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ARTICLE INFO ABSTRACT
Keywords: Existing counting models predominantly operate on a specific category of objects, such as crowds and
Object counting vehicles. The recent emergence of multi-modal foundational models, e.g., Contrastive Language-Image Pre-

Cross-modality
Deep Spatial Prior
Grounding DINO
Zero-shot

training (CLIP), has facilitated class-agnostic counting. This involves counting objects of any given class from
a single image based on textual instructions. However, CLIP-based class-agnostic counting models face two
primary challenges. Firstly, the CLIP model lacks sensitivity to location information. It generally considers
global content rather than the fine-grain location of objects. Therefore, adapting the CLIP model directly is
suboptimal. Secondly, these models generally freeze pre-trained vision and language encoders, while neglecting
the potential misalignment in the constructed hypothesis space. In this paper, we address these two issues in
a unified framework termed Deep Spatial Prior Interaction (DSPI) network. The DSPI leverages the spatial-
awareness ability of large-scale pre-trained object grounding models, ie., Grounding DINO, to incorporate
spatial location as an additional prior for a specific query class. This enables the network to be more
specifically focused on the precise location of the objects. Additionally, to align the feature space across
different modalities, we tailor a meta adapter that extracts textual information into an object query. This serves
as an instruction for cross-modality matching. These two modules collaboratively ensure the alignment of multi-
modal representations while preserving their discriminative nature. Comprehensive experiments conducted
on a diverse set of benchmarks verify the superiority of the proposed model. The code is available at
https://github.com/jinyongch/DSPI.

1. Introduction select image patches as exemplars and subsequently computing the
similarities between these exemplars and various image regions, these

Over the last decade, object-specific counting has garnered substan- models have demonstrated commendable levels of generalizability and
tial attention [1-3] and significant progress had been achieved, espe- counting precision. However, most class-agnostic counting methods

cially for crowd counting and vehicle counting. However, these models are built on the fragile assumption that the precise bounding boxes
face constraints when it comes to counting specific objects, thereby

restricting their effectiveness in various real-world applications, es-
pecially when dealing with unseen object categories. Consequently,
there is a significant demand for a versatile counting model that can
seamlessly operate across previously untrained categories and generate
corresponding density estimations [4].

This demand has led to the emergence of class-agnostic counting
models [5-7]. They are designed to train a unified/shared model to
estimate the number of arbitrary objects of interest within a pro-
vided image, as depicted in Fig. 1-(a). Through the annotation of

can be easily obtainable during inference, which is challenging to
realize in practical scenarios. Therefore, one of the requirements is
to annotate samples of objects to be counted manually, which can
present a significant inconvenience for users. Besides, the substantial
intra-class variance among query objects may introduce biased object
counts [7,8]. To address these issues, reference-less counting methods
have been developed, which enable the exploration and enumeration of
salient objects during inference [9,10]. Although these methods relieve
from manually annotating samples, they fail to specify the category of
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Fig. 1. Illustration of various generalized object counting schemes: (a) Few-shot counting: This approach necessitates manually labelled image patches for training and inference.
(b) Reference-less counting: This method automatically identifies and counts salient objects. However, it cannot specify objects of interest. (c) Spatial Prior Guided Zero-shot
counting: The diagram proposed in this paper. It makes use of the spatial information from objects of interest and provide text instructions to specify the counting object.

the object of interest when multiple categories are presented, as shown
in Fig. 1-(b). In general, the limitations of the existing counting models
lie in their relative inflexibility. Therefore, it is hard to adapt them
directly to real-world applications.

Contrastive Language-Image Pre-training (CLIP) [11] is an effica-
cious and scalable approach derived from natural language supervision.
The CLIP captures semantic correspondences between images and text,
enabling robust generalization even without annotations. Recent model
CLIP-Count [12] a frozen vision encoder was built to extract visual pre-
sentation from the given image. The text representation from the cor-
responding text input instructs the specific object class to be counted.
Unlike the existing reference-less counting methods, it does not require
additional samples to warm up the model for the interested object.
This can make domain-agnostic counting more practical. Although CLIP
provides generic knowledge regarding the objects represented in the
given image, directly applying CLIP encoders into the model design
as CLIP-Count, is inherently limited by the following two aspects. (1)
CLIP is pre-trained by contrastive comparing the vision and language
representations, therefore, it intrinsically decides if one object exists
in the image, rather than being attentive to the spatial location of
the objects. Therefore, simplifying the use of the vision encoder to an
exact representation for counting is suboptimal, as counting objects’
dominance relies on their spatial locality. (2) The visual inputs for
pretraining CLIP are mainly natural images and the containing objects
are relatively sparse. While counting the objects, the inputs normally
contain many objects. The data distribution shifts regarding the density
of the objects, making the text representation not aligned with the
visual representation.

In this work, we aim to solve the aforementioned two limitations
using frozen CLIP for zero-shot object counting. To make the image
representation attentive to the spatial information of the objects, in-
stead of training the auxiliary branch to label the object’s bounding box
from scratch, we design the spatial prior guided module, as illustrated
in Fig. 1-(c). To this aim, we explore deep prior from the cutting-
edge multi-modal grounding models, i.e., Grounding DINO [13]. We
incorporated Grounding DINO as a training-free module and used it
to provide the network with deep prior regarding the location of the
specific objects. The spatial prior extractor is frozen, so that it does not
introduce any additional parameters for training. Secondly, we address
the density shift issue while deploying pre-trained CLIP encoders for
object counting. Instead of training the resource-intensive heavy vision
and language encoders, we introduce a meta adapter designed to
function as a translator. This meta adapter converts the text instruction
into a vision query specifically related to the object. The meta adapter
is a lightweight module designed to extract the text instruction into an
object query and facilitate interaction with the visual information. This
enables the visual representation to be more attentive to the specific
object. The contributions of the paper are summarized as:

1. We address the spatial location oversight in foundational models
by integrating a pre-trained multi-modal grounding model. This
model generates spatial priors for guidance and enhances the
attentiveness of the vision encoder to specific object regions
while suppressing background interference.

2. We tackle the misalignment issue between textual instructions
and visual representations using the designed meta adapter. It
can extract instructive descriptors from the text and transform
them into an object query aligned with the vision representation.
Thus, it facilitates the subsequent cross-modality interaction.

3. We validate the effectiveness of the proposed Deep Spatial Prior
Interaction (DSPI) model through a comprehensive set of experi-
ments. The results demonstrate that DSPI can extract distinctive
representations aligned across various modalities, while also
incorporating precise spatial information, to help improve the
generalization capability of the model.

The remainder of the paper is structured as follows. In Section 2, the
relevant research is reviewed. Section 3 offers a detailed explanation
of the proposed method. Comprehensive experimental analyses are
provided in Section 4. The conclusion is drawn in Section 5.

2. Related work
2.1. Object grounding

Object grounding refers to connecting or associating natural lan-
guage descriptions with actual objects in an image. This aids in empow-
ering models to comprehend the relationship between textual descrip-
tions and the content present in images. This field has been tremen-
dously advanced over the last few years and numerous models have
been proposed. One of the most representative works is DETR [14]. It
has undergone various improvements from different perspectives [15-
17]. DAB-DETR [18] incorporates anchor boxes as queries in DETR
to enhance the precision of box predictions. Furthermore, the DETR
with improved denoising anchor boxes (DINO) [19] is built upon the
foundations of DAB-DETR and DN-DETR. It further advances several
techniques, including contrastive denoising, and achieving new records
on the COCO object detection benchmark.

However, such detectors focus on closed-set detection and may
face challenges when generalizing to new classes due to limited pre-
defined categories. Open-set object detection challenges the model
to infer unknown object classes. It goes beyond recognizing familiar
target classes present in the training set. This is vital in real-world
situations, where the model may encounter unfamiliar targets. OV-
DETR [20] leverages image and text encodings from the contrastive
language-image pre-training (CLIP) [11] model as queries to decode
category-specific boxes within the DETR framework. ViLD [21] extracts
knowledge from the CLIP teacher model into the R-CNN class detector.
DETR and Deformable DETR [22], attempt to formalize object detection
as a set prediction problem that can eliminate the post-processing non-
maximum suppression (NMS). However, previous efforts are limited to
integrating multi-modal information at certain stages. Although these
approaches may have yielded relatively good results, they might not be
optimal [13]. Grounding DINO is a multi-modal model renowned for
extracting detailed representations. It effectively captures the precise
spatial positioning of objects and can create bounding boxes for various
object categories. Moreover, it fits into current multi-modal designs to
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provide meaningful guidance information. In this paper, We employ
a pre-trained multi-modal grounding model, i.e., Grounding DINO, to
extract a deep spatial prior. This spatial prior guides the CLIP image
encoder in being attentive to the location of objects.

2.2. Zero-shot object counting

Few-shot object counting aims to determine the number of objects
in an image with limited training samples. It can quickly learn and
adapt to new object categories in a relatively short amount of time.
Thus, it provides flexibility and efficiency for a broader range of
scenarios in practical applications. FamNet [23] employed ROI pooling
to predict density maps and introduced a dataset for class-agnostic
counting, known as FSC-147 [23]. The further progress can be divided
into two main aspects. One method includes utilizing advanced visual
backbones, like Vision Transformers (ViT), to improve the extracted
feature representations [5,8]. The second approach aims to improve
exemplar matching by either explicitly modelling exemplar-image sim-
ilarity [24,25], or by further utilizing exemplar guidance, as explored
in [6,26]. Despite their excellent performance, they are not applicable
when some samples are not obtained.

Recently, reference-less counting has become an effective approach
for class-agnostic counting without relying on human annotations.
RepRPN-Counter [10] introduced a region proposal module specifically
designed to extract prominent objects, eliminating the need for sampled
inputs. RCC [9] employed pre-trained ViT [27,28] to extract salient
objects implicitly and directly regress a scalar for estimating object
counts. Several contemporary few-shot counting models [5,6] can also
be adapted for reference-less counting. Although these approaches do
not depend on samples, they lack an effective method for specify-
ing the object of interest in the presence of multiple object classes.
Simultaneously, Xu et al. [7] introduced zero-shot object counting,
which requires only the class name during inference. They trained a
text-conditional variational autoencoder (VAE) on a known object set
and a few-shot object counter with exemplar supervision to generate
exemplar prototypes. However, these approaches still depend on patch
exemplars. To facilitate end-to-end training without the need for patch-
level supervision, Jiang et al. incorporated Contrastive Language-Image
Pre-training (CLIP) [11] into the counting network [12]. CLIP endows
the model with zero-shot image-text alignment capability. To transfer
the robust image-level representations from CLIP to dense tasks such
as density estimation, a text-contrastive loss, and a hierarchical patch-
text interaction module are devised within the model. In this paper, we
focus on zero-shot object counting given its practical application value.
Zero-shot counting methods count objects in a class-agnostic manner
without the need for additional image patch annotations. However, the
previously mentioned models lack the ability to perceive spatial loca-
tion information. Therefore, while addressing multi-modal alignment,
we also emphasize the importance of spatial location awareness.

2.3. Feature attentive learning

The attention mechanism is adopted to enable the network to
concentrate on the discriminative part of the input data. It has been
widely incorporated in different types of networks, including recurrent
neural networks (RNN), convolutional neural networks (CNN), and
the Transformer [29] based networks. It has been broadly adopted
in applications, such as image segmentation, object detection, and
crowd counting [30,31]. The most typical attention mechanisms in-
clude spatial attention mechanisms, channel attention mechanisms, and
self-attention mechanisms.

Spatial attention methods focus on critical regions within input
data and enhance spatial context information. The channel attention
mechanism focuses primarily on the channel dimension of input data,
and it enhances the essential channel features. Woo et al. [32] proposed
a Convolutional Block Attention Module (CBAM), that incorporates
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both channel and spatial attention. Fu et al. [33] proposed a multiscale
feature fusion method, called Dual Attention Network (DANet), which
can adaptively integrate local features and their global dependencies.
DANet introduced channel and spatial attention branches to improve
semantic segmentation performance. The advantage of self-attention
over traditional spatial and channel attention lies in its minimal de-
pendence on external information and its superior ability to capture
non-local correlations. This quality facilitates the extraction of global
information representations in transformer networks without employ-
ing traditional RNN or CNN networks. Self-attention and cross-attention
are based on the same core mechanism, but their applications and
purposes differ. Self-attention is designed to deal with relationships
within a single sequence, while cross-attention is designed to deal
with relationships between two different sequences. In this paper, we
introduce the deep spatial prior that encodes the spatial location of the
probe objects as hard-coded attention. This guidance mechanism aims
to enhance the model’s spatial awareness of the query objects.

2.4. Deep learning for crowd counting

Crowd counting is particularly prominent in all kinds of object
counting tasks because of its special significance to social security
and development. Zhang et al. [34] proposed a method based on
multi-column convolutional neural networks for crowd counting from
a single image. The network can learn to capture features at different
scales and perspectives by designing multiple columns. Li et al. [35]
proposed a congested scene recognition network (CSRNet), which in-
troduced extended convolutional neural networks to understand highly
congested scenarios better. By introducing an extended convolution
layer, the network effectively captures the information of different
density regions. Zhang et al. [36] proposed an adaptive convolutional
neural network in which the structure can be adjusted in response
to density changes in the input image. This adaptability enables the
network to better adapt to various crowded scenarios. Wang et al. [37]
developed an automated data acquisition that used domain adaptation
from synthetic images to real images to address the limitations of
labelled real-world data. Earlier CNN-based approaches utilized multi-
column architectures with different receptive fields to learn features at
different scales. Li et al. [35] employed an expanded convolution layer
to augment the receptive field to address scale variation.

Meanwhile, some works aim to address domain offsets between
training and test images in crowd counting. Reddy et al. [38] proposed
a meta-learning heuristic strategy to address learning mechanisms in
scenarios with limited data shots. Unlike the prior methods that tackled
individual distributions, Zhu et al. [39] proposed a domain adaptive
approach by employing optimal transport in both the source and target
domains. This alignment strategy addresses misalignments caused by
domain-agnostic factors. Jiang et al. [12] proposed a CLIP-Count model
in which pre-trained vision-language models (VLMS) can directly adopt
text-guided object counting tasks in an end-to-end manner. It can detect
and count the target by the learned semantic relation without the direct
label. These methods are specifically designed for human counting and
do not apply to categorize beyond humans. In this paper, we test
the generalizability of the model on crowd counting to validate the
class-agnostic merit of the DSPI model.

3. Proposed method
3.1. Preliminary: Grounding DINO

The Grounding DINO model [13] adopts a dual-encoder-single-
decoder architecture. It comprises five parts, i.e., image backbone, text
backbone, feature enhancer, language-guided query selection module,
and cross-modality decoder. For each (Image, Text) pair, it first extracts
vanilla image and text features using an image and text backbone,
respectively. Each pair (Image, Text) is processed through an image
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Fig. 2. The framework of the proposed DSPI model.

backbone and a text backbone to extract basic image and text fea-
tures. These features are fed into a feature enhancer module for cross-
modality feature fusion. Following the acquisition of cross-modality
text and image features, a language-guided query selection module is
employed to identify cross-modality queries based on the extracted
image features. The identified cross-modality queries will be input
into a cross-modality decoder, which enables the probing of desired
features from both modalities and subsequently updating themselves.
The output queries from the final decoder layer will be employed to
predict object boxes and extract the corresponding phrases.

3.2. Overview

The goal of the DSPI method is to develop a deep neural network,
denoted as f,, that processes a visual image x’ and a text instruction
x' as inputs. The network is expected to produce a density map, rep-
resented as § = f,(x',x"), which accurately marks the spatial location
of the target object(s) described in the text instruction. To this aim,
we design the DSPI model that can interact with the cross-modality
representations produced by the frozen CLIP encoders. The overall
framework of the proposed Deep Spatial Prior Interaction (DSPI) model
is shown in Fig. 2.

Given a batch of samples X,, = {x;,x,,...,xp}, and the corre-
sponding text instruction 7;, = {t,,t,,...,15}, where H and W are the
width and height of the image, and B is the batch size, we use image
encoder f,; in CLIP model to extract the visual representation from the
input images as V; = f,;(X). Similarly, the text representation can be
extracted by the CLIP text encoder f,, as V, = f.,(7). To make the visual
representation attentive to the spatial location of the probe object,
we design a prior fusion module to incorporate the deep spatial prior
produced by the grounding DINO model into the visual representation.
Moreover, we designed a meta adapter to bridge the modality gap
between the text probe and visual representation. This adapter trans-
lates the text probe into an object query, enabling effective interaction
with the visual representation. Finally, given the discriminative multi-
modal representation, a decoder is applied to regress a density map that
indicates the spatial location of the query object.

3.3. Deep spatial prior attentive injection

The visual representation extracted by the CLIP vision encoder is
generally focused on the overall category of objects within the given
images, while insensitive to the spatial location of the objects. For
counting the objects, it is vital to know the fine-grain location of objects
so that a density map can be generated and the number of objects can
be counted by summarizing the objects in the generated density map.
To make the vision representation spatial-aware, we utilize the spatial

prior extracted by the large-scale pre-trained Grounding DINO model
to focus on relevant object regions. The illustration of the deep spatial
prior extraction is shown in Fig. 3. Grounding DINO is also a multi-
modal model, which can label the spatial location of certain objects. We
extract the deep spatial prior using the frozen Grounding DINO model.
Given the paired input {x/,x'}(x' € ROHFW x' ¢ RL), we employed
the image backbone and text backbone to extract the representations
in each modality. These representations are fused by a cross-modality
decoder to generate the bounding boxes. Instead of directly using the
bounding box, we use the intermediate representation produced by the
cross-modality decoder as the deep spatial prior. It is produced after
the cross-attention layer so that it can encode global information while
being locally attentive to the spatial location of the query object.

The spatial prior fusion conducted by the cross-attention layer is
applied among the three counterparts, namely query (Q), key (K), and
value (V). The attentive interaction process is formulated as:

oK”

dy

Attention(Q, K, V') = Softmax( W, (€D)]
where d; indicates the dimension of K. Softmax(-) represents the nor-
malization function.

Once we obtain the deep spatial prior vy, it will be fused into the
CLIP image representation to emphasize the spatial location of a certain
object. To this end, we design the spatial prior fusion module. The
pipeline of the spatial prior fusion module is illustrated in Fig. 4-(a).
It contains a multi-head cross-attention (MHCA) layer that takes the
image representation v; as the Q, and the spatial prior v, as K and V.
Following the MHCA, we use a Multi-Layer Perceptron (MLP) to refine
the extracted representation. The whole process can be denoted as:

FCo(v)) * FCK(Us)T

Vdy
where the FCp gy (-) denotes the project layers for the three counter-

parts, M LP(-) is the function of the MLP layer, and u;r is the spatially
enhanced visual representation.

vt = MLP(softmax( ) * FCy, (vy)), 2)

3.4. Vision queries learning by meta adapter

Considering the intrinsic difference in object density between the
input image and the samples used to train the CLIP encoders, there is
a major challenge caused by the holistic distribution shift that hinders
the alignment between text representation and visual representation.
To mitigate this issue, We propose incorporating a meta adapter as
a translator to extract informative knowledge from the text probe.
This acquired knowledge can be seamlessly integrated with the visual
representation, fostering effective cross-modal interaction.
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The overview of the meta adapter is shown in Fig. 5. Once we ex-
tracted the text representation v,, we will extract the query information
regarding the object, and inject it into the initial object query, which is
randomly initialized. The fusion module, composed of the conventional
multi-head attention module, performs extraction and injection. We
use the random initialized query v? as Q, and the text embedding v,
as V and K. Following the definition in Eq. (1), we can form the object

query as:

T

vt = softmax( oK W, 3)
Vi

where v} is the enhanced object query that contains the discriminative

knowledge from the text embedding v,.

3.5. Cross-modality interaction and density map regression

Given spatial representation v] and the object query vy, we can
perform cross-modality interaction. The pipeline of cross-modality in-
teraction is shown in Fig. 4-(b). To this aim, we design the multi-modal
transformer composed of the multi-head self-attention layer (MHSA).
It takes v;“ as input, and multi-head cross-attention layer (MHCA) that

Illustration of the meta adapter.

takes the output of the MSHA layers as a query and v;" as key and value
to perform the knowledge transfer and interaction. Then, a two-layer
feed-forward network is appended after the MHCA to refine the feature
representation. Finally, given the cross-modality fused representation v,
we use a conventional CNN-based decoder to generate the density map
9, from which we can calculate the number of interested objects. The
process of density map regression is illustrated in Fig. 4-(c).

4. Experimental results and analysis
4.1. Implementation detail

All experiments were conducted using the PyTorch deep learning
framework [12], and with an NVIDIA A100 GPU. The Adam optimizer
with a weight decay of 5x10~2 was employed to optimize the learnable
parameters model. The learning rate was set to 10~5. The batch size was
set to 32, and the model was trained for 200 epochs to ensure the con-
vergence. We used the Grounding DINO [13] with Swin Transformer
to extract the spatial prior with a dimension of 256.
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Table 1

Details of the datasets adopted for comparison.
Dataset # Year # Categorize # Images # Train # Val # Test Average resolution # Min # Max # Avg # Total
FSC-147 [23] 2021 147 6135 3659 1286 1190 774 * 938 7 56 3701 343,818
ShanghaiTech Part A [40] 2016 1 482 300 - 182 589 * 868 33 3139 501 241,677
ShanghaiTech Part B [40] 2016 1 716 400 - 316 768 * 1024 9 578 123 88,488
CARPK [41] 2017 1 1448 989 - 459 720 * 1280 1 188 62 89,777
UCF_CC_50 [42] 2013 1 50 40 - 10 2101 * 2888 94 4543 1279 63,974
UCF-QNRF [43] 2018 1 1535 1201 - 334 2013 * 2902 49 12,865 815 1,251,642
JHU-Crowd++ [44] 2020 1 4372 2272 500 1600 910 * 1430 0 25,791 346 1,515,005
NWPU-Crowd [45] 2020 1 5109 3109 500 1500 2191 * 3209 0 20,033 418 2,133,375

4.2. Benchmarking datasets

The essential information of benchmarking datasets is shown in Ta-
ble 1.

FSC-147 [23] is a meticulously annotated collection of images de-
signed specifically for class-agnostic object-counting research. The im-
ages within each category are non-overlapping, primarily consisting of
kitchen utensils, office supplies, stationery, vehicles, and animals. Each
image in the dataset undergoes careful annotation, and it serves as
fundamental ground truth data for model evaluation. The annotations
offer detailed insights into the spatial distribution of objects within the
images. In the experiments, we utilize the class names as textual input,
without employing annotations on image patches.

ShanghaiTech [40] is a large-scale crowd-counting dataset comprising
1198 annotated images. The dataset is divided into two subsets: Part
A and Part B. Part A images are derived from the internet, featuring
densely populated targets. In contrast, Part B images are authentic
captures of bustling streets in Shanghai, exhibiting sparser target dis-
tributions. The disparate origins of these two segments pose challenges
for cross-scene evaluations.

CARPK [41] is an image dataset designed for vehicle counting. It com-
prises 1148 bird’s-eye-view images of parking lots capturing vehicles
under various time and weather conditions. The dataset comprises
89,777 cars, with diverse scenarios illustrated in density, occlusion,
and scale. All images in the dataset are annotated, providing counting
information for vehicles and pedestrians and serving as a benchmark
for evaluation.

UCF_CC_50 The UCF_CC50 dataset [42] includes 50 images, each
exhibiting extremely high crowd density. The annotations per image
range from 94 to 4543, with an average of 1280 pedestrians per image.
In accordance with [46,47], we randomly divided the dataset into five
parts for cross-validation.

UCF-QNRF [43] features a large-scale crowd with diverse scenes, mul-
tiple perspectives, and variations in lighting. The dataset includes 1535
high-resolution images, each averaging 2013 x 2902 pixels in size.

JHU-Crowd++ [44] is composed of 4250 images which include nu-
merous images featuring weather-based degradations and illumination
variations.

NWPU-Crowd [45] includes 5109 images and 2,133,375 head anno-
tations. It is a large-scale crowd counting dataset obtained from the
internet and it contains the presence of negative samples.

4.3. Evaluation metrics

Following prior researches [46,48-51], the Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) were employed as metrics
for evaluating. The MAE was adopted to assess the accuracy of the
model. It is mathematically denoted as:

N
1 A
MAE:NZ;UI'—YI'L (C))

where N represents the total number of images in the test set, y;
denotes the ground truth of the actual number of people in the ith
image, and y; corresponds to the total predicted count from the density
map for the same image. The advantage of MAE lies in its insensitivity
to outliers, as it solely considers absolute differences.

However, due to the nature of absolute values, MAE cannot provide
deeper insights into the analysis of squared errors. Conversely, RMSE
was utilized to evaluate the robustness of the model. It is formulated
as:

RMSE = ()

In comparison to MAE, the primary advantage of RMSE is its sensitivity
to large errors, thereby revealing inadequacies in the performance of
the model on certain samples.

4.4. Experiments on FSC-147 dataset

Table 2 presents the objective comparison results of the proposed
method DSPI against State-Of-The-Art (SOTA) methods on the FSC-
147 [23] dataset. In comparison to the CLIP-Count [12], both MAE
and MSE have shown an improvement of 10.6% and 12.5% on the
validation set, which indicates superior counting performance over
advanced zero-shot counting methods. Due to the incorporation of
spatial priors, the DSPI can effectively distinguish between real objects
and background noise as shown in Fig. 13. The attention is focused
on foreground objects and thus enables a more accurate prediction of
object quantity. To comprehensively assess the performance of the
counting model, we included comparisons with several few-shot and
reference-less counting methods in Table 2. It is observed that the
proposed method DSPI achieved a reduction of 30.9% and 24.5% in
MAE and RMSE on the validation set, and 23.7% in MAE on the test set,
compared to the SOTA few-shot method FamNet [23], which relies on
a limited number of labelled samples. When compared to the reference-
less counting method CounTR [8], which operates without the need for
labelled data, the proposed method DSPI achieves reductions of 7.0%
and 25.5% in MAE and RMSE on the validation set, and 5.0% in RMSE
on the test set. This further validates the exceptional performance of the
proposed method DSPI not only in zero-shot scenarios with high accu-
racy and robustness but also in handling few-shot and reference-less
scenarios.

Fig. 6 visualizes the estimated density map on the FSC-147 dataset.
The first row consists of the original input images, and the second
row showecases the visualization of spatial prior information obtained
through the Grounding DINO pre-trained model. The third row is
the corresponding ground truth (GT). The “GT” is obtained by sum-
ming the object center point coordinates from the dataset labels. The
fourth row and the last row respectively exhibit the predicted density
maps overlaid on the original images by Clip-Count and the proposed
DSPIL. The “Pred” represents the number of people predicted by the
network, which is obtained by summing the pixels on the density
map. Evidently, the proposed DSPI model maximally leverages spatial
and textual prior information, accurately counting different types of
objects with guidance from textual prompts. Moreover, the predicted
density maps exhibit spatial consistency with the ground truth density
distributions.
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Table 2

Objective comparison results on the FSC-147 dataset. The best results are highlighted in bold.

Scheme Method Source #Shot Val set Test set

MAE RMSE MAE RMSE

FamNet [23] CVPR2021 3 24.32 70.94 22.56 101.54
CFOCNet [52] WACV2021 3 21.19 61.41 22.10 112.71

Few-shot CounTR [8] BMVC2022 3 13.13 49.83 11.95 91.23
LOCA [5] ICCV2023 3 10.24 32.56 10.97 56.97
FamNet [23] CVPR2021 1 26.05 77.01 26.76 110.95
FamNet* [23] CVPR2021 0 32.15 98.75 32.27 131.46
RepRPN-C [10] ACCV2022 0 29.24 98.11 26.66 129.11

Reference-less CounTR [8] BMVC2022 0 18.07 71.84 14.71 106.87
LOCA [5] ICCV2023 0 17.43 54.96 16.22 103.96
RCC [9] arXiv2022 0 17.49 58.81 17.12 104.53
Xu et al. [7] CVPR2023 0 26.93 88.63 22.09 115.17

Zero-shot Clip-Count [12] MM2023 0 18.79 61.18 17.78 106.62
DSPI (Ours) - 0 16.80 53.56 17.22 101.48

GT: 14.0

Clip-Count Pred: 15.0 § Clip-Count ‘Pred: 19.0 Clip-Count

Pred: 19.0 Clip-Count Pred:

Pred: 20.0 DSPI'(Ours) . Pred: 17.0 §DSPI (Ours) © 'PFed: 14.0 DSPI (Ours)  Pred: 12.0 §DSPI (Ours)  Pred: 18.0 §DSPI (Ours)

Clip-Count  Pred: 17.0 JClip-Count  Pred: 19.0

Fig. 6. Visualization of the input image and generated density maps for the samples from the FSC-147 dataset.

4.5. Experiments on ShanghaiTech dataset

We also tested the cross-domain generalization ability of the DSPI
model. We directly utilized the model trained on the FSC-147 dataset
and tested it on the ShanghaiTech test set. During this process, we
only needed to update the input textual prior information to “person”
to specify the target crowd to be counted. The objective comparison
results are shown in Table 3. It can be observed that the proposed
method outperforms the reference-less counting method RCC [9] and
the zero-shot counting method CLIP-Count [12]. Specifically, on the
Part A dataset, the MAE and RMSE are reduced by 11.2% and 11.0%
compared to CLIP-Count [12]. On the Part B dataset, MAE and RMSE
are reduced by 6.3% and 8.9% compared to CLIP-Count [12], respec-
tively. This indicates the advanced generalization capability of the
proposed method. The subjective results shown in Fig. 7 further verify
the effectiveness of the proposed model on ShanghaiTech, especially
in cross-dataset scenarios. The experimental results indicate that the
density map generated by the proposed model accurately represents
crowd distribution.

4.6. Experiments on CARPK dataset

We also tested the cross-domain generalizability of DSPI the model
on the CARPK [41] dataset. Similar to the ShanghaiTech [40] dataset,
the model was trained on FSC-147 without fine-tuning and directly
tested on the CARPK dataset. The input textual prior information was
set to “car” to specify the target object to be counted. The objec-
tive comparison results are shown in Table 4. Compared with the
RCC [9], the proposed method DSPI achieved reductions of 46.2%
and 36.8% in MAE and RMSE, respectively. When compared with the
few-shot counting method BMNet [24], the proposed method DSPI
demonstrated decreases of 20.2% and 32.8% in MAE and RMSE, respec-
tively. These consistent improvements further validate the superiority
of the proposed method DSPI in counting tasks. Visualization results
on the CARPK dataset are illustrated in Fig. 8. The CARPK scenarios
present substantial background clutter. The samples demonstrate that
the proposed method can suppress cluttered backgrounds.
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Table 3

Cross-dataset evaluation on ShanghaiTech crowd counting dataset. The best results are highlighted in bold.
Method Type Training — Testing MAE RMSE Training — Testing MAE RMSE
MCNN [34] 85.2 142.3 221.4 357.8
CrowdCLIP [53] Specific Part A — Part B 69.6 80.7 Part B — Part A 217.0 322.7
RCC [9] 66.6 104.8 240.1 366.9
Clip-Count [12]  Geperic  FsC147 — Part B 427 774 pgc147 — parta 1926 3084
DSPI (Ours) 42.8 70.5 171.1 274.4

Pred: 57.0 Pred: 23.0 § GT: 20.0 Pred: 20.0

Fig. 7.

Pred: 122.0 | GE: 136.0

GT: 118.0

GT:1040  .Pred: 107.0

Pred: 134.0 | GT: 1170 -

Pred: 28.0 Pred: 37.0 Pred: 29:0

Visualization of the input image and generated density maps for the samples from the ShanghaiTech dataset.

Pred: 119.0§ GT: 115.0 ;' ; Pred: i18.0 GT:150.0  Pred: 152.0.:

Fig. 8. Visualization of the input image and generated density maps for the samples from the CARPK dataset.

Table 4

Cross-dataset evaluation on CARPK dataset. The best results are highlighted in bold.
Method #Shot MAE RMSE
FamNet [23] 3 28.84 44.47
BMNet [24] 3 14.41 24.60
BMNet+ [24] 3 10.44 13.77
RCC [9] 0 21.38 26.15
Clip-Count [12] 0 11.96 16.61
DSPI (Ours) 0 11.50 15.52

4.7. Experiments on other dense crowd datasets

To further validate the generalization ability of the proposed model,
we perform cross-domain analysis on three other dense crowd datasets,
namely UCF_CC_50 [42], UCF-QNRF [43], JHU-Crowd++ [44], NWPU-
Crowd [45]. The UCF_CC_50 [42] dataset comprises 50 images with ex-
tremely high crowd density, while the UCF-QNRF [43] dataset consists
of 1535 high-dense images. The JHU-Crowd++ [44] dataset includes
a considerably large number of samples (ie., 4372 images). Addi-
tionally, the NWPU-Crowd dataset [45] contains 5109 images. This
dataset presents several challenges, including negative samples, high

resolution, and significant appearance variations. The CLIP-Count [12]
is adopted as the competitor, and it employs multimodel information
to count the crowds. Comparative results are reported in Table 5. It
proves that the DSPI outperforms CLIP-Count [12] in terms of MAE and
RMSE, which verifies the generalization ability of the proposed method
on dense crowd datasets. Subjective results in Fig. 9 illustrate a visual
comparison between DSPI and CLIP-Count [12] on the dense crowd
dataset. It demonstrates the proposed method in accurately predicting
the number while precisely crowd density distribution.

4.8. Component analysis

Ablation study on pivotal components To validate the effective-
ness of the adapter module and Prior module in the proposed DSPI
model, extensive ablation experiments were conducted on the FSC-
147 dataset, and the objective comparison results are presented in
Fig. 10. Considering the complexity of the network and the compu-
tational resource requirements, we detailed the learnable parameters
and computation costs of pivotal modules in Table 6. The input image
size is 384 x 384.
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Fig. 9. Visualization of the input image and generated density maps for the samples from the dense crowd datasets.

m Baseline u Adapter
19.5
18.98 65.0  63.80
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18.1 18.03 59.0
17.50 56.64
17.4 56.0
16.80 53.56

16.7 53.0

16.0 50.0

Val Set MAE Val Set MSE

® Prior DSPI
107.59
192 1589 — 107.5 106.74
18.8 70 18.60 106.0
184
104.5
18.0 103.67
103.0
176 17.22 101.48
17.2 101.5
16.8 100.0
Test Set MAE Test Set MAE

Fig. 10. Performance analysis comparison of the Adapter and Prior modules in the proposed DSPI model.

Table 5
Cross-dataset evaluation on dense crowd counting datasets. The best results are
highlighted in bold.

Method Type Training — Testing MAE RMSE
Clip-Count [12] 739.1 992.2
DSPI (Ours) Generic FSC147 — UCF_CC_50 676.5 915.2
Clip-Count [12] 452.9 765.5
DSPI (Ours) Generic FSC147 — UCF-QNRF 414.2 705.9
Clip-Count [12] 201.9 682.4
DSPI (Ours) Generic FSC147 — JHU-Crowd++ 187.6 656.7
Clip-Count [12] 316.2 962.7
DSPI (Ours) Generic FSC147 — NWPU-Crowd 302.2 941.4

Table 6

Comparison results of the pivotal components on the model complexity.
Methods Params (M) GFLOPs
Baseline 16.36 123.06
Baseline + Prior 64.46 124.69
Baseline + Adapter 20.58 123.13
DSPI (Ours) 68.67 124.76

1. Baseline represents the baseline model without the Adapter and
Prior modules. It can be observed that the performance is not
optimal.

2. Adapter introduces the Adapter module on top of the Base-
line. As shown in Fig. 10, MAE increases by 1.01%, and RMSE
decreases by 0.79% compared with the baseline model on the
test set. This indicates that the Adapter module enhances the
modal alignment between text and targets in certain image
samples, making matching text and targets more accurate by
incorporating visual information.

3. Prior incorporates the Prior module on top of the Baseline. It
is evident from Fig. 10 that by adding spatial prior position
information of targets, the model achieves a reduction of 1.54%
in MAE and 3.64% in RMSE compared with the baseline model
on the test set. This validates the effectiveness of the Prior
module.

4. DSPI simultaneously introduces the Adapter and Prior modules
on top of the Baseline. Compared to introducing only the Prior
module on the test set, MAE and RMSE decreased by 8.84%
and 5.68%, respectively. This implies that the Adapter module
further improves counting accuracy and robustness on the foun-
dation of the Prior module. Therefore, the decreasing trend of
errors in Fig. 10 demonstrates the effectiveness of the Adapter
and Prior modules in the DSPI model.

Ablation study on the Adapter To investigate the effect of the
Adapter on textual features, we conducted ablation experiments on
top of the Baseline with the added Prior Module. The comparative
results are illustrated in Fig. 11. Within the meta adapter, we randomly
initialized learnable visual queries with dimensions of 2" to extract
instructive knowledge from the text probe. Through these ablation
experiments, we verified the role of the Adapter module and anal-
ysed the impact of different dimensions of initial visual queries on its
counting performance. As depicted in Fig. 11, appropriately setting the
dimensions of initial visual queries maximizes the effectiveness of the
Adapter. Additionally, we observed that when the initial visual query
dimension is 16, the adapter could effectively extract and reinforce
crucial information from textual features, thereby reducing noise and
redundancy within them. This enhanced the ability of the model to
capture semantic relationships between text and visual information,
and thus improve the overall performance.

Visualization of the Prior and Adapter To further analyse the
impact of Prior and Adapter modules on counting performance, we
visualized the intermediate visual features of each module in Fig. 13.
The second column reveals that incorporating the Prior module re-
duces the focus on irrelevant background information. The third col-
umn introduces the Adapter module, which further integrates text
features and concentrates attention more directly on the counting
objects corresponding to textual cues. It can be observed that the DSPI
aligns the visual features of the text by integrating information from
the Prior and Adapter modules, and thus effectively suppress back-
ground interference and enhance the generalization ability. The density
map accurately reflects the distribution of objects, to demonstrate the
effectiveness of the Prior and Adapter modules.
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Fig. 11. The ablation analysis of the Adapter module on the FSC-147 dataset. The horizontal axis represents the dimension sizes of learnable initial visual queries 2". The vertical
axis of the two left subplots represents MAE or MSE on the validation set, while the vertical axis of the right two subplots represents MAE or MSE on the test set.

GT: 218.0

(Pred: 2140 |

Fig. 12. Visualization of failure cases.

4.9. Failure cases

The proposed DSPI may encounter limitations in certain scenarios
due to ambiguous text guidance, as shown in Fig. 12. In some cases, if
an object has two identifiable components, it may be counted as two
separate objects. This limitation primarily arises from insufficient uti-
lization of textual information to comprehend the integrity of targets.
In future work, we tend to introduce additional contextual information
based on textual prompts and design region-merging strategies to help
the model better understand the holistic nature of objects and mitigate
the ambiguity of query objects.

5. Conclusion

In this paper, we identified the limitation of the existing class-
agnostic counting model, include the lack of sensitivity to location
information and potential misalignment in the hypothesis space. To
solve these two problems, we proposed Deep Spatial Prior Interac-
tion (DSPI). The DSPI leverages the spatial-awareness ability of pre-
trained object grounding model and incorporates spatial location as
an additional prior for a specific query class, enabling a more pre-
cise focus on the object’s exact location. Additionally, we designed a
meta adapter to align feature spaces across different modalities. The
proposed model demonstrated superior performance through extensive
experiments on diverse benchmarks. It showcased the effectiveness
in addressing the identified challenges and advancing class-agnostic
counting in a multi-modal context.
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