compared to the heavyweight network CAN [35], which also tackles multi-scale
problems, DHMoE increases the MAE and RMSE by 9.92% and 19.66%, respectively. It indicates
that lightweight networks still face challenges in dealing with complex scenarios.

Fig. 5 illustrates the qualitative results of DHMoE across crowd datasets. The first row repre-
sents the input images, the second shows the ground truth density maps, and the third provides
the predicted density maps produced by DHMoE. The results indicate that the predictions from
DHMoE align closely with the ground truth. This demonstrates its ability to model crowd distri-
bution accurately and achieve high counting accuracy.
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Fig. 5: Qualitative results from the crowd datasets. In the figure, “GT” represents Ground Truth,
while “Est” indicates the estimated values.

Table 4: Comparison of various methods on the Large and Small vehicle datasets. The best results
are highlighted in bold.

Method

Large vehicle Small vehicle

MAE RMSE MAE RMSE

SANet [3] 62.8 79.7 497.2 1276.7
CMTL [49] 61.0 78.3 490.5 1321.1
MCNN [65] 36.6 55.6 488.7 1317.4
SPN [8] 36.2 50.6 445.2 1252.9
CAN [35] 34.6 49.6 457.4 1260.4
CSRNet [29] 34.1 46.4 443.8 1252.2
SFCN [59] 33.9 49.7 440.7 1248.3
ASPDNet [12] 31.8 40.1 433.2 1238.6
SFANet [67] 29.0 47.0 435.3 1284.2
SRRNet [18] 18.3 31.2 122.8 419.7

DHMoE (Ours) 11.8 23.8 104.1 417.9

4.6 Generalization Analysis

To further evaluate the generalization ability of DHMoE, we conducted experimental analysis
on four vehicle counting datasets: large vehicle, small vehicle, CARPK, and PUCPR+. Table
4 illustrates the performance comparison between DHMoE and SOTA methods for large and
small vehicle datasets. The analysis demonstrates that DHMoE significantly outperforms the other
methods listed. Specifically, DHMoE achieves the best MAE and RMSE on Large Vehicle dataset,
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with values of 11.8 and 23.8, respectively. Compared to SRRNet [18], the second-best model aimed
at addressing scale variation, DHMoE improves the performance of MAE and RMSE by 35.5%
and 23.7%. The small vehicle dataset primarily contains smaller vehicles. These vehicles often
have smaller contours, lower heights, and shorter body lengths in images, which presents significant
challenges for object counting. Despite the challenges, DHMoE still shows considerable performance
benefits on the small vehicle dataset. DHMoE records an MAE of 104.1 and an RMSE of 417.9,
which are superior to those of the other methods presented.

Table 5: Comparison results of different methods on the CARPK and PUCPR+ datasets. The
best results are shown in bold, while the second-best are marked with underlines.

Method

CARPK PUCPR+

MAE RMSE MAE RMSE

Faster-RCNN [44] 103.5 110.6 156.8 200.6
YOLO [42] 102.9 110.0 156.7 200.5
One-look Regression [40] 59.5 66.8 21.9 36.7
LEP [51] 51.8 - 15.7 -
MCNN [65] 39.1 43.3 21.9 29.5
SSD [34] 37.3 42.3 119.2 132.2
LPN [23] 23.8 36.8 22.8 34.5
RetinaNet [31] 16.6 22.3 24.6 33.1
CSRNet [29] 11.5 13.3 8.7 29.5
SRRNet [18] 8.5 11.0 2.0 2.8

DHMoE (Ours) 5.7 7.8 2.4 3.3

Table 5 presents the experimental results of DHMoE on the CARPK and PUCPR+ datasets.
In the CARPK dataset, DHMoE achieves the top performance with an MAE of 5.7 and an RMSE
of 7.8. Compared to SFANet [67], which ranks third and also addresses the scale variation problem,
DHMoE reduces MAE by 59.31% and RMSE by 49.36%. The results validate that the proposed
DHMoE method effectively mitigates the challenges posed by scale variation and achieves an
improvement in model accuracy.

In the PUCPR+ dataset, DHMoE is only behind SRRNet [18] which also addresses the scale
variation challenge. The MAE and RMSE are decreased by 16.67% and 15.15%, respectively.
However, DHMoE uses only 5.6% of the parameters that SRRNet [18] requires as shown in Ta-
ble 2. When compared to CSRNet [29], the third-ranked model designed to handle scale variation,
DHMoE decreases MAE and RMSE by 72.4% and 88.81%, respectively. Fig. 6 shows the qualita-
tive outcomes of DHMoE on vehicle datasets. The results demonstrate a strong alignment between
the predictions from DHMoE and the ground truth.

4.7 Statistical Analysis

The comparison of the baseline and the proposed DHMoE was conducted using the Part A,
PUCPR+, and Large vehicle datasets. The analysis included confidence interval evaluations of
predicted values and ground truth, complemented by MAE boxplot visualizations. The confidence
intervals are summarized in Table 6, and the boxplot visualizations in MAE are shown in Fig. 7.
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Fig. 6: The qualitative results on vehicle datasets. “GT” represents the Ground Truth, and “Est”
refers to the corresponding estimated values.
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Fig. 7: Boxplots of the statistical results.

Table 6: Confidence Interval Comparison between Baseline and DHMoE

Confidence Interval Part A Large vehicle PUCPR+

Baseline [62.52, 94.51] [11.42, 23.00] [3.58, 7.04]
DHMoE (Ours) [48.98, 72.16] [7.63, 17.80] [1.04, 2.58]

On the Part A and Large vehicle datasets, the confidence interval of the baseline method is
[62.52, 94.51] for Part A and [11.42, 23.00] for the Large vehicle. In comparison, the DHMoE
achieves confidence intervals of [48.98, 72.16] and [7.63, 17.80] on the respective datasets. While
some overlap exists in the confidence intervals of the two methods, DHMoE demonstrates a clear
shift toward lower values and a narrower range. This reflects its superior stability, improved ac-
curacy, and enhanced consistency in performance. Furthermore, the analysis of the boxplots for
the Part A and Large vehicle datasets reveals that the baseline method exhibits a wider error
range and a higher number of outliers. In contrast, the DHMoE demonstrates a more concentrated
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MAE distribution, with a significantly lower median and a marked reduction in outliers. These
observations further validate that the DHMoE outperforms the baseline method in terms of error
control and robustness.

On the PUCPR+ dataset, the confidence interval of the baseline method is [3.58, 7.04], while
that of the DHMoE is [1.04, 2.58]. The complete non-overlap of the two confidence intervals indi-
cates that the performance improvement of the proposed DHMoE on this dataset is statistically
significant. Furthermore, the narrower confidence interval of the DHMoE demonstrates higher
consistency and stability across multiple experiments. The boxplot analysis further highlights the
significant differences in MAE distribution between the two methods. The baseline method ex-
hibits greater variability and several high-value outliers. In contrast, the DHMoE shows a more
concentrated MAE distribution within lower values, which underscores its superior accuracy and
robustness. Based on confidence interval analysis and boxplot visualizations, the proposed DHMoE
demonstrates significant advantages in both statistical significance and practical performance.

4.8 Cross-domain Analysis

Table 7: The experimental results of the cross-dataset evaluations are displayed; the best results
are marked in bold and the secondary best results are marked in underline.

Methods
Part A→QNRF CARPK→ PUCPR+ PUCPR+→CARPK

MAE RMSE MAE RMSE MAE RMSE

ASPDNet [12] 217.96 377.84 135.21 168.16 92.76 100.15
SASNet [50] 205.53 347.43 121.83 151.60 47.00 52.45
PSCGNet [11] 204.63 371.44 90.75 112.305 33.34 48.85
SRRNet [18] 167.47 285.27 115.89 144.08 48.10 57.30

DHMoE (Ours) 164.59 314.61 84.33 103.09 35.49 40.54

To assess the cross-domain capabilities of the proposed DHMoE, a cross-dataset evaluation
was conducted, as shown in Table 7. Initially, the model was trained on the ShanghaiTech Part A
dataset and subsequently tested on the UCF-QNRF dataset. Next, the training was conducted
on the CARPK dataset with subsequent evaluations on the PUCPR+ dataset. The process was
reversed by training on the PUCPR+ dataset and testing on CARPK. For a thorough evaluation
of DHMoE, it was benchmarked against popular methodologies including ASPDNet [12], SAS-
Net [50], PSCGNet [11], and SRRNet [18]. As evident from Table 7, DHMoE achieves outstanding
performance in terms of MAE and RMSE, which substantiates the exceptional generalization abil-
ity of the proposed approach.

4.9 Ablation Study

To assess the efficacy of the DHMoE, ablation studies were conducted on the Shanghai Part A and
CARPK datasets, with the results detailed in Table 8. On the Shanghai Part A dataset, the student
model achieved an MAE of 77.13 and an RMSE of 130.81. Compared to the teacher model, these
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Table 8: Ablation Analysis on the ShanghaiTech Part A and CARPK Datasets. The best results
are marked in bold.

Methods Params (M) FLOPs (G)

Part A CARPK

MAE RMSE MAE RMSE

Teacher 4.61 7.70 60.24 99.74 6.78 9.37
Student 1.19 2.22 77.13 130.81 7.04 9.57
Student + HMOE 1.27 2.27 69.73 112.70 6.75 9.71
Student + KD 3.62 7.24 70.32 116.41 6.07 8.42

DHMoE (Ours) 3.68 7.25 59.20 96.10 5.7 7.8

represent improvements of 28.04% in MAE and 31.15% in RMSE, while only requiring 25.81% of
the teacher model’s parameters.

The proposed DHMoE, despite having 20.17% fewer parameters compared to the teacher
model, demonstrates improved performance. Specifically, on the Shanghai Part A dataset, DHMoE
achieves enhancements of 1.73% in MAE and 3.65% in RMSE. On the CARPK dataset, these im-
provements are even more pronounced, with increases of 15.93% in MAE and 16.76% in RMSE.
Compared to the student model, DHMoE significantly enhances performance on the Shanghai
Part A dataset, with MAE and RMSE improvements of 23.25% and 26.53%, respectively. On
the CARPK dataset, the increases are 19.03% for MAE and 18.5% for RMSE. Although this re-
quired an additional 2.49M parameters, it resulted in significant performance enhancements for
the student model. Furthermore, each component of DHMoE was independently verified through
experiments, which confirmed that every element contributes to the performance of the student
model positively.

The ablation studies confirm that the DHMoE delivers superior performance on both datasets.
This proves that the proposed DHMoE effectively enhances the performance of the student model
while maintaining a lightweight framework.

5 Conclusion

In this paper, we proposed DHMoE to address the limitations of lightweight networks in handling
multi-scale variations and complex crowd counting tasks. DHMoE employs knowledge distillation
to convey fine-grained knowledge from the teacher model to the student model. Additionally, the
student model incorporates an HMoE structure, with four expert networks being integrated. Each
expert network is designed to address the challenges posed by scale variations. In addition, it
allows the student model to acquire the capability from the teacher model to manage complex
scenarios, which enhances its performance and counting precision in diverse and complex settings.
Experimental results prove that DHMoE demonstrates competitive counting performance across
four different crowd datasets and four vehicle datasets, and it is lightweight model that is potential
for application on mobile edge devices.
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