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A B S T R A C T

With the rapid advancement of deep learning, the performance of crowd counting has improved
significantly. Nonetheless, existing crowd counting models primarily depend on a broad dataset
gathered from a variety of individuals for model training. However, this diverse dataset
comes at the cost of compromising people’s privacy. Hence, the need to address privacy
concerns when counting crowds in dense scenes is becoming increasingly apparent. To tackle
this issue, we propose a novel framework called the Decentralized Learning with Parallel
Transformer network (DLPTNet). Based on the federated learning mechanism, the DLPTNet
adopts a decentralized learning framework that implements parameter sharing instead of data
sharing. The DLPTNet consists of two pivotal modules, namely Halo Attention (HA) module and
the Density-aware Transformer (DAT) module. The HA module has a large perception radius,
which enhances its ability to perceive the context around the objects and extract more extensive
information from local regions to address the occlusion issue in dense scenes. Meanwhile, the
DAT module leverages the parallel mechanism of Density-aware Attention (DDA) to further
capture long-range dependencies between different positions and thus gains learning of the
correlations and density distributions of various regions within dense crowds globally.

. Introduction

In recent years, privacy-aware crowd counting has emerged as a crucial task with far-reaching implications ranging from urban
lanning to public safety [1,2]. Despite remarkable advancements in performance over the past decade driven by the evolution
f deep learning, existing models predominantly depend on extensive datasets gathered from numerous individuals across various
cenarios and locations. Unfortunately, this approach often neglects the privacy concerns of individuals and fails to consider that
ata in certain environments cannot be shared. Federated Learning, as a decentralized approach, has gained attention for training
odels across distributed data sources while ensuring data privacy [3,4]. Combining federated learning with crowd counting not

nly enhances the accuracy and efficiency of crowd counting tasks but also reinforces considerations regarding data privacy and
ecurity.

Crowd counting methods can be classified into three categories, detection-based methods [5–7], regression-based methods [8–
0], and CNN-based methods [11–13]. Detection-based [5–7] methods involve detecting each individual and then accumulating to
btain the total count. However, there is room for improvement when it comes to handling occlusion issues within dense crowds. To
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Fig. 1. Examples of congestion scenes in dense crowds. The first row is the input image, and the second row corresponds to the ground truth and the number
of people.

better address the aforementioned issues, some regression-based approaches [8–10] have been proposed. These approaches directly
learn the mapping from image patches to the number of people. However, these methods often overlook spatial information and
focus excessively on low-level details, and thus fail to generate high-quality crowd density maps. With the rapid advancements in
deep learning, convolutional neural networks (CNNs) have become the primary network architecture for density estimation and
crowd counting [14,15].

Although the aforementioned methods have made significant advancements, they still encounter challenges. From Fig. 1, it is
evident that the crowd is densely packed, with objects in proximity and instances of occlusion or overlap. Furthermore, there is a
significant variation in scene density, and thus poses a challenge for the design of crowd counting algorithms. Such scenarios typically
occur in congested urban areas, public events, transportation hubs, and other locations where large crowds gather, which present
unique challenges for the advancement of crowd counting. Furthermore, crowd counting tasks may sometimes require collaboration
with other organizations or individuals, such as government departments, research institutions, or businesses. In such cases, ensuring
data privacy becomes another challenge for crowd counting tasks.

To overcome the challenges posed by occlusion in dense scenes and data privacy in crowd counting, we propose a decentralized
learning framework built upon the foundation of parallel Transformer, termed Decentralized Learning with Parallel Transformer
network (DLPTNet). By adopting the federated learning mechanism, we achieved parameter sharing instead of data sharing, and thus
protect privacy data. Specifically, to address the occlusion issue in dense scenes, we integrate the halo attention (HA) module. The HA
module enhances the ability to perceive the context around the targets and thus enables it to extract extensive information from the
local region in crowded scenes. Furthermore, to capture long-range dependencies between different regions and leverage the parallel
computing mechanism of the multi-head self-attention in the Transformer, we proposed the density-aware Transformer (DAT)
module. This enables the model to gain a learning of the correlations and density distributions among various regions within dense
crowds globally. The combination of the HA and DAT modules effectively enhances the performance of crowd counting tasks. To
sum up, the contributions of this paper are as follows.

1. A decentralized learning framework rooted in parallel Transformer is proposed to overcome the obstacles posed by occlusion
in dense crowd scenes and data privacy.

2. An HA module is introduced to enhance contextual awareness and extract local information from occluded regions.
Meanwhile, a DAT module that leverages the parallel computing mechanism of the Transformer is built to further capture
long-distance dependencies between different regions, and thus enable the model to gain a learning of the correlation and
density distribution among various areas within dense crowd scenes globally.

3. We substantiate the effectiveness of the proposed model through a comprehensive set of experiments, and showcase its
accuracy and robustness in privacy-aware crowd counting.

The remaining sections of the paper are structured as follows. Section 2 presents an overview of research efforts closely related to
the content of this paper. Detailed insights into the proposed method are shown in Section 3. Experimental analyses and discussion
are presented in Section 4. The conclusion is drawn in Section 5.

2. Related work

2.1. Transformer models in crowd counting

The Transformer models [16,17] gain much traction in crowd counting. The self-attention mechanism introduced by the
Transformer captures global relationships within the entire crowd, which improves the accuracy of crowd counting. Liang et al. [18]
pioneered to leverage the self-attention mechanism of the Transformer to extract semantic crowd information. In their work, the
2
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multi-head attention mechanism of the Transformer empowers the model to attend to features of different regions simultaneously,
which enhances its capacity to effectively capture the distribution of crowd density. Liu et al. [19] introduced an innovative method
that employs a multiscale token Transformer for count-guided fusion and a multiscale deformable Transformer decoder for modal-
guided enhancement. This approach facilitates effective interaction and enhancement between modalities and crowd information.
Tran et al. [20] introduced an approach that leverages the attention mechanism of vision Transformers to integrate local features
and spatial information, which contributes to a considerable decrease in crowd counting errors.

2.2. Federated learning in crowd counting

Federated learning can be regarded as a form of distributed machine learning, and it offers the capability to train models on
ultiple local data sources while preserving data privacy. McMahan et al. [21] introduced a federated learning strategy to reduce

ommunication overhead during decentralized deep network training with distributed data without centralizing data. This minimizes
ata transmission, improves model convergence efficiency, and is particularly suitable for scenarios prioritizing data privacy and
ommunication bandwidth. Senthilkumar et al. [22] employed a federated learning-based approach with the federated averaging
lgorithm to decentralize training, expedite the process, and ensure data privacy. This approach strives to minimize training time
hile safeguarding data privacy and enhancing crowd counting accuracy. Pang et al. [23] utilized a horizontal federated learning

ramework to train crowd counting models while ensuring privacy preservation. The method empowers the smart surveillance system
o leverage model aggregation for learning without the need to access sensitive data on local devices. As a result, it circumvents the
ecessity of transmitting video data, which results in reduced communication costs and safeguards against potential leaks of raw
ata. Tan et al. [24] utilized federated learning algorithms to achieve distributed model training while enabling model aggregation
ithout sharing raw data. This approach effectively addresses privacy and data sharing concerns in indoor unmanned aerial vehicle

rowd investigation. Jiang et al. [25] applied federated learning algorithms to address the issues of data reliability and privacy
rotection in mobile crowd sensing. In this approach, users of mobile devices can participate in model training while only sharing
he updated parameters of the model. This enhances the performance and generalization capability of the model.

.3. Attention mechanisms in crowd counting

Attention mechanisms excel in capturing local features for crowd counting, which enables effective individual localization within
crowd. Zhai et al. [13] proposed a dual attention-aware network that emphasizes spatial dependencies across the feature map

or accurate head localization and manages channel relations to highlight discriminative information. This approach enhances
rowd counting by addressing spatial and channel-related challenges. Guo et al. [26] introduced a triple attention and scale-aware
etwork to mitigate background clutter, which employs three-dimensional attention operations on the input tensor to capture
nteraction dependencies across dimensions and distinguish object regions. Zhai et al. [27] presented an innovative attentive
ierarchy network, which incorporates a re-calibrated attention module at different levels to mitigate background interferences,
nd a feature enhancement module to identify head regions at different scales. Guo et al. [28] introduced the dense attention fusion
etwork, which incorporates an iterative attention fusion module, primarily utilizing the multiscale channel attention unit to mitigate
ackground clutter’s impact. Zhai et al. [29] introduced a feature pyramid attention network, which incorporates an attention
odule that focuses on the crowd region and mitigates the influence of misleading information. This enhancement improves the

ccuracy of localizing dense areas in input data without relying on prior knowledge. Traditional mechanisms exhibit limitations by
otentially confining their focus to local regions, which can make it challenging to capture the overall relationships within a crowd.

. Methodology

.1. Overview

The architecture of the proposed DLPTNet is illustrated in Fig. 2. It consists of four components, i.e., feature extractor, HA
module, DAT module, and decoder. First, the feature extractor adopts VGG-19 to extract intricate feature representations from input
images, which encompass spatial and semantic information pertaining to crowd distribution. The HA module captures extensive local
information around the objects and enhances counting performance in dense scenes. The DAT module consists of two cascaded
encoders, which incorporate density-aware attention (DAA) and feedforward unit (FFU). The position embedding generator (PEG)
is only present in the backend of the first encoder. The purpose is to capture long-range dependencies between different positions
and globally gain learning of the correlations and density distributions in various regions within dense crowds. The final decoder
is employed to upsample the enhanced feature map and predict the density map.

3.2. Decentralized learning framework

To address concerns related to data privacy and security, we propose a decentralized learning framework aimed at facilitating
collaborative model training, as illustrated in Fig. 3. It enables the merging of model parameters from different locations or devices
without sharing raw data, which leads to more accurate and better-performing predictions. Specifically, each local device retains
its local data and conducts model training on-site. Each local device only shares the updated parameters of its model, which avoids
3

the sharing of raw data. This approach effectively safeguards data privacy and reduces data transmission and communication costs.



Internet of Things 26 (2024) 101167J. Chen et al.
Fig. 2. The architecture of the DLPTNet for crowd counting. The FFU consists of two convolutional layers performing linear transformations and a non-linear
activation function. This constitutes a perception layer within the Transformer, which is designed to learn relationships among different input features. The green
dashed box indicates that the DAT module consists of two encoders, while the black dashed box indicates that PEG exists only in the first encoder. The decoder
consists of four deconvolution layers, which are employed for upsampling to restore the original resolution size and regress to generate a density map.

Fig. 3. The framework of the proposed decentralized learning. Local update refers to downloading the weight parameters of the global model from the central
server to update the weight parameters of the local model. The weight parameters of the global model are aggregated from the weight parameters of all local
models by the central server.

The objective of central aggregation is to aggregate the weight parameters from multiple local models using a weighted approach.
We calculate the reciprocal of the metrics received from each local model to determine the proportional weight of that model in
the global model. It is formulated as,

𝑊𝑔 =
𝑛
∑

𝑖=1
𝑊𝑖 ×

1
𝑒𝑖

× 1
∑𝑛

𝑖=1
1
𝑒𝑖

, (1)

where 𝑊𝑔 indicates the weight of the global model, 𝑊𝑖 represents the weights of each local model, and 𝑒𝑖 corresponds to the metrics
of each individual local model. Decentralized learning refers to the independent training of the same model on each local client
with its local dataset. The sharing of weight parameters among different clients occurs only during weight updates or information
aggregation of the global model. If all local clients use the same test set, the weight of the best-performing local model is set to 1
during aggregation, while the weights of the other local models are set to 0. Thus, the global model is equivalent to selecting the
best-performing local model. In essence, our decentralized learning framework offers a novel solution for crowd counting tasks by
striking a balance between data privacy and performance enhancement.

3.3. Halo attention module

Halo attention [30] introduces overlapping local windows to enhance interactions between these windows. It assists the model
in capturing local relationships within occluded regions of the input feature maps and thus improves the counting performance.
By allowing for overlap between windows, HA can comprehensively consider dependencies between different local regions, which
enhances the model’s perception of local information. Therefore, halo attention proves to be an effective self-attention mechanism
that enhances the counting performance in crowd counting tasks, especially in dense scenes. The primary workflow of the HA module
is depicted in Fig. 4. First, the input feature map 𝐹 is subjected to a patch-wise operation, which divides it into 𝐻 × 𝑊 patches,
followed by a linear transformation to generate a query matrix 𝑄. The haloing operation involves adding a border of zero values
around the feature map and then performing sliding window operations. In other words, a sliding window operation is applied to
the input feature map using a 3 × 3 convolutional kernel, and thus generates the key matrix 𝐾 and value matrix 𝑉 . This operation
increases the perception radius, which enhances its ability to perceive the local region and extract more extensive information. 𝐾
and 𝑉 use a 3 × 3 window, which focuses on local occluded regions. For 𝑄, dividing the input feature map into 1 × 1 windows helps
to learn relationships between different occluded areas, not just limited to the current occluded region. To enhance the parallel
computing capability of the model, a multi-head attention mechanism is employed. Next, the correlations between different local
patches are computed using the query matrix 𝑄 and key matrix 𝐾. Before assigning weights to different local patches, relative
4
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Fig. 4. The framework of HA module. The notation [𝐵,𝐶,𝐻,𝑊 ] represents the batch size, number of channels, height, and width of the input feature map
, respectively. (1, 1) and (3, 3) indicate the size of the sliding window, which corresponds to the dimensions of each image patch. The number 8 signifies that

here are eight attention heads. For instance, [(𝐵,𝐻,𝑊 , 8), (3, 3), 𝐶∕8] indicates the presence of 𝐵 ×𝐻 ×𝑊 × 8 image patches, each with a size of 3 × 3, and a
hannel dimension (i.e., the length of feature vectors) of 𝐶∕8.

Fig. 5. The framework of DAA module. The notion [𝐵,𝐶,𝐻,𝑊 ] respectively represents the batch size, number of channels, height, and width of the input
eature map 𝐹 . 𝐶𝑜𝑛𝑣1 − 256 indicates a convolutional layer with a 1 × 1 kernel and an output channel size of 256. Its role is to partition the input feature
ap into blocks, each of size 1 × 1. The number 8 signifies the presence of 8 attention heads. For instance, the form of the query matrix 𝑄 is denoted as

[𝐵, 8,𝐻 ∗ 𝑊 ,𝐶∕8], which means there are 𝐵 × 8 ×𝐻 ×𝑊 image patches (i.e., the number of feature vectors), each of size 1 × 1, and each image patch has 𝐶∕8
hannels (i.e., the length of feature vectors).

ositional embedding (RPE) is introduced to learn the density levels in different regions and thus enables more accurate weight
alculations. Finally, the value matrix 𝑉 , which has been assigned weights, is merged and reorganized to restore the original input
hape for further processing. This process assists the model in capturing spatial relationships and local information when dealing
ith crowded areas, ultimately improving counting performance.

.4. Density-aware transformer module

The DAT module is introduced as an extension of the HA module, with the goal of further addressing occlusion in dense scenes.
nlike the HA module, which primarily enhances local object perception, the DAT module not only focuses on local regions but also
aptures features from the global context. The DAT module is built to learn the correlations and density distribution in different
egions of dense crowds by leveraging the self-attention mechanism of the Transformer. To introduce positional information between
ifferent features, we introduce a PEG between two cascaded encoders. By performing a 3 × 3 convolution operation on the feature

maps, we can obtain positional features. It is worth noting that deep separable convolution is utilized in the PEG, where convolution
operations are applied separately to each channel. This approach aids the model in gaining an understanding of the interrelationships
and local details among different positions. In each encoder, the residual connection mechanism is employed to ensure that the
original feature information is not lost. The second encoder, built upon the first encoder, further enhances its ability to perceive
dense crowds by capturing a broader context of information. The ‘‘add & norm’’ operation indicates residual connections and layer
normalization in the DAT module, and thus helps improve the model’s training stability and feature representation capacity. The
FFU performs a non-linear mapping in the channel dimension using a 1 × 1 convolutional layer and thus enhances the feature
representation capability. The purpose is to capture the complex relationships within the input feature map.

To capture long-range dependencies among different regions in dense crowds and aid the model in globally learning the
correlations and density distribution between different areas, we propose density-aware attention, as shown in Fig. 5. For the input
feature map, we employ 1 × 1 convolution operations to generate corresponding query, key, and value matrices. Simultaneously, we
reduce the number of channels to half, which means halving the length of feature vectors for each local patch. This helps reduce the
computational burden on the model, and thus enhances computational efficiency. Furthermore, we utilize a multi-head attention
5
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Table 1
Information of the datasets adopted for comparison.

Dataset # Images Train Val Test Average resolution Min Max Avg Total

ShanghaiTech Part A [32] 482 300 – 182 589 * 868 33 3,139 501 241,677
ShanghaiTech Part B [32] 716 400 – 316 768 * 1024 9 578 123 88,488
UCF-QNRF [33] 1,535 1,201 – 334 2013 * 2902 49 12,865 815 1,251,642
JHU++ [34] 4,372 2,272 500 1,600 910 * 1430 0 25,791 346 1,515,005
NWPU-Crowd [35] 5,109 3,190 500 1,500 2191 * 3209 0 20,033 418 2,133,375
CARPK [36] 1,448 989 – 459 720 * 1280 1 188 62 89,777
PUCPR+ [36] 125 100 – 25 720 * 1280 0 331 135 16,456

mechanism with 8 attention heads to further boost the model’s capability to model the correlations and density distribution between
ifferent positions accurately. This aids in capturing features and relationships within dense crowd scenarios more precisely. Next,
e introduce weights for the value matrix 𝑉 to highlight the correlations and density distribution in different areas. The formula is
s follows,

𝑂 = 𝑊 (𝐹 )𝑉 (𝐹 ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄(𝐹 )𝐾(𝐹 )𝑇

√

𝑑𝑘
)𝑉 (𝐹 ), (2)

where 𝑄(𝐹 ), 𝐾(𝐹 ), and 𝑉 (𝐹 ) represent the distributions of their respective query, key, and value matrices. 𝑑𝑘 denotes the dimension
of each attention head, which is 32. Finally, dimension rearrangement is applied to the obtained 𝑂(𝐹 ) to restore the original input’s
dimension for subsequent operations.

3.5. Ground truth generation

We employ the Focal Inverse Distance Transform (FIDT) map [31] to generate the ground truth. Compared with ground truth
generated through the Gaussian kernel, FIDT ensures no overlap among nearby heads even in extremely dense crowds. It provides
an accurate representation of crowd density and includes precise head annotations. The formula is as follows,

𝐼 = 1
𝑃 (𝑥, 𝑦)𝛼×𝑃 (𝑥,𝑦)+𝛽 + 𝐶

, (3)

here 𝐼 represents the FIDT map, with 𝛼 and 𝛽 set as 0.02 and 0.75, respectively. 𝐶 is a non-zero constant used to prevent division
y zero, and it is set to 1. 𝑃 (𝑥, 𝑦) denotes the distance between any pixel (𝑥, 𝑦) and the nearest annotated head position (𝑥′, 𝑦′). It is
ormulated as,

𝑃 (𝑥, 𝑦) = min
(𝑥′ ,𝑦′)∈𝐷

√

(𝑥 − 𝑥′)2 − (𝑦 − 𝑦′)2, (4)

where 𝐷 indicates the set of all head annotations (𝑥′, 𝑦′).

3.6. Loss function

The widely used Mean Squared Error (MSE) loss function is adopted to minimize the difference between predicted values and
ground truth. Let 𝑌𝑗 denote the ground truth crowd count and 𝑌𝑗 represent the predicted crowd count for the 𝑖th image. The MSE
loss 𝐿𝑀𝑆𝐸 for the 𝑗th image can be formulated as,

𝐿𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑗=1
‖𝑌𝑗 − 𝑌𝑗‖

2
2, (5)

where 𝑁 is the total number of crowd counts in an image and 𝑗 iterates through each individual count. The optimization process
seeks to minimize the 𝐿𝑀𝑆𝐸 loss across all training images, and thus quantify the disparity between predicted and actual crowd
counts and aid the model’s convergence to accuracy.

4. Experiments

4.1. Datasets

Seven datasets are applied to evaluate the performance of the proposed DLPTNet. The essential information of these datasets
is shown in Table 1. ShanghaiTech Part A [32] consists of images collected from the internet, while ShanghaiTech Part B [32] is
composed of images gathered from the downtown area of Shanghai. UCF-QNRF [33] features a large-scale crowd with diverse scenes,
multiple perspectives, and variations in lighting. JHU++ [34] includes numerous images featuring weather-based degradations and
illumination variations. NWPU-Crowd [35] is a large-scale crowd counting dataset obtained from the internet. CARPK [36] comprises
drone-view images from four different parking lots. PUCPR+ [36] is a versatile vehicle counting dataset that includes various weather
conditions.
6



Internet of Things 26 (2024) 101167J. Chen et al.

a
t

r

4

m
p
W
A
2
t
w
i
a
S
g
d
o

Table 2
Comparison results on the ShanghaiTech dataset. The best results are highlighted in bold.
Method Part A Part B

MAE RMSE MAE RMSE

MCNN [32] 110.2 173.2 26.4 41.3
CMTL [37] 101.3 152.4 20.0 31.1
NLT [38] 93.8 157.2 11.8 19.2
Switch-CNN [39] 90.4 135.0 21.1 30.1
C-CNN [40] 88.1 141.7 14.9 22.1
A-CCNN [41] 85.4 124.6 19.2 31.5
SaCNN [42] 83.8 139.2 16.2 25.8
MATT [43] 80.1 129.4 11.7 17.5
AMCNN [44] 76.1 110.7 15.3 27.4
PCCNet [45] 73.5 124.0 19.2 31.5
DNCL [46] 73.5 112.3 18.7 26.0
IG-CNN [47] 72.5 118.2 13.6 21.1
ACM-CNN [48] 72.2 103.5 17.5 22.7
CSRNet [49] 68.2 115.0 10.6 16.0
SCAR [50] 66.3 114.1 9.5 15.2
DENet [51] 65.5 101.2 9.6 15.4

DLPTNet (ours) 58.4 95.0 9.3 15.6

4.2. Implementation details

In this study, all experiments are carried out within the PyTorch framework. The training and testing procedures are executed on
n NVIDIA RTX3080Ti GPU. To optimize the weight parameters of the trained model, we employ the Adam optimizer, initializing
he learning rate to 1e−4 and applying a weight decay of 5e−4. Due to the high resolution of images, we perform random cropping

of the training set images into 256 × 256 dimensions and apply random horizontal flips for data augmentation to conserve memory
during training. The batch size for training is set to 16, and a total of 3000 training iterations are conducted. For testing, a batch
size of 1 is used. Both training and testing in the experiments are conducted on a single client. In ablation experiments, considering
scenarios with 𝑛 different local clients, the random selection of 1∕𝑛 of the training set by each client for training leads to a reduction
in the training data. To prevent overfitting, we apply 𝑐𝑜𝑙𝑜𝑟𝐽 𝑖𝑡𝑡𝑒𝑟 for image augmentation every 𝑛 epoch.

4.3. Evaluation protocols

We employ the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) as evaluation metrics [12,13]. The value of MAE
is computed by the average absolute difference between predicted values and corresponding ground truths across all test samples,

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑦𝑖 − �̂�𝑖|| , (6)

The value of RMSE is calculated as the square root of the average squared difference between predicted values and ground truths

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖|

2, (7)

where 𝑁 represents the number of test images, and 𝑦𝑖 and �̂�𝑖 denote the predicted and ground truth values for the 𝑖th image,
espectively.

.4. Experiments on ShanghaiTech dataset

Table 2 presents a comparative evaluation of the DFPT against state-of-the-art (SOTA) methods. On Part A [32], the proposed
ethod achieves impressive scores of 58.4 for MAE and 95.0 for RMSE. Compared with DENet [51], which employs a multi-scale
yramid structure, the proposed method achieves a 10.9% reduction in MAE and 6.1% decrease in RMSE on the Part A dataset.
hen compared with the attention-based SCAR [50], it reports 12.0% decrease in MAE and 16.7% reduction in RMSE on the Part
dataset. Regarding Part B [32], the DLPTNet still ranks first in terms of MSE when compared with SCAR and DENet. It achieves

.1% reduction in MAE compared with SCAR and 3.1% reduction compared with DENet. While the score of RMSE is slightly inferior
o SCAR and DENet, it only increases by 2.6% and 1.3%, respectively. Nevertheless, it maintains a strong performance compared
ith other methods, which secures the third position in the rankings. The reason for the higher RMSE on the Part B dataset is that

n some samples, the distribution of the crowd is relatively sparse, with large gaps between individuals. This makes it challenging to
ccurately estimate the positions of each person within these samples and thus leads to a larger RMSE. Subjective comparisons on the
hanghaiTech dataset are depicted in Figs. 6 and 7. The first row displays the input images, the second row shows the corresponding
round truth, and the bottom row exhibits the respective prediction density map. It can be observed that the predicted density
istribution approximates the ground truth, especially in images with significant congestion, where the density map exhibits a sense
7
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Fig. 6. Subjective results of ShanghaiTech Part A.

Fig. 7. Subjective results of ShanghaiTech Part B.

4.5. Experiments on UCF-QNRF dataset

The objective comparison results on the UCF-QNRF [33] are reported in Table 3. Compared with PCCNet [45], which addresses
crowd counting from different viewpoints, the proposed method exhibits an MAE reduction of 18.6% and an RMSE reduction of
8.7%. When compared with SCAR [50], although the RMSE is slightly higher, the MAE is reduced by 6.2%, which ranks us in the
first position. The predicted density maps generated can be seen in Fig. 8. It can be observed that the locations of high-density areas
in the density map are consistent with the actual densely crowded areas.

4.6. Experiments on JHU++ dataset

The objective comparison results on the JHU++ [34] dataset are shown in Table 4. On the JHU++ dataset, although DLPTNet
exhibits a slightly higher RMSE compared to CSRNet [49], with an increase of 10%, it still maintains a certain advantage by reducing
8
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Fig. 8. Subjective results of UCF-QNRF dataset.

Table 3
Comparison results on the UCF-QNRF dataset.
The best results are highlighted in bold.
Method MAE RMSE

Zhang et al. [52] 467.0 498.5
Idress et al. [53] 315.0 508.0
MCNN [32] 277.0 509.1
SCAR [50] 264.8 418.3
CMTL [37] 252.0 514.0
Switch-CNN [39] 228.0 445.0
NLT [38] 172.3 263.1
PCCNet [45] 148.7 247.3
CSRNet [49] 129.0 209.0

DLPTNet (ours) 121.0 225.8

Table 4
Comparison results on the JHU++ dataset. The
best results are highlighted in bold.
Method MAE RMSE

MCNN [32] 188.9 483.4
A-CCNN [41] 171.2 453.1
LSC-CNN [54] 112.7 454.4
SANet [55] 91.1 320.4
CSRNet [49] 85.9 309.2

DLPTNet (ours) 77.7 340.1

MSE by 9.5%. Fig. 9 illustrates a comparison of subjective results on the JHU++ dataset. It is evident from the predicted density
maps that they accurately portray the spatial distribution of the crowd, which allows for easy recognition of areas with differing
levels of crowd density.

4.7. Experiments on NWPU-crowd dataset

Table 5 presents the objective comparison results on the NWPU-Crowd [35] datasets. One can see that the proposed DLPTNet
exhibits a 2.0% reduction in MAE and an impressive 7.1% decrease in RMSE compared with BL [63] trained with point supervision.
While DLPTNet ranks second in terms of RMSE compared to GSANet [59], it outperforms by achieving an 11% reduction in MSE,
which secures the top ranking. The subjective results are shown in Fig. 10. It can be observed that our predicted density maps
vividly depict the spatial distribution of the crowd, which effectively highlights areas with varying levels of congestion.
9



Internet of Things 26 (2024) 101167J. Chen et al.
Fig. 9. Subjective results of JHU++ dataset.

Table 5
Comparison results on the NWPU-Crowd dataset.
The best results are highlighted in bold.
Method MAE RMSE

MCNN [32] 232.5 714.6
SANet [55] 190.6 491.4
A-CCNN [41] 176.5 520.6
RAZNet [56] 152.8 907.3
ADMG [57] 152.8 907.3
STANet [58] 122.6 468.3
GSANet [59] 116.1 415.3
PCCNet [45] 112.3 457.0
SUA [60] 111.7 443.2
SCAR [50] 110.0 495.3
TopoCount [61] 107.8 438.5
SFCN [62] 105.7 424.1
BL [63] 105.4 454.2

DLPTNet (ours) 103.3 421.9

4.8. Experiments on CARPK and PUCPR+ datasets

The objective comparison results on the CARPK [36] and PUCPR+ [36] datasets are presented in Table 6. On the CARPK
dataset, compared with TSANet [26], DLPTNet achieves a remarkable 31.0% reduction in MAE and a substantial 35.3% decrease
in RMSE. Although there is a mere 0.1% increase in RMSE on the PUCPR+ dataset, it attains the top rank by reducing MSE by
11.4%. Furthermore, when compared with PSGCNet [64], DLPTNet showcases a substantial 9.2% decrease in RMSE. The subjective
comparison results on the CARPK and PUCPR+ datasets are shown in Figs. 11 and 12. It can be observed that DLPTNet excels not
only on crowd datasets but also demonstrates outstanding performance on vehicle datasets. This indicates that DLPTNet has a broad
range of potential applications and thus extends beyond crowd counting tasks, to areas such as vehicle counting. Furthermore, it
can be observed that on the PUCPR+ dataset, DLPTNet is capable of detecting vehicles that are partially submerged at the edges
of the image background. Therefore, DLPTNet demonstrates effectiveness in addressing challenges in crowded environments and
offers some relief from background interference.

Occlusion noise and background noise are the most prominent types of noise that significantly impact performance. Occlusion
noise typically refers to interference caused by partial occlusion of individuals due to high crowd density. Background noise
encompasses visual elements in the image other than the crowd, which may introduce errors. Specifically, occlusion noise may
involve partial obstruction or concealment of certain areas within the crowd, while background noise may include non-crowd
elements in the image, such as trees, buildings, etc. From Figs. 6 to 12, it can be noted that the proposed DLPTNet excels in
suppressing occlusion noise and mitigates the impact of background noise to some extent. This indicates that the DLPTNet exhibits
strong accuracy in handling occlusion and background interference.
10



Internet of Things 26 (2024) 101167J. Chen et al.

4

A
a
p

•

•

•

•

Fig. 10. Subjective results of NWPU-Crowd dataset.

Table 6
Comparison results on the CARPK and PUCPR+ datasets. The best results are highlighted in bold.
Methods CARPK PUCPR+

MAE RMSE MAE RMSE

YOLO [65] 102.89 110.02 156.72 200.54
FRCN [66] 74.40 82.30 109.20 144.50
LEP [67] 51.83 – 15.17 –
LPN [36] 23.80 36.79 22.76 34.46
SSD [68] 28.20 23.30 32.90 42.10
RetinaNet [69] 16.62 22.30 24.58 33.12
One-Look Regression [70] 59.46 66.84 21.88 36.73
MCNN [32] 39.10 43.30 21.86 29.53
SCRDet [71] 11.10 25.40 9.10 13.50
FCOS [72] 10.70 13.60 16.00 23.80
CSRNet [49] 11.48 13.32 8.65 10.24
BL [63] 9.58 11.38 6.54 8.13
PSGCNet [64] 8.15 10.46 5.24 7.36
TASNet [26] 7.16 10.23 5.16 6.67

DLPTNet (ours) 4.94 6.62 4.52 6.68

.9. Ablation studies

blation study on the pivotal components To validate the effectiveness of the HA and DAT modules in DLPTNet, we conduct
blation experiments on the ShanghaiTech Part A dataset. The ablation experiments on the HA module and DAT module are
resented in Table 7. The components are illustrated as follows,

‘‘Baseline’’ represents the configuration without the inclusion of HA and DAT modules, which consist solely of the front-end VGG19
and the back-end decoder. It can be observed that the performance is not the best, with an MAE of 63.8 and an RMSE of 105.8.
‘‘Baseline+HA’’ refers to adding only the HA module to the baseline model. There is a reduction of 4.8% in MAE and a decrease of
4.9% in RMSE, which indicates a performance improvement. This proves that the HA module can indeed address occlusion issues
in crowded scenes by extracting more feature information from locally occluded regions.
‘‘Baseline+DAT’’ indicates adding only the DAT module to the baseline model, which leads to a decrease in MSE by 2.1% but
an increase in RMSE. Compared with the HA module, the DAT module extracts less information from occluded regions in some
samples and thus leads to a rise in RMSE.
‘‘Baseline+DAT+HA’’ means that the DAT module is placed before the HA module, which leads to a 3.9% decrease in MAE but
the worst RMSE performance. This indicates that the order of DAT and HA modules affects model performance.
11



Internet of Things 26 (2024) 101167J. Chen et al.
Fig. 11. Subjective results of CARPK dataset.

Fig. 12. Subjective results of PUCPR+ dataset.

• ‘‘Baseline+HA+DAT’’, i.e., the proposed DLPTNet, performs the best, with an 8.5% decrease in MAE and a 9.3% decrease in RMSE.
This demonstrates that the DAT module further mitigates the impact of occlusion on counting performance in crowded scenes,
built upon the HA module.

Ablation study on the number of local clients To assess the impact of varying the number of clients on model performance, we
conduct ablation experiments on the ShanghaiTech Part A dataset. The objective comparison results of the counting performance
based on the number of local clients are shown in Table 8.

To investigate the impact of the number of local clients on counting performance, we employ a strategy of evenly distributing the
training dataset. The rationale behind this approach is to analyze the trade-off between the decentralized nature of the framework
and the resulting counting performance. Specifically, when there are 𝑛 local clients, we divided the original training dataset into 𝑛
equal parts, with each local client receiving a subset representing 1∕𝑛 of the total training data. Meanwhile, the validation and test
sets remain the same across all experiments. It is observed that as the number of clients increased, the performance gradually
12
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Table 7
The impact of pivotal modules in DLPTNet
on counting performance based on the Shang-
haiTech Part A dataset. The best results are
highlighted in bold.
Methods MAE RMSE

Baseline 63.8 105.8
Baseline+HA 60.8 100.6
Baseline+DAT 62.4 110.8
Baseline+DAT+HA 61.3 117.7
Baseline+HA+DAT 58.4 96.0

Table 8
Objective comparison results of counting perfor-
mance based on the number of local clients on
the ShanghaiTech Part A dataset. The best results
are highlighted in bold.
Methods MAE RMSE

Baseline 63.8 105.8
DLPTNet (n = 1) 58.4 96.0
DLPTNet (n = 2) 63.1 104.0
DLPTNet (n = 3) 68.2 117.5

decreased. The reason for this decline is the even distribution of training data among the clients, which leads to a reduction
in the number of training samples and an increased risk of overfitting. However, we find that when two clients participated in
training together, compared with the baseline model, MAE and RMSE decreased by 1.0% and 1.7%, respectively. This indicates the
effectiveness of the proposed DLPTNet.

5. Conclusion

To address the problems of occlusion in dense scenes and data privacy in crowd counting, we propose a privacy-aware crowd
ounting method termed DLPTNet in this paper. The DLPTNet adeptly balances counting accuracy and privacy concerns in crowd
ounting. It consists of two pivotal modules, the HA module and the DAT module. The HA module has a large perceptual range,
nd thus enhances its ability to perceive obscured areas around targets and extracts more extensive information from local regions
o address occlusion issues in dense scenes. Additionally, we propose the DAT module, which builds upon the HA module to further
ddress the occlusion issue in dense scenes. It leverages the Transformer to capture long-range dependencies between different
egions and thus allows the model to gain a learning of the correlations and density distribution across various areas within the
ense crowd at the global level. Experimental results demonstrate that by harnessing the capabilities of parallel Transformers and
ecentralized learning, the proposed DLPTNet achieves remarkable performance while safeguarding data privacy.
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