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a b s t r a c t 

Medical image fusion realizes the complementary advantages of information between dif- 

ferent modality medical images to obtain more comprehensive and precise image results. 

In order to better preserve valid structural information and detail textures of source im- 

ages, we propose a novel medical image fusion method in this paper. Firstly, we adopt a 

Rolling Guidance Filter to separate source medical images into structural component and 

detail component. The Laplacian Pyramid based fusion rule is used to merge the structural 

component. For the detail component, a sum-modified-laplacian (SML) based method is 

employed. At last, the result is acquired by integrating the fused structural and detail com- 

ponents. Experimental results demonstrate that the method is superior to conventional 

medical image fusion methods. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Medical images of different modality have their own advantages and limitations. For example, computed tomography

(CT) is excellent to the combination imaging of bones, and blood vessels, while almost powerless to soft tissue. Magnetic

resonance imaging (MRI) is the reverse, which sensitivity to soft tissue higher than CT whereas it is barely visible for bone

tissue. Therefore, an appropriate integration for medical images of different modality becomes an urgent need in clinicians

diagnose and treating diseases [1] . Generally, there are two techniques can be used to integrate different modality medical

images. One technique is to upgrade hardware devices. This way is straightforward but complex and expensive. Another

low-cost technique is image processing. That is a convenient way to obtain an integrated image. In recent years, numerous

research efforts were made to ameliorate the medical image. Image fusion is an effective technique to amend human eye

visibility, which can integrate the complementary advantages of information between different modality medical images.

The existing image fusion methods can be roughly classified into spatial domain and transform domain based methods. 

Spatial domain based methods extract interesting information directly to fuse images without decomposition and re-

construction. The classical spatial domain based methods include the weighted average fusion method [2] , IHS color space

transform fusion method [3] , neural network-based fusion method [4] , etc. This kind of methods has the advantages of low

computational complexity, good real-time performance and high signal-to-noise ratio of fused images. However, it may lead

to edge blur, lower contrast, and sharpness declined [5] . 
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Generally, transform domain based method is more widely used, which applying transform tools decomposes an image

into a transform base and coefficients. Afterwards, various fusion strategies are applied to merge coefficients to obtain the

fused results. In 1983, Burt and Adelson [6] proposed the Laplace pyramid (LP) algorithm, which opened the prelude of

multi-scale transform fusion methods. Toet [7] propose a contrast pyramid transform method. This method can retain more

details than the Laplacian pyramid algorithm. In recent decades, many improved versions of transform domain based meth-

ods have been proposed. A wavelet transform based methods is proposed in [8] . Discrete wavelet transform (DWT) [9] is

an improved version of the wavelet transform method. In [10] propose a dual-tree complex W T (DTCW T) for improving

the issue of detail lost. Non-subsampled contourlet transform (NSCT) [11] solves the troubles of direction restriction and

translation invariance in wavelet transform (W T) and DW T. On the basis of the LP algorithm, Du jiao et al. [12] applied

the multi-character Laplace pyramid in the medical image fusion method and proved its feasibility. The composite images

obtained by these methods have rich information and fast fusion speed. Thence, there are still many scholars at home and

abroad to study the medical image fusion algorithm based on pyramid decomposition. 

To make better use of image geometry information for improving the quality of fused images, multi-scale decomposi-

tion theory comes into being. The Ridgelet transform and Curvelet transform, are representative multi-scale decomposition

methods, are proposed in [13,14] , respectively. Non-linear edge-preserving filtering has been introduced to construct multi-

scale representations of image fusion of late years. [15] presents a fast and effective method for image fusion with guided

filtering (GF). Gan et al. [16] applied weighted least squares filtering (WLS) to image fusion, which can obtain a better re-

sult than the previous multi-scale based method. However, this method is hard to expedite the fusion procedure. Wei Jiang

et al. in [17] perform the WLS and LP-SR based method for image fusion. This method improves fusion speed and fusion

quality. In 2014, Qi Zhang et al. [18] propose a novel edge-preserving filtering, that is Rolling Guidance Filtering (RGF). It

can achieve fast convergence in view of its rolling guidance based on iterative implementation. In [19,20] , L et al. and Jian

et al. use RGF to implement multi-modality image fusion, respectively. The results evince that RGF can which can effectively

eliminate artifacts and is superior to other edge-preserving filters in some extent. 

Sparse Representation (SR) was derived from compressed sensing [21–23] . In recent years, SR has attracted much atten-

tion with its excellent adaptability and flexibility, and many application examples can be found in different fields [24,25] .

Yang and Li in [26] adopt SR to image fusion firstly, as a transform domain method. In [27] , Li et al. utilize the guided filter-

ing and dictionary learning to achieve image fusion. In [28] , Zhu et al. propose an image fusion method based on dictionary

learning with KSVD, which can effectively represent the details of an image. Targeted flexible models, computational speed,

adaptive, and high-performance representations are key issues for sparse representation methods to leverage their strengths

in the application domain. 

In this paper, we present a medical image fusion method based on Rolling Guidance Filtering. The method can not only

remain clear edge information but also maintain the energy of the source image. First, we decompose the source images

to the structural component and the detail component by utilizing the Rolling Guidance Filter. The RGF can preserve the

edge information automatically to achieve large-scale structure optimization. Second, diverse strategies are come up to deal

with the structural and detail components. For structural component, an LP-SR based fusion rule is employed to retain the

structural and spectral information. For the detail component, we utilize the Sum-Modified-Laplacian (SML) for preserving

the energy of source images. Finally, the fused result is synthesized with the processed structural and detail components. 

The contributions of this paper can be described briefly as following: 

1.) The method utilizes the Rolling Guidance Filter to decompose source image into the structural component and the detail

component. The RGF can ensure the accuracy of large-area object boundaries as well as remove and smooth complex

small areas in an image. 

.) LP-based fusion rule is exploited to merge the structural component for preserving structural and spectral information.

Fusion is performed separately on each spatial frequency layer. Therefore, different fusion operators can be used for

highlighting features and details on specific frequency bands for features and details on different frequency bands of

different decom position layers. 

.) For the detail component, we utilize the Sum-Modified-Laplacian for remaining the energy of source image. SML can

reflect the edge feature information and have excellent power of clarity discrimination of an image in some extent. 

In the subsequent sections, we carry out a detailed introduction of the proposed method. We briefly review the RGF, LP,

and SML in section 2 . The detailed step of the method is exhibited in section 3 . Experimental results and analysis are shown

in section 4 ; The last section summarizes the paper. 

2. Related work 

2.1. Rolling Guidance Filtering 

Zhang et al. [18] present a Rolling Guidance Filtering algorithm, is an edge-preserving smoothing filtering. The RGF im-

plements rolling guidance based on an iterative manner, which has the characteristics of rapid convergence. Unlike other

edge-preserving filtering, RGF can completely control the detail smoothing under the scale measure. RGF consists of two

main procedures: small structure removal, edge recovery. 
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For the first procedure, we apply gaussian filtering to determine structure scale. We suppose that I and G indicate input

and output images, respectively. x and y denote coordinates for an image. ς d indicates standard deviation. The filter can be

expressed as 

G (x ) = 

1 

K x 

∑ 

y ∈ N(x ) 
e 
(− ‖ x −y ‖ 2 

2 ς 2 
d 

) · I(y ) , (1)

K x = 

∑ 

y ∈ N(x ) 
e 
(− ‖ x −y ‖ 2 

2 ς 2 
d 

) 
, 

N ( x ) expresses the set of neighboring pixels of x . 

For the edge recovery, we update an image J iteratively. Suppose J t+1 is represented as a result of the t -th iteration.

Initially, J 1 represents the output value G ( x ) in Eq. 1 . σ s and σ r denote the spatial weight and range weight, separately.

When the value of previous iteration J t and the input I are given, the J t+1 can be calculated as 

J t+1 (x ) = 

1 

K x 

∑ 

y ∈ N(x ) 
e 
(− ‖ x −y ‖ 2 

2 σ2 
s 

− ‖ J t (x ) −J t (y ) ‖ 2 
2 σ2 

r 
) · I(y ) , (2)

K x = 

∑ 

y ∈ N(x ) 
e 
(− ‖ x −y ‖ 2 

2 σ2 
s 

− ‖ J t (x ) −J t (y ) ‖ 2 
2 σ2 

r 
) 
. 

In the framework of RGF, J t is set as a constant C ( i.e ., ∀ x , J t (x ) = C), then we can simplify Eq. 2 to 

J t+1 (x ) = 

1 

K x 

∑ 

y ∈ N(x ) 
e 
(− ‖ x −y ‖ 2 

2 σ2 
s 

) · I(y ) . (3)

Therefore, starting rolling guidance from J 0 can combine the two steps into one as ∀ x , J 0 (x ) = C. 

2.2. Laplacian pyramid 

To describe the lost detail information of high-frequency by convolution and down-sampling operations in the process of

Gaussian pyramid (GP), people define the Laplace pyramid (LP). 

A series of difference images, as LP decomposition images, is obtained by subtracting the predicted image by each layer

of GP after the operation of up-sampling and gaussian convolution for the previous layer. We set the low-resolution images

as upper layers and high-resolution images as lower layers. The definition of the i -th Laplace pyramid as 

L i = G i − U( G i +1 ) � g, (4)

where G i is the i -th image. U ( · ) represents up-sampling which mapping the ( x, y ) in an image to the target image (2 x +
1 , 2 y + 1) . � indicates convolution. g is the Gaussian kernel, the size is 5 × 5. 

2.3. Sum-Modified-Laplacian 

Sum-Modified-Laplacian (SML) [29,30] can reflect the edge feature information as well as describe the sharpness of an

image to some extent. Given an image I , the SML is described as 

SML (x, y ) = 

∑ M 

m = −M 

∑ N 

n = −N 
[ ML (x + m, y + n )] 

2 
, (5)

ML (x, y ) = | 2 · I(x, y ) − I(x − s, y ) − I(x + s, y ) | + | 2 · I(x, y ) − I(x, y − s ) − I(x, y + s ) | , 
M and N determine the window size, that (2 M + 1) × (2 N + 1) . s is the variable spacing. ( x, y ) is the spatial coordinate of

image I . 

3. The proposed method 

We show the synopsis of proposed framework in Fig. 1 . The method involves four main steps: image decomposition,

structural component fusion, detail component fusion, and image reconstruction. We obtain structural component and de-

tail component of source images by utilizing the Rolling Guidance Filtering in the first procedure. There are two different

fusion strategies to deal with the structural and detail components, respectively. The fused structural and detail components

reconstruct the final result in the step of image reconstruction. 
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Fig. 1. Synopsis of proposed framework. 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Image decomposition 

Applying multi-scale decomposition methods, we can obtain image features at diverse scales. However, the conventional

multi-scale decomposition methods adopt linear decomposition mostly, which may cause many artifacts at composite image.

Therefore, it is preferred to apply nonlinear multi-scale decomposition in many image processing applications, such as edge-

preserving filtering. In this portion, we use edge-preserving filtering, i.e . Rolling Guidance Filtering, which can effectively

eliminate artifacts, to obtain the best structural components and detail component separated from source image I . 

For a source image I , the structural component I s can be obtained by Eq. 6 . N 

iter is the number of iterations. 

I S = RGF (I, δs , δr , N 

iter ) . (6) 

The residuals images of two progressively smooth images, that detail component, can be calculated by Eq. 7 

I D = I − I S . (7) 

Fig. 2 shows the procedure of decomposition phase with Rolling Guidance Filtering. 

3.2. Structural component fusion 

For preserving the geometric structure information of source images, the structural component is decomposed into a low-

frequency (LF) layer and a sequence of high-frequency (HF) layers via the Laplacian pyramid. We apply different strategies to

better preserve effective information in both LF and HF layers. We describe the LF layer by using sparse coefficients with a

pre-trained dictionary. Then, we adopt max-L1 rule to decide the optimal sparse coefficients. And the sequence of HF layers

can be merged according to max-absolute rule [31] . Fig. 3 shows the structural component fusion framework. The detailed

procedures of the phase are as follows: 

i) The structural components S A , S B are dismantled into LF layer ( low A , low B ) and a sequence of HF layers { high i 
A 
, high i 

B 
} L 

i =1 
.

L is the numbers of layers. 

ii) The LF layer adopts sliding window technique to divide low A , low B into image patches from top left to bottom right. The

patch size set 
√ 

n × √ 

n and a step length set s pixel. Suppose { p i 
A 
} N 

i =1 
, { p i 

B 
} N 

i =1 
denote the image patches in low A and

low . N is the number of image patches. 
B 
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Fig. 2. Flow chart of image decomposition with RGF. The iteration results are got in the third times. 

Fig. 3. The diagram of the structural component fusion framework. 

i  

 

i

 

ii) Rearrange { p i 
A 
, p i 

B 
} N 

i =1 
into column vectors { v i 

A 
, v i 

B 
} . { ̄v i 

A 
} , { ̄v i 

B 
} represents the average values of all the elements in v i 

A 
and

v i 
B 
, respectiverly. { ̃ v i 

A 
} , { ̃ v i 

B 
} can be obtained by {

˜ v i 
A 

= v i 
A 

− v̄ i 
A 

· { 1 } 
˜ v i B = v i B − v̄ i B · { 1 } , (8)

{1} is an all-one valued n × 1 vector. 

v) Calculate the sparse coefficient vector (αi 
A 
, αi 

B 
) via applying the orthogonal matching pursuit (OMP) algorithm [32] as { 

αi 
A 

= arg min 

α
‖ 

α‖ 0 s.t. 
∥∥˜ v i 

A 
− Dα

∥∥
2 

< ε 

αi 
B = arg min 

α
‖ 

α‖ 0 s.t. 
∥∥˜ v i B − Dα

∥∥
2 

< ε 
, (9)
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where D is pre-trained dictionary. 

v) The fused sparse vector can be obtained by using the Max − L 1 rule: 

αi 
F = 

{
αi 

A 
i f 

∥∥αi 
A 

∥∥
1 

> 

∥∥αi 
B 

∥∥
1 

αi 
B i f 

∥∥αi 
A 

∥∥
1 

≤
∥∥αi 

B 

∥∥
1 

. (10) 

The final result can be calculated as 

v i F = Dαi 
F + ̄v i F · { 1 } , (11) 

where v̄ i 
F 

is v̄ i 
F 

= 

{
v i 

A 
i f αi 

F 
= αi 

A 

v i 
B 

i f αi 
F 

= αi 
B 

. 

i) Repeat above processes to get all the fused vectors { v i 
F 
} N 

i =1 
. The fused patch { p i 

F 
} N 

i =1 
can be obtained by reshaping v i 

F 

with size of 
√ 

n × √ 

n . Let L F represents the fused result of LF layer, and plug p i 
F 

into its original position in L F . 

ii) The HF layers { high i 
A 
, high i 

B 
} L 

i =1 
are fused by applying ”max-absolute” rule. Then, a small majority filter is used to imple- 

ment the consistency verification. 

ii) At last, the fused structural component S F can be reconstructed via inverse Laplacian pyramid. 

For one thing, LP can remain the best spectral information and SR has the strengths of adaptive and high-performance

representations. For another thing, applying the max-absolute rule to the HF layer preserves the information of the HF layer

and increases the speed of calculation. 

3.3. Detail component fusion 

Sum-modified-Laplacian is especially well-suited to measure the focus of detail image [29] . In this part, we use SML to

estimate the energy of the detail component. SML is defined in section 2.3 . In this work, we set M, N is 2. We regard P as

the energy of image detailed components. P can be defined as P = 

∑ 

x,y 
‖ SML (x, y ) ‖ 1 . ‖ · ‖ 1 represents the L 1 norm. The rule

of detail component fusion can be given by Eq. 12 

D F = 

∑ 

i =1 , 2 ,...,k 

P i 
P 1 + P 2 + · · · + P k 

D i , (12) 

where D i represents detail component of i − th source image. D F represents the fused detail component. n is the number of

source images. 

3.4. Image reconstruction 

The final result I F is derived via fused structural component and detailed component as follow as: 

I F = S F + D F . (13) 

4. Experiments and analyses 

In this section, we verify the performance of our method by comparing with other methods. Firstly, our experimental

setup is given in section 4.1 . Then, we analyze the performance evaluation of experiment results in detail in section 4.2 . 

4.1. Experimental setup 

We prepare diverse image pairs for experiments as shown in Fig. 4 . The size of test images is 256 × 256. The test image

pairs are from http://www.med.harvard.edu/AANLIB/home.html . These parameters setting of the experiment are shown in

Table 1 . Furthermore, we consider six methods for comparing with our method, i.e ., WT [8] , CVT [32] , NSCT [33] , LP [6] , GFF

[15] , SR [26] . 

We introduce three mainstream metrics of objective evaluation to quantitatively evaluate the performance of diverse

methods [34] . These metrics include mutual information (MI), edge retention ( Q 

F 
AB 

), and standard deviation (SD). 

MI indicates the information quantifies transferred to the resultant image from the source image. It is estimated by 

M I F X,Y = M I(X, F ) + MI(Y, F ) , (14) 

MI(X, Y ) = 

∑ 

x,y 

p X,Y (x, y ) log 2 
p X,Y (x, y ) 

p X (x ) p Y (y ) 
, (15) 

where MI ( X, Y ) expresses the mutual information between input images X and Y. p X ( x ) and p Y ( y ) represent the edge proba-

bility distributions function of X and Y. p X,Y ( x, y ) represents the joint probability distribution function between X and Y . 

http://www.med.harvard.edu/AANLIB/home.html
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Fig. 4. The diverse image pairs for experiments. a (1) - d (1) are the MRI images. a (2) - d (2) are the CT images, correspondingly. 

Fig. 5. The fusion images of image 1 by diverse fusion methods. a (1) is MRI image. a (2) is the CT image. (i)-(vii) are the fusion results of the WT, CVT, 

NSCT, LP, GFF, SR, and the proposed method, separately. 

 

Q 

F 
AB 

is utilized to measure the marginal intensity of fused image contrasted with a source image. Q 

F 
AB 

is defined as 

Q 

F 
AB = 

∑ 

x,y 
( Q 

AF (x, y ) w 

A (x, y ) + Q 

BF (x, y ) w 

B (x, y )) ∑ 

x,y 
( w 

A (x, y ) + w 

B (x, y )) 
, (16)

Q 

XY (x, y ) = Q 

XY 
g (x, y ) + Q 

XY 
α (x, y ) , 
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Fig. 6. The magnified version of the red region marked of Fig 5 , correspondingly. 

Table 1 

the parameters setting of experiments 

Dictionary 

learning 

atoms = 256 

error tolerance = 0.1 

iteration times = 32 

RGF 

filtering 

level = 1 

spatial sigma = 3.0 

range sigma = 0.1 

iteration times = 3 

Laplacian 

pyramid 

level = 5 

size = 8 

overlap = 1 

Sum-modified-Laplacian size = 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where Q 

XY 
g (x, y ) denotes edge intensity at input image ( x, y ). Q 

XY 
α (x, y ) denotes direction similarity at input images ( x, y ).

w 

∗( x, y ) the weight of Q 

XY ( x, y ). 

SD can measure the discrete degree of an image. μ is the average value of an image. It is given by 

SD = 

√ 

1 

M × N 

∑ M−1 

x =0 

∑ N−1 

y =0 
[ F (x, y ) − μ] 

2 
. (17) 

4.2. Subjective and objective evaluation 

For subjective comparison, Figs. 5–12 show the subjective effect of fusion results by different methods. The experiment

concludes all of these methods can effectively fuse source images. The brightness and contrast of the composite images

can be improved by the WT method. However, It is easy to lost information in the fusion process by WT. The CVT, NSCT,

LP, and GFF methods can well preserve the information while the brightness and sharpness are undesirable. SR and the

proposed method are superior to other methods in information retention. In Fig. 5 (i, vi), WT and SR methods produce much

redundant information in fused images, such as block effect and artifacts. Fig. 5 (ii-iv), the composite images of CVT, NSCT,

and LP methods lost some information, such as the left upper at (ii), the left lower at (iii, iv). From Fig. 8 , as we can see that

our method can better integrate information from MRI and CT images than other methods at some extent. The composite

image of WT method has excessive brightness and less information in Fig. 9 . The result of SR is chaos and undesirable. The

sharpness and brightness of the results by CVT, NSCT, LP, GFF, and SR are unsatisfactory in Fig. 11 . 

Compared with other methods, the proposed method distinctly reaches a more comfortable brightness and overall con-

trast. This method can maintain the useful structural information and detail textures of source images but also suppress

noise and artifacts at the procedure of fusion. 

For the objective evaluation, we exhibit the results of the three metrics in Table 2 , 3 , Table 4 . The higher values of MI,

Q 

F 
AB 

, and SD mean the better fusion effects of images are. As shown in Table 2 , the value of the proposed method is mostly

the best. For image 1, the value of SR is the best, but the subjective result is shown in Fig. 5 has low contrast. And the SR

method produce many block effect in the fusion process. Q 

F 
AB 

is an indicator for evaluating edge retention. We can elicit the
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Fig. 7. The fusion images of image 2 by diverse fusion methods. b (1) is MRI image. b (2) is the CT image. (i)-(vii) are the fusion results of the WT, CVT, 

NSCT, LP, GFF, SR, and the proposed method, separately. 

Fig. 8. The magnified version of the red region marked of Fig 7 , correspondingly. 

Table 2 

Quantitative validation with mutual information (MI) of results. 

source images WT CVT NSCT LP GFF SR Proposed 

MI image 1 2.332 1.956 2.242 2.501 3.459 4.943 3.685 

image 2 3.205 4.042 3.428 3.463 3.649 4.655 4.773 

image 3 3.078 3.197 3.149 3.188 3.108 3.806 3.842 

image 4 3.060 3.878 3.228 3.485 3.458 3.746 4.697 
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Fig. 9. The fusion images of image 3 by diverse fusion methods. c (1) is MRI image. c (2) is the CT image. (i)-(vii) are the fusion results of the WT, CVT, 

NSCT, LP, GFF, SR, and the proposed method, separately. 

Fig. 10. The magnified version of the red region marked of Fig 9 , correspondingly. 

Table 3 

Quantitative validation with edge retention ( Q F AB ) of results. 

source images WT CVT NSCT LP GFF SR Proposed 

Q F AB image 1 0.599 0.575 0.705 0.738 0.775 0.739 0.767 

image 2 0.525 0.544 0.612 0.619 0.619 0.603 0.637 

image 3 0.534 0.589 0.636 0.650 0.656 0.550 0.664 

image 4 0.445 0.536 0.560 0.580 0.589 0.489 0.610 
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Fig. 11. The fusion images of image 4 by diverse fusion methods. d (1) is MRI image. d (2) is the CT image. (i)-(vii) are the fusion results of the WT, CVT, 

NSCT, LP, GFF, SR, and the proposed method, separately. 

Fig. 12. The magnified version of the red region marked of Fig 11 , correspondingly. 

Table 4 

Quantitative validation with standard deviation (SD) of results. 

source images WT CVT NSCT LP GFF SR Proposed 

SD image 1 40.479 55.210 46.535 55.233 54.366 55.633 61.605 

image 2 51.065 68.589 54.796 57.058 57.953 65.886 69.287 

image 3 67.663 87.463 68.806 72.481 67.854 73.803 101.685 

image 4 52.503 74.574 56.202 62.521 58.441 60.853 76.135 
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conclusion that our furnish method can effectually fuse valid edge feature from source images. The SD metric denotes the

effect of teh overall contrast of an image. From Table 4 , the proposed method has the best manifestation of all test image

images. As a consequence, the proposed method is excellent for ameliorating the overall contrast. 

From the subjective aspect, the proposed method improves the brightness and sharpness of result images, and it is more

suited to human visual performance. From the objective aspect, we present method is also significantly more competitive

than conventional fusion methods. 

5. Conclusion 

In this paper, we propose a novel medical image fusion method based on Rolling Guidance Filtering. The method decom-

poses source images into structural and detail components based on multi-scale decomposition theory. For structural com-

ponent, the LP-SR based rule is utilized for preserving structure and spectral information. For detail component, a fusion rule

of SML is implemented. The scheme based on multi-scale decomposition can effectively extract the interesting information

from the source images, whereas the rolling guidance filtering can eliminate artifacts. The proposed fusion scheme achieves

the best high-frequency information by take the advantages of multi-scale decomposition and sum-modified-laplacian. In 

comparison experiments, the average processing time of WT, CVT, NSCT, LP, GFF, SR, and our proposed method are 0.1314 s,

1.6997 s, 2.8379 s, 0.0075 s, 0.5597 s, 14.9052 s, and 0.4304 s, respectively. Therefore our proposed method has the advan-

tage in processing time to acertain extent. In view of the above mentioned, the proposed method is more competitive than

traditional method. 
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